
Coevolution of Neural Networks
using a Layered Pareto Archive

German A. Monroy

Dept. of Computer Sciences
The Univ. of Texas at Austin

Austin, TX 78712 USA
gmonroy@ieee.org

Kenneth O. Stanley1
Dept. of Computer Sciences
The Univ. of Texas at Austin

Austin, TX 78712 USA
kstanley@cs.ucf.edu

Risto Miikkulainen
Dept. of Computer Sciences
The Univ. of Texas at Austin

Austin, TX 78712 USA
risto@cs.utexas.edu

ABSTRACT
The Layered Pareto Coevolution Archive (LAPCA) was recently
proposed as an effective Coevolutionary Memory (CM) which,
under certain assumptions, approximates monotonic progress in
coevolution. In this paper, a technique is developed that interfaces
the LAPCA algorithm with NeuroEvolution of Augmenting
Topologies (NEAT), a method to evolve neural networks with
demonstrated efficiency in game playing domains. In addition, the
behavior of LAPCA is analyzed for the first time in a complex
game-playing domain: evolving neural network controllers for the
game Pong. The technique is shown to keep the total number of
evaluations in the order of those required by NEAT, making it
applicable to complex domains. Pong players evolved with a
LAPCA and with the Hall of Fame (HOF) perform equally well, but
the LAPCA is shown to require significantly less space than the
HOF. Therefore, combining NEAT and LAPCA is found to be an
effective approach to coevolution.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence –
Intelligent Agents.

General Terms: Algorithms, Experimentation, Theory.

Keywords
Coevolution, Neural Networks, Pong, Hall of Fame, Layered Pareto
Coevolution Archive, Neuroevolution of Augmenting Topologies.

1. INTRODUCTION
Coevolution is a good learning method for adversarial games for
two reasons. First, evaluators are generated automatically and need
not be externally supplied. Second, coevolution is open-ended.
Since the pool of evaluators is not permanent but improves
continuously, the evolving players have to keep up with increased
levels of performance, leading to an “arms race” [14]. A sustained
arms race might not occur, however, if the evaluators are only taken
from the current generation. Good evaluators from past generations
may have been lost, and have to be rediscovered, in what is called
coevolutionary forgetting [10]. To prevent forgetting and encourage
progress, it is necessary to have a Coevolutionary Memory (CM)
that retains the most valuable evaluators from previous generations.
Coevolutionary algorithms have been applied to the evolution of
neural network controllers in competitive domains like the robotic

predator-prey interaction [11] and the robot duel [19]. In both cases,
the CM used was the Hall of Fame (HOF). The HOF contains the
single fittest individual from every opponent generation; the
individuals in the HOF are then used as evaluators for future
generations [14]. The HOF is a good heuristic CM because it is
very simple to implement: the fitness information required to choose
an individual for inclusion into the memory is already provided by
the evolutionary algorithm. However, the selective pressure
provided by the HOF is likely to be suboptimal because it may be
missing useful evaluators produced during evolution that were not
the fittest of their generations. Those missed evaluators could have
made the evaluation set more pedagogical [14]. Besides, elements
are never removed from the HOF, so it may contain players that are
no longer useful as evaluators.
The theoretical properties of an ideal evaluator set [1,7] for
coevolution have been studied in the context of Evolutionary Multi-
Objective Optimization. Under this approach, the evolving players
are called learners and the evaluators are called testers. Defeating
each tester is considered a separate objective and learners are
compared in their capacity to accomplish multiple objectives.
Whenever there is at least one objective that learner A accomplishes
but learner B does not, and all of the objectives accomplished by B
are also accomplished by A, A is said to Pareto-dominate B. In the
resulting Pareto coevolution [9,22] learners are not compared in
direct competition but in terms of Pareto dominance with respect to
a set of testers. The Pareto front is the set of learners that are not
Pareto-dominated by other learners. Therefore, the Pareto front
contains either the single best or the multiple “better” strategies
discovered by Pareto coevolution.
Pareto coevolution has been implemented in a sequence of
algorithms of progressive sophistication: DELPHI [6], IPCA [4] and
LAPCA [5]. All three algorithms were benchmarked in a game
domain called Discretized Compare-on-One that compares
discretized numeric vectors by their biggest component. The
Layered Pareto Coevolution Archive (LAPCA) algorithm was
reported to make faster progress, have a smaller archive size, and
result in fewer fitness evaluations [4,5]. Besides, a tester set that
makes every possible outcome distinction between learners was
mathematically proven to determine all underlying objectives of the
problem domain, provided that each and every possible candidate is
presented (considered for inclusion into the archive) with a non-zero
probability [7]. Therefore, the tester set in a Pareto Archive
approaches an ideal evaluator set.
The LAPCA algorithm has been demonstrated in a simple game that
compares numeric vectors. It has not been applied, for example, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

1 Current affiliation: School of Electrical Engineering and Computer

Science. University of Central Florida. Orlando, FL 32816 USA

329

the evolution of neural networks, which are a promising approach to
constructing agents for complex games [15]. On the other hand,
implementing the LAPCA in a practical domain using neural
networks could require a prohibitive number of evaluations. If the
domain has too many underlying objectives, coevolution could
cause an explosive archive growth, and the archive update
procedure would need too many game evaluations. Hence, the first
question that this research intends to address is: can the LAPCA be
used to coevolve neural networks using a reasonable number of
evaluations?
Moreover, the LAPCA contains a close approximation to the ideal
evaluator set, whereas the HOF is mostly a heuristic. Therefore, the
LAPCA should outperform the HOF: coevolution with LAPCA
should occur faster and yield better individuals. Since this issue has
not been studied before, the second question is: how do LAPCA and
HOF compare?
To investigate these two questions, this research implements the
LAPCA algorithm as the CM for the Neuroevolution of
Augmenting Topologies (NEAT) algorithm created by Stanley and
Miikkulainen [16]. NEAT was chosen as the evolutionary
algorithm because it has been successfully used in the continual
coevolution of neural networks [21] and because it has a built-in
speciation mechanism that was deemed useful to select candidates.
The third question is, therefore: how can NEAT be implemented
effectively with LAPCA?
The game domain is a discrete version of the game Pong [23] in
which each player is controlled by a neural network. The
performance of different variations of the HOF and LAPCA
memories is analyzed statistically from multiple runs of the
coevolutionary algorithm with different initial conditions.
Representative players of every run play against each other and the
results of players evolved with the same CM are averaged.
The main result is that it is indeed practical to use a LAPCA instead
of the HOF in neuroevolution. In order to achieve this result, a
method was developed that keeps the number of evaluations
required by LAPCA low. This method exploits the speciation
mechanism of NEAT to select the generational candidates for the
archive: only the fittest player in each species can be a candidate.
Selecting multiple candidates according to this criterion is shown
equivalent or superior to choosing the fittest member of the
generation or a random set of generation candidates. In general, the
LAPCA grows to be smaller than the HOF and its growth can be
controlled by adjusting the number of candidates per generation.
The slow growth of the LAPCA and the ability to have its size
under control makes LAPCA feasible in terms of number of
evaluations.
No statistically significant difference was found in the performance
of the players evolved with the two CMs. This result can be
interpreted in two ways: either the two CMs evolve players with the
same performance (at least in the Pong domain) because their
evaluators are equally good, or the Pong domain is not very
sensitive to the CM used. Additional experiments using smaller
CMs showed that the latter is the case. When the only evaluator in
the CM was the fittest player of the generation immediately before,
only a small amount of regression or coevolutionary forgetting was
measured. Thus, the question of whether LAPCA outperforms HOF
is still open, and additional experiments in more complex domains
are required to measure the impact of the CMs in playing
performance.

2. BACKGROUND AND RELATED WORK
This section describes the problem of forgetting in coevolution and
the solutions implemented for comparison: the HOF and the

LAPCA CMs. The problem is put in context first by introducing
coevolution as a generalization of evolution. In addition, the
neuroevolution algorithm is reviewed and the Pong game is
presented.

2.1 Evolution vs. Coevolution
The final result in traditional evolution is the solution with the
highest fitness, according to a given fitness function, among all
generations. Coevolution is a more general case of evolution in
which, instead of being fixed, the fitness function for one population
is determined by another population that is also evolving [2].
Competitive coevolution is a particular case of coevolution in which
the fitness of individuals in one population is determined by the
outcomes of competitive interactions against individuals in the other
population. Competitive coevolution has been successfully applied
to games like Nim and 3D Tic-Tac-Toe [14] and Poker [12].
There are three reasons why coevolution is better suited than
traditional evolution for two-player games. First, the only way that
traditional evolution could be used to evolve players is by already
having a pool of good players. This approach implies that another
method has to provide such players in the first place, which may be
difficult. Second, once the maximum level of play against the fixed
pool of players is reached, evolution stops. However, it could
improve further if the newly evolved players were to be added to the
pool, as is the case in coevolution. Third, in some kinds of games
the pool must contain mediocre players for traditional evolution to
work. The reason is that if the players in the pool are too good,
none of the individuals in the first generations would ever win
against them and there would be no selection and in consequence
slow or no evolution (only variation). Coevolution, on the contrary,
evaluates fitness against players with a variety of skill levels that
form a “pedagogical series” [14].

2.2 Need for a CM
In natural coevolution (e.g. in an actual predator-prey situation
between two animal species) the populations that are coevolving
must be alive at the same time. In other words, the pool of
evaluators and the players being evaluated must belong to the same
generation. This limitation causes two problems:
• Losing a good trait by collusion. If the populations collude to

reduce the selective pressure that they exert on each other, they
may lose the performance they once had.

• Rediscovering past strategies. The populations might be stuck
in a loop, re-evolving traits they had in the past but that they
lost because such traits were not useful to defeat recent
generations of the opponent population.

These two problems are instances of a more general problem called
forgetting. Forgetting can be avoided by using a CM. A CM is a
collection of former players that is representative of all the strategies
that have been developed over the course of evolution. To prevent
forgetting, instead of only drawing evaluators from the latest
opponent generation, evaluators are taken from the opponent CM,
potentially from any generation in the past.
A CM is defined by two policies: how to introduce candidates and
how to extract evaluators. Candidates are the members of every
new generation that are considered for introduction to the CM.
Evaluators are the elements of the CM that get chosen to measure
the fitness of opponent players. The two CMs analyzed
experimentally in this research, the HOF and the LAPCA, are
described next.

2.2.1 HOF: A Best-of-Generation CM
The HOF was proposed by Rosin and Belew as a technique to
ensure progress in coevolution [14]. The HOF is a CM that

330

preserves the fittest individual of every generation for future use as a
fitness evaluator.
A Best of Generation (BOG) CM, as the term will be used here, is
more general than the HOF because it can admit more than one
individual per generation. To take advantage of the speciation
mechanism of NEAT (described in section 2.3), only the fittest
individuals from different species are considered for inclusion to a
BOG memory. For example, BOG-3 accepts the three fittest
individuals of every generation that belong to different species.
BOG-1 is the same as the HOF. The candidate introduction policy
in a BOG CM is straightforward: all the players presented to the
CM are retained forever. The evaluator extraction policy is
straightforward as well: evaluators are typically drawn from a
uniform sample of the CM.
Due to its simple implementation that does not require additional
game evaluations, the HOF has been a common practice in the
competitive coevolution of neural network controllers. In particular,
it has been implemented in domains like the robotic predator-prey
interaction [11] and the robot duel [19]. The HOF is a useful
heuristic that forms a baseline on which to improve.

2.2.2 LAPCA as a CM
Pareto coevolution is the interpretation of coevolution as
Evolutionary Multi-Objective Optimization [9,22]. Under this
view, the evolving individuals are called learners. In Pareto
coevolution any two learners are compared by their results against
other individuals called testers. Hence, the testers are the multiple
objectives being optimized by coevolution and the goal of the
learners is to defeat the biggest number of testers.
The Pareto front is the set of learners not dominated in a Pareto
sense by any other learner. For a given set of testers, a learner A
dominates learner B in a Pareto sense if there is no tester for which
B obtains a better score than A but there is at least one tester against
which A obtains a better score than B. The Pareto front contains the
best players discovered by coevolution and is thus the solution
concept of Pareto coevolution [8].
The Pareto Archive is the union of learners and testers. De Jong [4]
showed that monotonic progress in coevolution can be guaranteed in
a particular version called Incremental Pareto-Coevolution Archive
(IPCA), provided that every possible individual is generated with a
non-zero probability. The Layered Pareto-Coevolution Archive
(LAPCA) is a practical approximation of IPCA: progress is not
guaranteed but the archive grows slower than in IPCA, needs fewer
evaluations, and makes faster progress [5].
In LAPCA, every generation an archive update procedure receives a
set of learner candidates and a set of tester candidates. Its operation
can be roughly assimilated to a sieve. Normally during the update
procedure some learner candidates are retained in the learner set and
some tester candidates are retained in the tester set, while the rest
are immediately discarded. When new individuals join the archive,
usually the dominance structure changes and some older members
of the archive are eliminated. The number of game-outcome
evaluations that are required by the update procedure is
approximately proportional to the product between the number of
candidates and the size of the archive.
The LAPCA algorithm receives its name because the learners are
structured in non-dominated layers, resembling the peeling an
onion. The first non-dominated layer is the Pareto front. Once the
first non-dominated layer has been removed, the set of non-
dominated learners remaining constitutes the second layer, and so
on. This layered structure for the learners is useful for two reasons.
First, it provides a useful criterion for the update procedure: a tester
is retained only if it can discriminate learners that belong to the

same or consecutive layers. Second, the size of the archive can be
adjusted by the experimenter by retaining only the first n non-
dominated layers. In order to maximize the quality of the LAPCA,
in this research all layers are retained. Since new testers are retained
according to whether they distinguish between existing learners and
new learners are retained according to the objectives established by
the existing testers, a mutual dependency develops between learners
and testers.
The candidate introduction policy for the LAPCA CM is determined
by the update procedure. However the experimenter decides which
individuals in the evolving population are presented as learner
candidates and which ones as tester candidates. The evaluator
extraction policy for the LAPCA CM is also up to the experimenter,
who decides whether evaluators are drawn from the learner set, the
tester set, the first non-dominated layer of learners or from the
whole archive.

2.3 NEAT: Evolution of Neural Networks
Many methods of training and evolving neural networks search for
an optimum set of weights once the researcher has provided a
candidate topology. Choosing such a fixed topology is a big
problem in itself and there is always the risk of using a suboptimal
number of nodes and weights. Stanley and Miikkulainen’s
NeuroEvolution of Augmenting Topologies (NEAT) searches both
the topology and the weight spaces simultaneously, starting from a
minimal configuration with no hidden nodes [16]. In addition to the
conventional weight mutation operators that produce variation,
NEAT also mutates the topology by adding hidden nodes within
existing links and by adding weighted links between unlinked
nodes. This process of topology growth over generations is called
“complexification” [20].
NEAT has been shown to achieve efficient reinforcement learning
of neural networks in discrete-time controller tasks. In particular, it
has been reported to require a record low number of evaluations in
the double pole balancing benchmark [18]. NEAT has also been
applied to the coevolution of controllers for the robot duel domain
[21]. The robot duel is an open ended problem with opportunity for
many different winning strategies. The complexification of NEAT
was found responsible for the discovery of new and more powerful
strategies over the course of coevolution. The speciation
mechanism of NEAT was credited with optimizing previously
found strategies [19].
Because NEAT has been successfully applied to a competitive
coevolution domain and because it provides speciation and
complexification, it was chosen to investigate the impact of different
CMs.

2.4 Test Domain: a Modified Pong Game
Poppleton was probably the first to analyze Coevolution in the game
of Pong [13]. Instead of using a CM, he used the fittest player in the
most recent generation (Last Elite Opponent) of up to four
genetically isolated populations, to compute the fitness of every new
generation of players. Poppleton concluded that his experimental
results did not confirm nor disprove that such method of fitness
evaluation offered an advantage.
The experiments in this research are also based on Pong. The main
advantage offered by Pong is that the board can be represented as a
grid of discrete positions. The collision detection algorithm is
simple, leading to fast evaluations and hence short simulations.
Another advantage is that the evaluation time can be modified
arbitrarily by changing the size of the grid.
The player’s ability to move the paddle forward and backward and
to have independent control of the ball deflection allowed increasing

331

the complexity of the strategy space. A more complex strategy
space, in turn, was deemed useful to take full advantage of the CMs.
The specifics of the game domain are described in the following
section, along with the comparison methodology used in the
experiments.

3. COMPARISON METHODOLOGY
The experiments described in this research assess the relative
performance of different variants of coevolution by applying two
comparison methodologies to the evolved players: Best of Run and
Best of Generation. Each comparison has advantages and
disadvantages but they complement each other well. All the
evaluations required by evolution and by the comparison
methodologies take place in the Pong domain, detailed next.

3.1 Parameters of the Game Domain
The board grid used in the experiments is 15 units tall and 21 units
wide, with the ball occupying a single unit and the paddles an area
of five units by one unit. The paddles are free to move horizontally
within the first 7 units of their side of the field, and vertically with
no limitations. The paddles can move at most one unit in each
direction (both vertical and horizontal) per time step. The ball is
allowed to move twice as fast as the players, to force the players to
predict the vertical position of the ball instead of just following it.
The neural network controller for each player has 6 inputs and 6
outputs. The 6 inputs are three pairs of absolute coordinates: the
player’s paddle, the ball and the opponent’s paddle. The 6 outputs
are three pairs of binary values, corresponding to vertical motion,
horizontal motion and ball deflection. Since the player knows the
location of the opponent, it can have an advantage by deflecting the
ball away from it.
Each game consists of two serves, one for each side, to make the
game symmetrical. A player wins a serve when the opponent
misses the ball. If no player has missed the ball after 200 time steps,
the serve is considered a tie. Fitness is computed by letting every
player of a generation compete in 10 games against the same set of
opponents, and averaging the scores. The set of opponents is
uniformly sampled from the CM. For all experiments the
population size is 100 and coevolution lasts 100 generations.
The update procedure of the LAPCA uses evaluations of direct
dominance between learners and testers to determine the Pareto
dominance between two learners. The dominance relationship
between a learner and a tester in turn is computed by playing all 30
possible serves between them. If the learner wins more serves than
it loses (independently of the number of ties) it is considered to
dominate the tester.

3.2 Best of Run Comparison
“Best of Run” is defined as the most successful player of the 10,000
originated in a particular run of the coevolutionary algorithm (100
generations times 100 individuals per generation) and is the solution
to the problem. For all experiments in this research, the Best of Run
is the winner of a master tournament [11] among the fittest players
(champions) of every generation.
The Best of Run Comparison determines if one of two methods of
coevolution is better by measuring the performance of 50 Best of
Run players from each method, which requires a total of 100
coevolution runs. Each of the 100 individuals plays all possible
games (15 serves in each direction) against each of the other 99
individuals and gets scored by the number of players that it
dominates. Thus, the score is an integer between 0 and 99. A
player dominates another if it wins at least one more serve than the
opponent in all possible games of direct competition. The scores of
all players from the same method are averaged and the means of the

two methods are tested for one-sided significance using a two-
sample z statistic [3].
The main advantage of the Best of Run Comparison is that it
measures the real output of coevolution. All that matters for a
practical application is the single best player evolved. A
disadvantage is that it does not show the speed of coevolution.
Even if the comparison does not demonstrate that one method is
significantly better than the other, one can still be faster, i.e., reach
the final level of performance in fewer generations.

3.3 Best of Generation Comparison
The Best of Generation Comparison attempts to solve the limitation
of the Best of Run Comparison by approximating an absolute fitness
function and using it to measure progress. The comparison requires
50 runs of each method being compared. First, the best players of
each generation (champions) are stored, for all generations, all runs
and all methods. Second, the Best of Run individuals of all methods
are collected together in an evaluation pool. Third, each stored
champion plays against a different sample of 25 players drawn from
the evaluation pool. Fourth, for each method and each generation,
the number of wins, ties and losses is averaged over the 50 runs.
The comparison methods complement each other: the Best of Run
comparison determines the CM that evolves the best players,
whereas the Best of Generation shows coevolutionary progress over
generations. Both comparisons are applied to different types of
CMs in the next section.

4. EXPERIMENTS
The specific questions addressed by this research are:
• Does the LAPCA scale up to a complex domain like Pong?
• What is the best way to introduce candidates from NEAT into

the LAPCA?
• Is the LAPCA a better CM than the HOF?

The experiment to answer the first question uses the HOF as the CM
while a LAPCA is used to monitor the progress of coevolution. To
answer the other questions, a LAPCA is implemented as the CM.
First, the advantage of introducing random versus fittest candidates
to the archive is evaluated. Then, the LAPCA and the BOG
memories (which include the HOF) are compared.

4.1 Analyzing the Growth of the LAPCA
Before using the LAPCA as a CM, it is helpful to analyze how it
grows when applied to monitor an already evolving population. A
controlled growth is important because the size of the archive
determines the number of evaluations and the storage space required
by the LAPCA algorithm. If the archive grows too fast its
applicability would be restricted, due to an excessive number of
evaluations.
Using the HOF as the CM, after every generation three players were
presented as tester candidates and three different players were
presented as learner candidates to a LAPCA. The tester candidates
were drawn randomly from the population, whereas the learner
candidates were the three fittest players belonging to three different
species in the population.
The average size of the learner and the tester sets of the archive at
every generation are shown in Figure 1. The first interesting result
is that the learner set is consistently bigger than the tester set (from
around 50% in early generations to about 100% in the last ones).
This fact has also been reported by De Jong for the Compare-on-one
problem [5]. Another observation is that the archive is an effective
filter, since by generation 100 it has retained a minority (an average
of 37.6 with standard deviation 6.3) of the 600 players presented as
candidates. Finally, the fact that the rate of archive growth decreases

332

over generations suggests that the update procedure detects the
stagnation in the quality of the candidates presented (as shown in
Figure 2 and Figure 3, most of the learning occurs in the first 40
generations).

4.2 Introducing Candidates to the LAPCA
After having analyzed the growth rate of the LAPCA as a monitor,
the next experiment introduces the LAPCA as a CM. The whole
archive (the union of the learner and tester sets) was used to extract
evaluators, i.e. to measure the fitness of the evolving individuals.
To use a LAPCA in the most effective way as a CM, it is necessary
to determine which individuals from the population, when presented
as candidates, produce the best archive (i.e. one that results in higher
selective pressure and therefore superior players). It makes sense to
present candidate individuals from different species to exploit the
diversity in the speciation mechanism of NEAT. However,
selecting only the fittest players of different species could produce a
bias towards strategies that win on average, which may in turn
prevent idiosyncratic players from joining the archive. Such lost
idiosyncratic players could have had strategies that worked

extremely well in specific situations and would have raised the
selective pressure of the archive. In other words, fitness alone might
not be the best criterion to present individuals to the archive, since it
could be diversity that matters most.
The second experiment compares two kinds of candidate
introduction: “Random” and “Top”. “Random” corresponds to
choosing three individuals from a uniform sample of the population,
disregarding species and fitness. “Top” corresponds to choosing the
three fittest individuals in the population that belong to different
species. Since these two types of candidate introduction can be
applied independently to the tester and the learner sets, there are
four combinations. The six possible pairwise comparisons between
the four types of candidate introduction appear on Table 1, using the
Best of Run method. There are only two statistically significant
comparisons: “Random Learners and Random Testers” are

Table 1. Best of Run pairwise comparison between different
methods of presenting candidates to the LAPCA CM (N=50).
Both the learner and tester candidates can be either the three
fittest individuals in the Population belonging to three different
species (Top), or just three individuals chosen at random
(Random). The first two comparisons are statistically
significant (z-test, p < 0.05). The fittest individuals from
different species are better candidates.

Candidate Introduction
Comp.

Learners Testers

Dominated
Players

(Average)

Dominated
Players

(Std Dev)
Diff. p value

Top Top 49.30 15.81 1
Random Random 43.98 14.51

5.32 0.040

Random Top 48.82 15.27 2
Random Random 43.82 14.59

5.00 0.047

Top Random 48.40 17.26 3
Random Random 44.86 14.48

3.54 0.133

Top Top 48.00 15.06 4
Top Random 44.92 16.20

3.08 0.162

Top Top 47.64 14.68 5
Random Top 45.06 15.51

2.58 0.197

Top Random 47.26 16.56 6
Random Top 45.48 14.85

1.78 0.286

A verage of 50 Runs over 20 Generation Intervals

0

100

200

300

400

500

600

700

0 - 19 20 - 39 40 - 59 60 - 79 80 - 99

Generation Interval

Lo
st

 G
am

es

Random Learners Random Testers
Random Learners Top Testers
Top Learners Random Testers
Top Learners Top Testers

Figure 2. Best of Generation comparison between different
methods of selecting candidates to the LAPCA CM. Fewer
losses mean better learning; losses are averaged over 20
generation intervals. The vertical marks on top of the bars
correspond to standard error. “Top Learners Top Testers” is
significantly better (p < 0.02) than “Random Learners
Random Testers” in the interval 60-79. “Top Learners Top
Testers” is also better (p < 0.05) than “Top Learners Random
Testers” in the same interval. The fittest individuals from
different species are better candidates

A verage of 50 Runs over 20 Generation Intervals

0

100

200

300

400

500

600

700

0-19 20-39 40-59 60-79 80-99
Generation Interval

Lo
st

 G
am

es

BOG -- 1 (HOF)
BOG -- 3
BOG -- Sp
Pareto -- 1
Pareto -- 3
Pareto -- Sp

Figure 3. Best of Generation comparison between the BOG
and LAPCA CMs. Fewer losses mean better learning; losses
are further averaged over 20 generation intervals. The
population candidates introduced to each memory (1, 3, Sp)
are the same as in Table 2. “BOG -- Sp” is better (p < 0.05)
than “BOG -- 1 (HOF)” in the generation interval 40-59. For
the rest of the cases, the performance of evolved players is
similar.

Average over 50 runs

0

10

20

30

40

0 10 20 30 40 50 60 70 80 90

Generation

Si
ze

 /
 Q

ua
nt

ity

Archive

Learner Set

Tester Set

Layers of Learners

Species in Populat ion

Figure 1. Growth of the LAPCA and its components. The
LAPCA is not used as a CM in this experiment, but to
monitor the progress of coevolution. The small size of the
archive and its controlled growth prevent the archive update
procedure from requiring an excessive number of evaluations.

333

outperformed by “Top Learners and Top Testers” and also by
“Random Learners and Top Testers”. The conclusion is that
candidate fitness is more important than candidate diversity at least
for the Pong domain studied. Besides, using the Best of Generation
comparison (Figure 2), there is a significant performance gap
between “Top Learners and Top Testers” and “Random Learners
and Random Testers” around generation 70.
In conclusion, at least in the Pong domain, it is better to introduce
the fittest individuals to the archive. Using random individuals to
exploit their erratic behavior does not lead to a more solid learning.
For this reason, in the next experiment the candidates introduced to
the LAPCA are the fittest in their species.

4.3 BOG vs. LAPCA CMs
The third experiment compares the performance of the BOG and
LAPCA CMs, in three different aspects: performance of evolved
players, number of evaluations, and storage size.
For each of the two memories, three different sizes of the candidate
sets were evaluated: “1”, “3” and “Sp”. Size “1” means that after

every generation only the fittest player of the population is either
added to the BOG or presented to the LAPCA. Size “3” means that
the candidates are the three fittest players in the generation that
belong to different species. Size “Sp” means that one candidate
from each species is presented to the memory, for all species in the
generation (as shown in Figure 1, there are about 8 species in
average in the last 40 generations). The HOF is the particular case
of a BOG memory with candidate size 1 (i.e., HOF is the same as
“BOG – 1”) and is a good baseline to judge the performance of the
LAPCA.
There was no statistically significant difference in the performance
of the CMs, as measured by the quality of evolved players.
However, there are indications that larger candidate sets might have
an advantage over smaller ones. Specifically, according to the
results of the Best of Run method from Table 2, “LAPCA – Sp” has
better performance than “BOG – 3” (p < 0.06). Also, from Figure 3,
“BOG – Sp” is better (p < 0.05) than “BOG – 1” (i.e., the HOF)”
around generation 50.
In terms of number of evaluations, the LAPCA has a clear
disadvantage (Table 3). The algorithm to implement any BOG
memory does not require extra evaluations. Evaluations are only
needed to compute the fitness of a newly created population. Since
the update algorithm of the LAPCA needs to establish dominance
relationships between all the candidates presented and all players in
the archive, the number of extra evaluations is not only
approximately proportional to the number of candidates but also to
the size of the archive, which for this experiment increased
monotonically over generations (Figure 1).
The main advantage of the LAPCA is that it requires less storage
(Table 3). As a consequence of the update procedure filtering new
candidates and eliminating subsumed strategies, the LAPCA
requires less storage than the HOF and the rest of the BOG
memories for all sizes of the candidate set. Since the players
evolved with the six methods have similar performance (Table 2
and Figure 3) the LAPCA reduces the redundancy present in the
BOG CMs without sacrificing selective pressure.
In conclusion, in the Pong domain the LAPCA is not significantly
better or worse than the BOG CM in terms of performance of the
evolved players, but it uses less memory and requires more
evaluations. In addition, in the few cases in which there was a
significant difference, more candidates per generation produced
better results, suggesting that the HOF can be outperformed when
the diversity present on the population is exploited.

Table 2. Best of Run pairwise comparison between the BOG
and the LAPCA CMs (N=50). The candidates are the fittest
individual from each generation (“1”), the top 3 fittest
individuals belonging to different species (“3”), or the fittest
individual of every species (“Sp”). The LAPCA with a
candidate from every species (from approximately 8 in the last
40 generations) is better (p < 0.06) than the BOG memory with
the top 3 fittest individuals from different species. For the rest
of the cases, the performance of evolved players is similar.

Comp. Coevolutionary
Memory

Candidates
per

Generation

Players
Dominated
(Average)

Players
Dominated
(Std Dev)

Diff. p value

LAPCA Sp 48.46 13.98 1
BOG 3 43.86 14.22

4.60 0.051

LAPCA Sp 47.72 13.73 2
BOG 1 (HOF) 44.86 15.30

2.86 0.163

LAPCA 3 47.72 14.90 3
BOG Sp 45.20 12.36

2.52 0.179

LAPCA Sp 47.22 14.20 4
BOG Sp 44.90 13.91

2.32 0.205

LAPCA Sp 46.90 13.70 5
LAPCA 1 45.50 14.84

1.40 0.312

BOG 3 46.74 16.42 6
BOG Sp 45.64 13.29

1.10 0.356

LAPCA 3 46.66 15.21 7
BOG 3 45.58 14.68

1.08 0.359

LAPCA 3 46.86 15.07 8
LAPCA 1 45.88 15.25

0.98 0.373

BOG 1 (HOF) 46.68 16.41 9
LAPCA 1 45.92 14.56

0.76 0.403

BOG Sp 46.44 13.08 10
BOG 1 (HOF) 45.72 16.24

0.72 0.404

LAPCA 3 46.56 15.08 11
LAPCA Sp 45.90 13.21

0.66 0.408

BOG Sp 46.80 13.40 12
LAPCA 1 46.16 16.72

0.64 0.416

BOG 1 (HOF) 46.52 14.87 13
LAPCA 3 46.28 15.49

0.24 0.468

LAPCA 1 46.72 15.33 14
BOG 3 46.50 15.10

0.22 0.471

BOG 3 46.22 14.29 15
BOG 1 (HOF) 46.10 15.34

0.12 0.484

Table 3. Evaluations vs. Memory size trade-off between the
BOG and LAPCA CMs (N=50). Whereas in a BOG memory
more candidates lead to a bloated CM without the cost of
additional evaluations, a LAPCA with more candidates requires
more evaluations but uses less storage.

Candidates
Introduced

Final
Memory Size Evaluations Coevolutionary

Memory
Average Std Dev Average Std Dev Average Std Dev

BOG – 1 (HOF) 100 0.0 100 0.0 200,000 0

BOG – 3 300 0.0 300 0.0 200,000 0

BOG – Sp 630 73.1 630 73.1 200,000 0

Pareto – 1 100 0.0 20 3.77 262,478 10,691

Pareto – 3 300 0.0 38 6.18 503,392 39,026

Pareto – Sp 618 64.4 45 8.97 1,000,838 135,341

334

5. DISCUSSION AND FUTURE WORK
One possible reason for the similar playing performance of the HOF
and the LAPCA is that there is not enough forgetting in the Pong
domain to reveal the differences. Additional experiments were
performed to test this hypothesis. No measurable difference was
found in the average quality of the players evolved either with a CM
with only one element (the fittest individual of the generation
immediately before) or with the full HOF, suggesting that there is
indeed little forgetting. The experiments described in this research
should be repeated in a domain with more coevolutionary
forgetting. A good criterion to make sure that such domain allows
meaningful comparisons is precisely the difference in the
performance of players evolved remembering either the last or all
members of the HOF.
In spite of the resistance to forgetting in the Pong domain, important
conclusions can be drawn about the implementation of the LAPCA
as a CM for the coevolution of neural networks, and about the
interaction between the LAPCA and NEAT. One such conclusion
is that there is a positive, measurable impact from feeding the
archive with candidates that are the fittest within their species, as
opposed to randomly sampling candidates from the population
(Section 4.2). Along the same lines, in the few comparisons that
had statistical significance, the bigger number of generational
candidates corresponded to faster or better evolution (Section 4.3).
Consequently, a CM can take advantage of the population diversity
maintained by speciation, and the best way to do it is by introducing
the fittest individuals from different species.
Another important conclusion is that the number of evaluations
required by the update procedure of the LAPCA is practical for real
world applications. The number of evaluations per generation
needed by the archive update algorithm is roughly proportional to
the number of candidates and to the size of the archive. The archive
does not grow too fast, because many old players get subsumed by
newer players and are immediately removed. The number of
candidates per generation is arbitrarily set by the experimenter.
Hence, it is possible to adjust the number of evaluations needed to
update the archive and have it in the same order of magnitude as the
number of evaluations needed by NEAT to compute fitness (Section
4.3).
In his presentation of the LAPCA algorithm, De Jong [5] used the
archive in a different way than in this research: not to provide
evaluation for the population, but to re-introduce genetic material
into it. Such genotypical use of the archive could be implemented
with NEAT as well. Although it might interfere with the stability of
NEAT’s speciation mechanism or potentially stifle
complexification, re-introducing previous genomes might give them
a second chance to evolve into the most successful players for the
new competitive environment. It would be interesting to compare
the phenotypical and genotypical uses of the archive.
A central simplifying assumption in this research is that only one
population coevolves, and does so by competing against its own
CM. Coevolving a single population against itself is a departure
from the way coevolution has been implemented in the past. In
other symmetric domains like the robot duel and compare-on-one,
the two players are evolved in different populations, each with its
own CM [21,4,5]. It would be interesting to measure the impact of
merging the two populations, as was done in this paper.
In order to make fair comparisons between different CMs, the best
of run individuals were the winners of an internal master tournament
among generation champions. Nevertheless, since the LAPCA
memory contains dominance information about the players, the
winner should be drawn directly from archive, with no need for a
master tournament. Which individual to choose and how good its

performance is with respect to the winner of the master tournament
are further questions for future work.
The LAPCA update procedure implemented in this research can be
optimized to require fewer evaluations. First, when a new
generation of candidates is presented to the current archive, the
scores of all possible games between candidates and members of the
archive are being computed and stored in a matrix, disregarding
whether they are actually used or not. To make the process more
efficient, all known matrix entries can be considered first and the
rest obtained only when necessary. Second, it should be possible to
determine the impact of a limited number of layers on the
performance of the evolved players; if the impact is small, fewer
evaluations would be required to get essentially the same players.
There are alternative methods of coevolution that should be applied
to neural networks, as well. One variation is replacing the solution
concept of the Pareto Front by that of Nash equilibrium, using the
Nash memory mechanism proposed by Ficici and Pollack [10].
Another possibility is to apply one or both solution concepts to
neural network controllers for team competitive games like soccer,
in which the interaction between teammates introduces cooperation
to coevolution.
The results obtained in this research are encouraging because they
show that the principles of Pareto coevolution can be applied to
practical domains. The computational expense of keeping an
archive could be offset by faster evolution (fewer generations)
reducing the overall number of evaluations and making coevolution
practical for real world applications.

6. CONCLUSION
The main goal of this research was to construct a bridge between
two branches of the study of coevolution that have not been
investigated together. The first branch comes from neuroevolution
and is very practical: coevolving optimal neural network controllers
using the fewest number of evaluations. The computational
simplicity of maintaining a HOF (which does not require additional
evaluations) has made it the CM of choice for the competitive
coevolution of neural networks. The second branch comes from the
theoretical analysis of coevolution seen as multi-objective
optimization: implementing an ideal CM. Such a memory requires
many evaluations to make explicit the Pareto-dominance
relationship between evolving individuals. The recently introduced
LAPCA algorithm [5] decreases the number of evaluations needed
to approximate a good CM. However, it has only been applied to a
Numbers Game which is not a very practical domain.
This research implemented LAPCA as the CM for neural networks
that control the players of the game Pong. The evolutionary
algorithm chosen was NEAT [16] because its speciation and
complexification features have already been found useful for
continual coevolution. The question of whether coevolution can
discover better solutions using a LAPCA memory than using a HOF
memory remains open because there is not enough forgetting in the
Pong domain. However, three interesting results were obtained.
The first is a practical technique to provide generational candidates
to a CM: choose the fittest individuals that belong to different
species. In the Pong domain this technique brings more information
to the memory than introducing the single best player of the
generation, and is more effective than introducing a random sample
with the same size. The second result is that the LAPCA scales up
to a complex neural network domain. When applied to the
evolution of neural networks, the bounded growth of the archive
makes the LAPCA a feasible option in terms of total number of
evaluations. Third, in all experiments performed, the LAPCA
required significantly less memory than the HOF. Therefore,

335

LAPCA has a storage advantage in applications in which evolution
lasts for many generations.
In sum, LAPCA has been demonstrated to be a practical CM for
neural networks in the Pong domain. Further research in domains
that are more susceptible to forgetting is necessary to determine
whether it also allows the discovery of solutions that perform better.
Eventually it should be possible to establish the circumstances under
which each of the two algorithms provides a better CM for a given
real-world application.

7. ACKNOWLEDGEMENTS
We would like to recognize Vishal Arora, for his valuable
contributions to early experiments. Thanks to Ugo Vieruchi for
coding JNeat, used as the base to write the simulations, and to four
anonymous reviewers for important corrections and suggestions.
This research was supported in part by the National Science
Foundation under CISE Research Infrastructure Grant EIA-
0303609.

8. REFERENCES
[1] Bucci, A. & Pollack, J. B. (2002). A mathematical framework

for the study of coevolution. Foundations of Genetic
Algorithms 7, Proceedings of FOGA VII, 221-236.

[2] Cliff, D., & Miller, G. (1995). Tracking the red queen:
Measurements of adaptive progress in coevolutionary
simulations. Proceedings of the Third European Conference on
Artificial Life, 200-218.

[3] Cohen, P. R. (1995). Empirical methods for artificial
intelligence. MIT Press, 117-129.

[4] De Jong, E. D. (2004). The incremental Pareto-coevolution
archive. Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-04, 525-536.

[5] De Jong, E. D. (2004). Towards a bounded Pareto-coevolution
archive. Proceedings of the Congress on Evolutionary
Computation CEC-04, 2341-2348.

[6] De Jong, E. D., & Pollack, J. B. (2003). Learning the ideal
evaluation function. Proceedings of the 2003 Genetic and
Evolutionary Computation Conference, 277-288.

[7] De Jong, E. D., & Pollack, J. B. (2004). Ideal evaluation from
coevolution. Evolutionary Computation, 12(2), 159-192.

[8] Ficici, S. G. (2004). Solution concepts in coevolutionary
algorithms. Dissertation Abstracts International, 65 (03),
1399B.

[9] Ficici, S. G., & Pollack, J. B. (2000). A game-theoretic
approach to the simple coevolutionary algorithm. Parallel
Problem Solving From Nature (PPSN-VI), 1917, 467-476.

[10] Ficici, S. G., & Pollack, J. B. (2003). A game-theoretic
memory mechanism for coevolution. Proceedings of the 2003
Genetic and Evolutionary Computation Conference, 286-297.

[11] Floreano, D., & Nolfi, S. (1997). God save the Red Queen!
Competition in co-evolutionary robotics. Genetic
Programming 1997: Proceedings of the Second Annual
Conference, 398-406.

[12] Noble, J., & Watson, R. A. (2001). Pareto coevolution: Using
performance against coevolved opponents in a game as
dimensions for Pareto selection. Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2001,
493-500.

[13] Poppleton, T. (2002). Can co-evolution play ball? Competitive
co-evolution in a Pong game. Unpublished master’s thesis,
University of Sussex, UK. Retrieved August 6, 2005, from
http://www.informatics.susx.ac.uk/easy/Publications/Online/M
Sc2002/ajp25.pdf

[14] Rosin, C. D., & Belew, R. K. (1997). New methods for
competitive evolution. Evolutionary Computation, 5, 1-29.

[15] Stanley, K., Bryant, B. D., & Miikkulainen, R. (2005). Real-
time neuroevolution in the NERO video game. IEEE
Transactions on Evolutionary Computation, 9(6), 653-668.

[16] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural
networks through augmenting topologies. Evolution, 10(2),
99-127.

[17] Stanley, K. O., & Miikkulainen, R. (2002). Efficient evolution
of neural network topologies. Proceedings of the 2002
Congress on Evolutionary Computation (CEC ’02), 2, 1757-
1762.

[18] Stanley, K. O., & Miikkulainen, R. (2002). Efficient
reinforcement learning through evolving neural network
topologies. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), 569-577.

[19] Stanley, K. O., & Miikkulainen, R. (2002). Continual
coevolution through complexification. Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-2002), 113-120.

[20] Stanley, K. O., & Miikkulainen, R. (2003). Achieving
high-level functionality through Complexification.
Proceedings of the AAAI-2003 Spring Symposium on
Computational Synthesis, 226-232.

[21] Stanley, K. O., & Miikkulainen, R. (2004). Competitive
coevolution through evolutionary complexification. Journal of
Artificial Intelligence Research, 21, 63-100.

[22] Watson, R. A., & Pollack, J. B. (2000). Symbiotic
combination as an alternative to sexual recombination in
genetic algorithms. Parallel Problem Solving From Nature
(PPS-VI), 1917, 425-436.

[23] Winter, D. (2005). Magnavox Odyssey: First home video game
console. Retrieved August 6, 2005, from
http://www.pong-story.com/odyssey.htm

336

