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ABSTRACT 
The Layered Pareto Coevolution Archive (LAPCA) was recently 
proposed as an effective Coevolutionary Memory (CM) which, 
under certain assumptions, approximates monotonic progress in 
coevolution.  In this paper, a technique is developed that interfaces 
the LAPCA algorithm with NeuroEvolution of Augmenting 
Topologies (NEAT), a method to evolve neural networks with 
demonstrated efficiency in game playing domains.  In addition, the 
behavior of LAPCA is analyzed for the first time in a complex 
game-playing domain: evolving neural network controllers for the 
game Pong.  The technique is shown to keep the total number of 
evaluations in the order of those required by NEAT, making it 
applicable to complex domains.  Pong players evolved with a 
LAPCA and with the Hall of Fame (HOF) perform equally well, but 
the LAPCA is shown to require significantly less space than the 
HOF.  Therefore, combining NEAT and LAPCA is found to be an 
effective approach to coevolution. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence – 
Intelligent Agents. 

General Terms: Algorithms, Experimentation, Theory. 

Keywords 
Coevolution, Neural Networks, Pong, Hall of Fame, Layered Pareto 
Coevolution Archive, Neuroevolution of Augmenting Topologies. 

1. INTRODUCTION 
Coevolution is a good learning method for adversarial games for 
two reasons.  First, evaluators are generated automatically and need 
not be externally supplied.  Second, coevolution is open-ended.  
Since the pool of evaluators is not permanent but improves 
continuously, the evolving players have to keep up with increased 
levels of performance, leading to an “arms race” [14].  A sustained 
arms race might not occur, however, if the evaluators are only taken 
from the current generation.  Good evaluators from past generations 
may have been lost, and have to be rediscovered, in what is called 
coevolutionary forgetting [10].  To prevent forgetting and encourage 
progress, it is necessary to have a Coevolutionary Memory (CM) 
that retains the most valuable evaluators from previous generations. 
Coevolutionary algorithms have been applied to the evolution of 
neural network controllers in competitive domains like the robotic 

predator-prey interaction [11] and the robot duel [19].  In both cases, 
the CM used was the Hall of Fame (HOF).  The HOF contains the 
single fittest individual from every opponent generation; the 
individuals in the HOF are then used as evaluators for future 
generations [14].  The HOF is a good heuristic CM because it is 
very simple to implement: the fitness information required to choose 
an individual for inclusion into the memory is already provided by 
the evolutionary algorithm.  However, the selective pressure 
provided by the HOF is likely to be suboptimal because it may be 
missing useful evaluators produced during evolution that were not 
the fittest of their generations.  Those missed evaluators could have 
made the evaluation set more pedagogical [14].  Besides, elements 
are never removed from the HOF, so it may contain players that are 
no longer useful as evaluators. 
The theoretical properties of an ideal evaluator set [1,7] for 
coevolution have been studied in the context of Evolutionary Multi-
Objective Optimization.  Under this approach, the evolving players 
are called learners and the evaluators are called testers.  Defeating 
each tester is considered a separate objective and learners are 
compared in their capacity to accomplish multiple objectives.  
Whenever there is at least one objective that learner A accomplishes 
but learner B does not, and all of the objectives accomplished by B 
are also accomplished by A, A is said to Pareto-dominate B.  In the 
resulting Pareto coevolution [9,22] learners are not compared in 
direct competition but in terms of Pareto dominance with respect to 
a set of testers.  The Pareto front is the set of learners that are not 
Pareto-dominated by other learners.  Therefore, the Pareto front 
contains either the single best or the multiple “better” strategies 
discovered by Pareto coevolution. 
Pareto coevolution has been implemented in a sequence of 
algorithms of progressive sophistication: DELPHI [6], IPCA [4] and 
LAPCA [5].  All three algorithms were benchmarked in a game 
domain called Discretized Compare-on-One that compares 
discretized numeric vectors by their biggest component.  The 
Layered Pareto Coevolution Archive (LAPCA) algorithm was 
reported to make faster progress, have a smaller archive size, and 
result in fewer fitness evaluations [4,5].  Besides, a tester set that 
makes every possible outcome distinction between learners was 
mathematically proven to determine all underlying objectives of the 
problem domain, provided that each and every possible candidate is 
presented (considered for inclusion into the archive) with a non-zero 
probability [7]. Therefore, the tester set in a Pareto Archive 
approaches an ideal evaluator set. 
The LAPCA algorithm has been demonstrated in a simple game that 
compares numeric vectors.  It has not been applied, for example, to 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
GECCO’06, July 8–12, 2006, Seattle, Washington, USA. 
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00. 
 

                                                                 
1 Current affiliation: School of Electrical Engineering and Computer 

Science.  University of Central Florida.  Orlando, FL 32816 USA 

329



the evolution of neural networks, which are a promising approach to 
constructing agents for complex games [15].  On the other hand, 
implementing the LAPCA in a practical domain using neural 
networks could require a prohibitive number of evaluations.  If the 
domain has too many underlying objectives, coevolution could 
cause an explosive archive growth, and the archive update 
procedure would need too many game evaluations.  Hence, the first 
question that this research intends to address is: can the LAPCA be 
used to coevolve neural networks using a reasonable number of 
evaluations? 
Moreover, the LAPCA contains a close approximation to the ideal 
evaluator set, whereas the HOF is mostly a heuristic.  Therefore, the 
LAPCA should outperform the HOF: coevolution with LAPCA 
should occur faster and yield better individuals.  Since this issue has 
not been studied before, the second question is: how do LAPCA and 
HOF compare? 
To investigate these two questions, this research implements the 
LAPCA algorithm as the CM for the Neuroevolution of 
Augmenting Topologies (NEAT) algorithm created by Stanley and 
Miikkulainen [16].  NEAT was chosen as the evolutionary 
algorithm because it has been successfully used in the continual 
coevolution of neural networks [21] and because it has a built-in 
speciation mechanism that was deemed useful to select candidates.  
The third question is, therefore: how can NEAT be implemented 
effectively with LAPCA? 
The game domain is a discrete version of the game Pong [23] in 
which each player is controlled by a neural network.  The 
performance of different variations of the HOF and LAPCA 
memories is analyzed statistically from multiple runs of the 
coevolutionary algorithm with different initial conditions.  
Representative players of every run play against each other and the 
results of players evolved with the same CM are averaged. 
The main result is that it is indeed practical to use a LAPCA instead 
of the HOF in neuroevolution.  In order to achieve this result, a 
method was developed that keeps the number of evaluations 
required by LAPCA low.  This method exploits the speciation 
mechanism of NEAT to select the generational candidates for the 
archive: only the fittest player in each species can be a candidate.  
Selecting multiple candidates according to this criterion is shown 
equivalent or superior to choosing the fittest member of the 
generation or a random set of generation candidates.  In general, the 
LAPCA grows to be smaller than the HOF and its growth can be 
controlled by adjusting the number of candidates per generation.  
The slow growth of the LAPCA and the ability to have its size 
under control makes LAPCA feasible in terms of number of 
evaluations. 
No statistically significant difference was found in the performance 
of the players evolved with the two CMs.  This result can be 
interpreted in two ways: either the two CMs evolve players with the 
same performance (at least in the Pong domain) because their 
evaluators are equally good, or the Pong domain is not very 
sensitive to the CM used.  Additional experiments using smaller 
CMs showed that the latter is the case.  When the only evaluator in 
the CM was the fittest player of the generation immediately before, 
only a small amount of regression or coevolutionary forgetting was 
measured.  Thus, the question of whether LAPCA outperforms HOF 
is still open, and additional experiments in more complex domains 
are required to measure the impact of the CMs in playing 
performance. 

2. BACKGROUND AND RELATED WORK 
This section describes the problem of forgetting in coevolution and 
the solutions implemented for comparison: the HOF and the 

LAPCA CMs.  The problem is put in context first by introducing 
coevolution as a generalization of evolution.  In addition, the 
neuroevolution algorithm is reviewed and the Pong game is 
presented. 

2.1 Evolution vs. Coevolution 
The final result in traditional evolution is the solution with the 
highest fitness, according to a given fitness function, among all 
generations.  Coevolution is a more general case of evolution in 
which, instead of being fixed, the fitness function for one population 
is determined by another population that is also evolving [2].  
Competitive coevolution is a particular case of coevolution in which 
the fitness of individuals in one population is determined by the 
outcomes of competitive interactions against individuals in the other 
population.  Competitive coevolution has been successfully applied 
to games like Nim and 3D Tic-Tac-Toe [14] and Poker [12].   
There are three reasons why coevolution is better suited than 
traditional evolution for two-player games.  First, the only way that 
traditional evolution could be used to evolve players is by already 
having a pool of good players.  This approach implies that another 
method has to provide such players in the first place, which may be 
difficult.  Second, once the maximum level of play against the fixed 
pool of players is reached, evolution stops.  However, it could 
improve further if the newly evolved players were to be added to the 
pool, as is the case in coevolution.  Third, in some kinds of games 
the pool must contain mediocre players for traditional evolution to 
work.  The reason is that if the players in the pool are too good, 
none of the individuals in the first generations would ever win 
against them and there would be no selection and in consequence 
slow or no evolution (only variation).  Coevolution, on the contrary, 
evaluates fitness against players with a variety of skill levels that 
form a “pedagogical series” [14]. 

2.2 Need for a CM 
In natural coevolution (e.g. in an actual predator-prey situation 
between two animal species) the populations that are coevolving 
must be alive at the same time.  In other words, the pool of 
evaluators and the players being evaluated must belong to the same 
generation.  This limitation causes two problems: 
• Losing a good trait by collusion.  If the populations collude to 

reduce the selective pressure that they exert on each other, they 
may lose the performance they once had.   

• Rediscovering past strategies.  The populations might be stuck 
in a loop, re-evolving traits they had in the past but that they 
lost because such traits were not useful to defeat recent 
generations of the opponent population.   

These two problems are instances of a more general problem called 
forgetting.  Forgetting can be avoided by using a CM.  A CM is a 
collection of former players that is representative of all the strategies 
that have been developed over the course of evolution.  To prevent 
forgetting, instead of only drawing evaluators from the latest 
opponent generation, evaluators are taken from the opponent CM, 
potentially from any generation in the past. 
A CM is defined by two policies: how to introduce candidates and 
how to extract evaluators.  Candidates are the members of every 
new generation that are considered for introduction to the CM.  
Evaluators are the elements of the CM that get chosen to measure 
the fitness of opponent players.  The two CMs analyzed 
experimentally in this research, the HOF and the LAPCA, are 
described next. 

2.2.1 HOF: A Best-of-Generation CM 
The HOF was proposed by Rosin and Belew as a technique to 
ensure progress in coevolution [14].  The HOF is a CM that 
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preserves the fittest individual of every generation for future use as a 
fitness evaluator. 
A Best of Generation (BOG) CM, as the term will be used here, is 
more general than the HOF because it can admit more than one 
individual per generation.  To take advantage of the speciation 
mechanism of NEAT (described in section 2.3), only the fittest 
individuals from different species are considered for inclusion to a 
BOG memory.  For example, BOG-3 accepts the three fittest 
individuals of every generation that belong to different species.  
BOG-1 is the same as the HOF.  The candidate introduction policy 
in a BOG CM is straightforward: all the players presented to the 
CM are retained forever.  The evaluator extraction policy is 
straightforward as well: evaluators are typically drawn from a 
uniform sample of the CM. 
Due to its simple implementation that does not require additional 
game evaluations, the HOF has been a common practice in the 
competitive coevolution of neural network controllers.  In particular, 
it has been implemented in domains like the robotic predator-prey 
interaction [11] and the robot duel [19].  The HOF is a useful 
heuristic that forms a baseline on which to improve. 

2.2.2 LAPCA as a CM 
Pareto coevolution is the interpretation of coevolution as 
Evolutionary Multi-Objective Optimization [9,22].  Under this 
view, the evolving individuals are called learners.  In Pareto 
coevolution any two learners are compared by their results against 
other individuals called testers.  Hence, the testers are the multiple 
objectives being optimized by coevolution and the goal of the 
learners is to defeat the biggest number of testers. 
The Pareto front is the set of learners not dominated in a Pareto 
sense by any other learner.  For a given set of testers, a learner A 
dominates learner B in a Pareto sense if there is no tester for which 
B obtains a better score than A but there is at least one tester against 
which A obtains a better score than B.  The Pareto front contains the 
best players discovered by coevolution and is thus the solution 
concept of Pareto coevolution [8]. 
The Pareto Archive is the union of learners and testers.  De Jong [4] 
showed that monotonic progress in coevolution can be guaranteed in 
a particular version called Incremental Pareto-Coevolution Archive 
(IPCA), provided that every possible individual is generated with a 
non-zero probability.  The Layered Pareto-Coevolution Archive 
(LAPCA) is a practical approximation of IPCA: progress is not 
guaranteed but the archive grows slower than in IPCA, needs fewer 
evaluations, and makes faster progress [5]. 
In LAPCA, every generation an archive update procedure receives a 
set of learner candidates and a set of tester candidates.  Its operation 
can be roughly assimilated to a sieve.  Normally during the update 
procedure some learner candidates are retained in the learner set and 
some tester candidates are retained in the tester set, while the rest 
are immediately discarded.  When new individuals join the archive, 
usually the dominance structure changes and some older members 
of the archive are eliminated.  The number of game-outcome 
evaluations that are required by the update procedure is 
approximately proportional to the product between the number of 
candidates and the size of the archive. 
The LAPCA algorithm receives its name because the learners are 
structured in non-dominated layers, resembling the peeling an 
onion.  The first non-dominated layer is the Pareto front.  Once the 
first non-dominated layer has been removed, the set of non-
dominated learners remaining constitutes the second layer, and so 
on.  This layered structure for the learners is useful for two reasons.  
First, it provides a useful criterion for the update procedure: a tester 
is retained only if it can discriminate learners that belong to the 

same or consecutive layers.  Second, the size of the archive can be 
adjusted by the experimenter by retaining only the first n non-
dominated layers.  In order to maximize the quality of the LAPCA, 
in this research all layers are retained.  Since new testers are retained 
according to whether they distinguish between existing learners and 
new learners are retained according to the objectives established by 
the existing testers, a mutual dependency develops between learners 
and testers. 
The candidate introduction policy for the LAPCA CM is determined 
by the update procedure.  However the experimenter decides which 
individuals in the evolving population are presented as learner 
candidates and which ones as tester candidates.  The evaluator 
extraction policy for the LAPCA CM is also up to the experimenter, 
who decides whether evaluators are drawn from the learner set, the 
tester set, the first non-dominated layer of learners or from the 
whole archive. 

2.3 NEAT: Evolution of Neural Networks 
Many methods of training and evolving neural networks search for 
an optimum set of weights once the researcher has provided a 
candidate topology.  Choosing such a fixed topology is a big 
problem in itself and there is always the risk of using a suboptimal 
number of nodes and weights.  Stanley and Miikkulainen’s 
NeuroEvolution of Augmenting Topologies (NEAT) searches both 
the topology and the weight spaces simultaneously, starting from a 
minimal configuration with no hidden nodes [16].  In addition to the 
conventional weight mutation operators that produce variation, 
NEAT also mutates the topology by adding hidden nodes within 
existing links and by adding weighted links between unlinked 
nodes.  This process of topology growth over generations is called 
“complexification” [20]. 
NEAT has been shown to achieve efficient reinforcement learning 
of neural networks in discrete-time controller tasks.  In particular, it 
has been reported to require a record low number of evaluations in 
the double pole balancing benchmark  [18].  NEAT has also been 
applied to the coevolution of controllers for the robot duel domain 
[21].  The robot duel is an open ended problem with opportunity for 
many different winning strategies.  The complexification of NEAT 
was found responsible for the discovery of new and more powerful 
strategies over the course of coevolution.  The speciation 
mechanism of NEAT was credited with optimizing previously 
found strategies [19]. 
Because NEAT has been successfully applied to a competitive 
coevolution domain and because it provides speciation and 
complexification, it was chosen to investigate the impact of different 
CMs. 

2.4 Test Domain: a Modified Pong Game 
Poppleton was probably the first to analyze Coevolution in the game 
of Pong [13].  Instead of using a CM, he used the fittest player in the 
most recent generation (Last Elite Opponent) of up to four 
genetically isolated populations, to compute the fitness of every new 
generation of players.  Poppleton concluded that his experimental 
results did not confirm nor disprove that such method of fitness 
evaluation offered an advantage. 
The experiments in this research are also based on Pong.  The main 
advantage offered by Pong is that the board can be represented as a 
grid of discrete positions.  The collision detection algorithm is 
simple, leading to fast evaluations and hence short simulations. 
Another advantage is that the evaluation time can be modified 
arbitrarily by changing the size of the grid. 
The player’s ability to move the paddle forward and backward and 
to have independent control of the ball deflection allowed increasing 
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the complexity of the strategy space.  A more complex strategy 
space, in turn, was deemed useful to take full advantage of the CMs.  
The specifics of the game domain are described in the following 
section, along with the comparison methodology used in the 
experiments. 

3. COMPARISON METHODOLOGY 
The experiments described in this research assess the relative 
performance of different variants of coevolution by applying two 
comparison methodologies to the evolved players: Best of Run and 
Best of Generation.  Each comparison has advantages and 
disadvantages but they complement each other well.  All the 
evaluations required by evolution and by the comparison 
methodologies take place in the Pong domain, detailed next. 

3.1 Parameters of the Game Domain 
The board grid used in the experiments is 15 units tall and 21 units 
wide, with the ball occupying a single unit and the paddles an area 
of five units by one unit.  The paddles are free to move horizontally 
within the first 7 units of their side of the field, and vertically with 
no limitations.  The paddles can move at most one unit in each 
direction (both vertical and horizontal) per time step.  The ball is 
allowed to move twice as fast as the players, to force the players to 
predict the vertical position of the ball instead of just following it.   
The neural network controller for each player has 6 inputs and 6 
outputs.  The 6 inputs are three pairs of absolute coordinates: the 
player’s paddle, the ball and the opponent’s paddle.  The 6 outputs 
are three pairs of binary values, corresponding to vertical motion, 
horizontal motion and ball deflection.  Since the player knows the 
location of the opponent, it can have an advantage by deflecting the 
ball away from it.   
Each game consists of two serves, one for each side, to make the 
game symmetrical.  A player wins a serve when the opponent 
misses the ball.  If no player has missed the ball after 200 time steps, 
the serve is considered a tie.  Fitness is computed by letting every 
player of a generation compete in 10 games against the same set of 
opponents, and averaging the scores. The set of opponents is 
uniformly sampled from the CM.  For all experiments the 
population size is 100 and coevolution lasts 100 generations. 
The update procedure of the LAPCA uses evaluations of direct 
dominance between learners and testers to determine the Pareto 
dominance between two learners.  The dominance relationship 
between a learner and a tester in turn is computed by playing all 30 
possible serves between them.  If the learner wins more serves than 
it loses (independently of the number of ties) it is considered to 
dominate the tester. 

3.2 Best of Run Comparison 
“Best of Run” is defined as the most successful player of the 10,000 
originated in a particular run of the coevolutionary algorithm (100 
generations times 100 individuals per generation) and is the solution 
to the problem.  For all experiments in this research, the Best of Run 
is the winner of a master tournament [11] among the fittest players 
(champions) of every generation. 
The Best of Run Comparison determines if one of two methods of 
coevolution is better by measuring the performance of 50 Best of 
Run players from each method, which requires a total of 100 
coevolution runs.  Each of the 100 individuals plays all possible 
games (15 serves in each direction) against each of the other 99 
individuals and gets scored by the number of players that it 
dominates.  Thus, the score is an integer between 0 and 99.  A 
player dominates another if it wins at least one more serve than the 
opponent in all possible games of direct competition.  The scores of 
all players from the same method are averaged and the means of the 

two methods are tested for one-sided significance using a two-
sample z statistic [3]. 
The main advantage of the Best of Run Comparison is that it 
measures the real output of coevolution.  All that matters for a 
practical application is the single best player evolved.  A 
disadvantage is that it does not show the speed of coevolution.  
Even if the comparison does not demonstrate that one method is 
significantly better than the other, one can still be faster, i.e., reach 
the final level of performance in fewer generations. 

3.3 Best of Generation Comparison 
The Best of Generation Comparison attempts to solve the limitation 
of the Best of Run Comparison by approximating an absolute fitness 
function and using it to measure progress.  The comparison requires 
50 runs of each method being compared.  First, the best players of 
each generation (champions) are stored, for all generations, all runs 
and all methods.  Second, the Best of Run individuals of all methods 
are collected together in an evaluation pool.  Third, each stored 
champion plays against a different sample of 25 players drawn from 
the evaluation pool.  Fourth, for each method and each generation, 
the number of wins, ties and losses is averaged over the 50 runs. 
The comparison methods complement each other: the Best of Run 
comparison determines the CM that evolves the best players, 
whereas the Best of Generation shows coevolutionary progress over 
generations.  Both comparisons are applied to different types of 
CMs in the next section. 

4. EXPERIMENTS 
The specific questions addressed by this research are:  
• Does the LAPCA scale up to a complex domain like Pong? 
• What is the best way to introduce candidates from NEAT into 

the LAPCA? 
• Is the LAPCA a better CM than the HOF? 

The experiment to answer the first question uses the HOF as the CM 
while a LAPCA is used to monitor the progress of coevolution.  To 
answer the other questions, a LAPCA is implemented as the CM.  
First, the advantage of introducing random versus fittest candidates 
to the archive is evaluated.  Then, the LAPCA and the BOG 
memories (which include the HOF) are compared. 

4.1 Analyzing the Growth of the LAPCA 
Before using the LAPCA as a CM, it is helpful to analyze how it 
grows when applied to monitor an already evolving population.  A 
controlled growth is important because the size of the archive 
determines the number of evaluations and the storage space required 
by the LAPCA algorithm.  If the archive grows too fast its 
applicability would be restricted, due to an excessive number of 
evaluations. 
Using the HOF as the CM, after every generation three players were 
presented as tester candidates and three different players were 
presented as learner candidates to a LAPCA.  The tester candidates 
were drawn randomly from the population, whereas the learner 
candidates were the three fittest players belonging to three different 
species in the population.   
The average size of the learner and the tester sets of the archive at 
every generation are shown in Figure 1.  The first interesting result 
is that the learner set is consistently bigger than the tester set (from 
around 50% in early generations to about 100% in the last ones).  
This fact has also been reported by De Jong for the Compare-on-one 
problem [5].  Another observation is that the archive is an effective 
filter, since by generation 100 it has retained a minority (an average 
of 37.6 with standard deviation 6.3) of the 600 players presented as 
candidates. Finally, the fact that the rate of archive growth decreases 
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over generations suggests that the update procedure detects the 
stagnation in the quality of the candidates presented (as shown in 
Figure 2 and Figure 3, most of the learning occurs in the first 40 
generations). 

4.2 Introducing Candidates to the LAPCA 
After having analyzed the growth rate of the LAPCA as a monitor, 
the next experiment introduces the LAPCA as a CM.  The whole 
archive (the union of the learner and tester sets) was used to extract 
evaluators, i.e. to measure the fitness of the evolving individuals. 
To use a LAPCA in the most effective way as a CM, it is necessary 
to determine which individuals from the population, when presented 
as candidates, produce the best archive (i.e. one that results in higher 
selective pressure and therefore superior players).  It makes sense to 
present candidate individuals from different species to exploit the 
diversity in the speciation mechanism of NEAT.  However, 
selecting only the fittest players of different species could produce a 
bias towards strategies that win on average, which may in turn 
prevent idiosyncratic players from joining the archive.  Such lost 
idiosyncratic players could have had strategies that worked 

extremely well in specific situations and would have raised the 
selective pressure of the archive.  In other words, fitness alone might 
not be the best criterion to present individuals to the archive, since it 
could be diversity that matters most. 
The second experiment compares two kinds of candidate 
introduction: “Random” and “Top”.  “Random” corresponds to 
choosing three individuals from a uniform sample of the population, 
disregarding species and fitness.  “Top” corresponds to choosing the 
three fittest individuals in the population that belong to different 
species.  Since these two types of candidate introduction can be 
applied independently to the tester and the learner sets, there are 
four combinations. The six possible pairwise comparisons between 
the four types of candidate introduction appear on Table 1, using the 
Best of Run method.  There are only two statistically significant 
comparisons: “Random Learners and Random Testers” are 

Table 1. Best of Run pairwise comparison between different 
methods of presenting candidates to the LAPCA CM (N=50).  
Both the learner and tester candidates can be either the three 
fittest individuals in the Population belonging to three different 
species (Top), or just three individuals chosen at random 
(Random).  The first two comparisons are statistically 
significant (z-test, p < 0.05).  The fittest individuals from 
different species are better candidates. 

Candidate Introduction 
Comp. 

Learners Testers 

Dominated 
Players 

(Average) 

Dominated 
Players 

(Std Dev) 
Diff. p value 

Top Top 49.30 15.81 1 
Random Random 43.98 14.51 

5.32 0.040 

Random Top 48.82 15.27 2 
Random Random 43.82 14.59 

5.00 0.047 

Top Random 48.40 17.26 3 
Random Random 44.86 14.48 

3.54 0.133 

Top Top 48.00 15.06 4 
Top Random 44.92 16.20 

3.08 0.162 

Top Top 47.64 14.68 5 
Random Top 45.06 15.51 

2.58 0.197 

Top Random 47.26 16.56 6 
Random Top 45.48 14.85 

1.78 0.286 

A verage of 50 Runs over 20 Generation Intervals

0

100

200

300

400

500

600

700

0 - 19 20 - 39 40 - 59 60 - 79 80 - 99

Generation Interval

Lo
st

 G
am

es

Random Learners Random Testers
Random Learners Top Testers
Top Learners Random Testers
Top Learners Top Testers

Figure 2. Best of Generation comparison between different 
methods of selecting candidates to the LAPCA CM.  Fewer 
losses mean better learning; losses are averaged over 20 
generation intervals.  The vertical marks on top of the bars 
correspond to standard error.  “Top Learners Top Testers” is 
significantly better (p < 0.02) than “Random Learners 
Random Testers” in the interval 60-79.  “Top Learners Top 
Testers” is also better (p < 0.05) than “Top Learners Random 
Testers” in the same interval.  The fittest individuals from 
different species are better candidates 
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Figure 3. Best of Generation comparison between the BOG 
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outperformed by “Top Learners and Top Testers” and also by 
“Random Learners and Top Testers”.  The conclusion is that 
candidate fitness is more important than candidate diversity at least 
for the Pong domain studied.  Besides, using the Best of Generation 
comparison (Figure 2), there is a significant performance gap 
between “Top Learners and Top Testers” and “Random Learners 
and Random Testers” around generation 70.  
In conclusion, at least in the Pong domain, it is better to introduce 
the fittest individuals to the archive.  Using random individuals to 
exploit their erratic behavior does not lead to a more solid learning.  
For this reason, in the next experiment the candidates introduced to 
the LAPCA are the fittest in their species. 

4.3 BOG vs. LAPCA CMs 
The third experiment compares the performance of the BOG and 
LAPCA CMs, in three different aspects: performance of evolved 
players, number of evaluations, and storage size. 
For each of the two memories, three different sizes of the candidate 
sets were evaluated: “1”, “3” and “Sp”. Size “1” means that after 

every generation only the fittest player of the population is either 
added to the BOG or presented to the LAPCA.  Size “3” means that 
the candidates are the three fittest players in the generation that 
belong to different species.  Size “Sp” means that one candidate 
from each species is presented to the memory, for all species in the 
generation (as shown in Figure 1, there are about 8 species in 
average in the last 40 generations).  The HOF is the particular case 
of a BOG memory with candidate size 1 (i.e., HOF is the same as 
“BOG – 1”) and is a good baseline to judge the performance of the 
LAPCA. 
There was no statistically significant difference in the performance 
of the CMs, as measured by the quality of evolved players.  
However, there are indications that larger candidate sets might have 
an advantage over smaller ones.  Specifically, according to the 
results of the Best of Run method from Table 2, “LAPCA – Sp” has 
better performance than “BOG – 3” (p < 0.06).  Also, from Figure 3, 
“BOG – Sp” is better (p < 0.05) than “BOG – 1” (i.e., the HOF)” 
around generation 50. 
In terms of number of evaluations, the LAPCA has a clear 
disadvantage (Table 3).  The algorithm to implement any BOG 
memory does not require extra evaluations.  Evaluations are only 
needed to compute the fitness of a newly created population.  Since 
the update algorithm of the LAPCA needs to establish dominance 
relationships between all the candidates presented and all players in 
the archive, the number of extra evaluations is not only 
approximately proportional to the number of candidates but also to 
the size of the archive, which for this experiment increased 
monotonically over generations (Figure 1). 
The main advantage of the LAPCA is that it requires less storage 
(Table 3).  As a consequence of the update procedure filtering new 
candidates and eliminating subsumed strategies, the LAPCA 
requires less storage than the HOF and the rest of the BOG 
memories for all sizes of the candidate set.  Since the players 
evolved with the six methods have similar performance (Table 2 
and Figure 3) the LAPCA reduces the redundancy present in the 
BOG CMs without sacrificing selective pressure. 
In conclusion, in the Pong domain the LAPCA is not significantly 
better or worse than the BOG CM in terms of performance of the 
evolved players, but it uses less memory and requires more 
evaluations.  In addition, in the few cases in which there was a 
significant difference, more candidates per generation produced 
better results, suggesting that the HOF can be outperformed when 
the diversity present on the population is exploited. 

Table 2. Best of Run pairwise comparison between the BOG 
and the LAPCA CMs (N=50).  The candidates are the fittest 
individual from each generation (“1”), the top 3 fittest 
individuals belonging to different species (“3”), or the fittest 
individual of every species (“Sp”).  The LAPCA with a 
candidate from every species (from approximately 8 in the last 
40 generations) is better (p < 0.06) than the BOG memory with 
the top 3 fittest individuals from different species.  For the rest 
of the cases, the performance of evolved players is similar. 

Comp. Coevolutionary 
Memory 

Candidates 
per 

Generation 

Players 
Dominated 
(Average) 

Players 
Dominated 
(Std Dev) 

Diff. p value 

LAPCA Sp 48.46 13.98 1 
BOG 3 43.86 14.22 

4.60 0.051 

LAPCA Sp 47.72 13.73 2 
BOG 1 (HOF) 44.86 15.30 

2.86 0.163 

LAPCA 3 47.72 14.90 3 
BOG Sp 45.20 12.36 

2.52 0.179 

LAPCA Sp 47.22 14.20 4 
BOG Sp 44.90 13.91 

2.32 0.205 

LAPCA Sp 46.90 13.70 5 
LAPCA 1 45.50 14.84 

1.40 0.312 

BOG 3 46.74 16.42 6 
BOG Sp 45.64 13.29 

1.10 0.356 

LAPCA 3 46.66 15.21 7 
BOG 3 45.58 14.68 

1.08 0.359 

LAPCA 3 46.86 15.07 8 
LAPCA 1 45.88 15.25 

0.98 0.373 

BOG 1 (HOF) 46.68 16.41 9 
LAPCA 1 45.92 14.56 

0.76 0.403 

BOG Sp 46.44 13.08 10 
BOG 1 (HOF) 45.72 16.24 

0.72 0.404 

LAPCA 3 46.56 15.08 11 
LAPCA Sp 45.90 13.21 

0.66 0.408 

BOG Sp 46.80 13.40 12 
LAPCA 1 46.16 16.72 

0.64 0.416 

BOG 1 (HOF) 46.52 14.87 13 
LAPCA 3 46.28 15.49 

0.24 0.468 

LAPCA 1 46.72 15.33 14 
BOG 3 46.50 15.10 

0.22 0.471 

BOG 3 46.22 14.29 15 
BOG 1 (HOF) 46.10 15.34 

0.12 0.484 
 

Table 3. Evaluations vs. Memory size trade-off between the 
BOG and LAPCA CMs (N=50).  Whereas in a BOG memory 
more candidates lead to a bloated CM without the cost of 
additional evaluations, a LAPCA with more candidates requires 
more evaluations but uses less storage. 

Candidates 
Introduced 

Final 
Memory Size Evaluations Coevolutionary 

Memory 
Average Std Dev Average Std Dev Average Std Dev 

BOG – 1 (HOF) 100 0.0 100 0.0 200,000 0 

BOG – 3 300 0.0 300 0.0 200,000 0 

BOG – Sp 630 73.1 630 73.1 200,000 0 

Pareto – 1 100 0.0 20 3.77 262,478 10,691 

Pareto – 3 300 0.0 38 6.18 503,392 39,026 

Pareto – Sp 618 64.4 45 8.97 1,000,838 135,341 
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5. DISCUSSION AND FUTURE WORK 
One possible reason for the similar playing performance of the HOF 
and the LAPCA is that there is not enough forgetting in the Pong 
domain to reveal the differences.  Additional experiments were 
performed to test this hypothesis.  No measurable difference was 
found in the average quality of the players evolved either with a CM 
with only one element (the fittest individual of the generation 
immediately before) or with the full HOF, suggesting that there is 
indeed little forgetting.  The experiments described in this research 
should be repeated in a domain with more coevolutionary 
forgetting.  A good criterion to make sure that such domain allows 
meaningful comparisons is precisely the difference in the 
performance of players evolved remembering either the last or all 
members of the HOF. 
In spite of the resistance to forgetting in the Pong domain, important 
conclusions can be drawn about the implementation of the LAPCA 
as a CM for the coevolution of neural networks, and about the 
interaction between the LAPCA and NEAT.  One such conclusion 
is that there is a positive, measurable impact from feeding the 
archive with candidates that are the fittest within their species, as 
opposed to randomly sampling candidates from the population 
(Section 4.2).  Along the same lines, in the few comparisons that 
had statistical significance, the bigger number of generational 
candidates corresponded to faster or better evolution (Section 4.3).  
Consequently, a CM can take advantage of the population diversity 
maintained by speciation, and the best way to do it is by introducing 
the fittest individuals from different species. 
Another important conclusion is that the number of evaluations 
required by the update procedure of the LAPCA is practical for real 
world applications.  The number of evaluations per generation 
needed by the archive update algorithm is roughly proportional to 
the number of candidates and to the size of the archive.  The archive 
does not grow too fast, because many old players get subsumed by 
newer players and are immediately removed.  The number of 
candidates per generation is arbitrarily set by the experimenter.  
Hence, it is possible to adjust the number of evaluations needed to 
update the archive and have it in the same order of magnitude as the 
number of evaluations needed by NEAT to compute fitness (Section 
4.3).  
In his presentation of the LAPCA algorithm, De Jong [5] used the 
archive in a different way than in this research: not to provide 
evaluation for the population, but to re-introduce genetic material 
into it.  Such genotypical use of the archive could be implemented 
with NEAT as well.  Although it might interfere with the stability of 
NEAT’s speciation mechanism or potentially stifle 
complexification, re-introducing previous genomes might give them 
a second chance to evolve into the most successful players for the 
new competitive environment.  It would be interesting to compare 
the phenotypical and genotypical uses of the archive. 
A central simplifying assumption in this research is that only one 
population coevolves, and does so by competing against its own 
CM.  Coevolving a single population against itself is a departure 
from the way coevolution has been implemented in the past.  In 
other symmetric domains like the robot duel and compare-on-one, 
the two players are evolved in different populations, each with its 
own CM [21,4,5].  It would be interesting to measure the impact of 
merging the two populations, as was done in this paper. 
In order to make fair comparisons between different CMs, the best 
of run individuals were the winners of an internal master tournament 
among generation champions.  Nevertheless, since the LAPCA 
memory contains dominance information about the players, the 
winner should be drawn directly from archive, with no need for a 
master tournament.  Which individual to choose and how good its 

performance is with respect to the winner of the master tournament 
are further questions for future work. 
The LAPCA update procedure implemented in this research can be 
optimized to require fewer evaluations.  First, when a new 
generation of candidates is presented to the current archive, the 
scores of all possible games between candidates and members of the 
archive are being computed and stored in a matrix, disregarding 
whether they are actually used or not.  To make the process more 
efficient, all known matrix entries can be considered first and the 
rest obtained only when necessary. Second, it should be possible to 
determine the impact of a limited number of layers on the 
performance of the evolved players; if the impact is small, fewer 
evaluations would be required to get essentially the same players. 
There are alternative methods of coevolution that should be applied 
to neural networks, as well.  One variation is replacing the solution 
concept of the Pareto Front by that of Nash equilibrium, using the 
Nash memory mechanism proposed by Ficici and Pollack [10].  
Another possibility is to apply one or both solution concepts to 
neural network controllers for team competitive games like soccer, 
in which the interaction between teammates introduces cooperation 
to coevolution.   
The results obtained in this research are encouraging because they 
show that the principles of Pareto coevolution can be applied to 
practical domains.  The computational expense of keeping an 
archive could be offset by faster evolution (fewer generations) 
reducing the overall number of evaluations and making coevolution 
practical for real world applications.  

6. CONCLUSION 
The main goal of this research was to construct a bridge between 
two branches of the study of coevolution that have not been 
investigated together.  The first branch comes from neuroevolution 
and is very practical: coevolving optimal neural network controllers 
using the fewest number of evaluations.  The computational 
simplicity of maintaining a HOF (which does not require additional 
evaluations) has made it the CM of choice for the competitive 
coevolution of neural networks.  The second branch comes from the 
theoretical analysis of coevolution seen as multi-objective 
optimization: implementing an ideal CM.  Such a memory requires 
many evaluations to make explicit the Pareto-dominance 
relationship between evolving individuals.  The recently introduced 
LAPCA algorithm [5] decreases the number of evaluations needed 
to approximate a good CM.  However, it has only been applied to a 
Numbers Game which is not a very practical domain. 
This research implemented LAPCA as the CM for neural networks 
that control the players of the game Pong.  The evolutionary 
algorithm chosen was NEAT [16] because its speciation and 
complexification features have already been found useful for 
continual coevolution.  The question of whether coevolution can 
discover better solutions using a LAPCA memory than using a HOF 
memory remains open because there is not enough forgetting in the 
Pong domain.  However, three interesting results were obtained.  
The first is a practical technique to provide generational candidates 
to a CM: choose the fittest individuals that belong to different 
species.  In the Pong domain this technique brings more information 
to the memory than introducing the single best player of the 
generation, and is more effective than introducing a random sample 
with the same size.  The second result is that the LAPCA scales up 
to a complex neural network domain.  When applied to the 
evolution of neural networks, the bounded growth of the archive 
makes the LAPCA a feasible option in terms of total number of 
evaluations.  Third, in all experiments performed, the LAPCA 
required significantly less memory than the HOF.  Therefore, 
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LAPCA has a storage advantage in applications in which evolution 
lasts for many generations.   
In sum, LAPCA has been demonstrated to be a practical CM for 
neural networks in the Pong domain. Further research in domains 
that are more susceptible to forgetting is necessary to determine 
whether it also allows the discovery of solutions that perform better. 
Eventually it should be possible to establish the circumstances under 
which each of the two algorithms provides a better CM for a given 
real-world application. 
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