
Probabilistic Modeling for Continuous EDA with Boltzmann
Selection and Kullback-Leibeler Divergence

Cai Yunpeng
caiyp78@gmail.com

Sun Xiaomin
sxm123@tsinghua.edu.cn

Jia Peifa
dcs-jpf@tsinghua.edu.cn

State Key Lab of Intelligent Technology and Systems,
Tsinghua University, Beijing, P.R.China

ABSTRACT
This paper extends the Boltzmann Selection, a method in
EDA with theoretical importance, from discrete domain to
the continuous one. The difficulty of estimating the exact
Boltzmann distribution in continuous state space is circum-
vented by adopting the multivariate Gaussian model, which
is popular in continuous EDA, to approximate only the fi-
nal sampling distribution. With the minimum Kullback-
Leibeler divergence principle, both the mean vector and the
covariance matrix of the Gaussian model can be calibrated
to preserve the features of Boltzmann selection reflecting
desired selection pressure. A method is proposed to adapt
the selection pressure based on measuring the successful-
ness of the past evolution process. These works established
a formal basis that helps to build probabilistic models in
continuous EDA algorithms with adaptive parameters. The
framework is incorporated in both the continuous UMDA
and the EMNA algorithm, and tested in several benchmark
problems. The experiment results are compared with some
existing EDA versions and the benefit of the proposed ap-
proach is discussed.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—global opti-
mization

General Terms
Theory, Algorithms

Keywords
Evolutionary Computation, Estimation of Distribution Al-
gorithms, Continuous Optimization, Boltzmann Selection

1. INTRODUCTION
Estimation of Distribution Algorithms (EDA) [19, 14],

also called probabilistic model-building genetic algorithms
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(PMBGA) [24], iterated density estimation algorithms (ID-
EA) [7], or probabilistic modeling evolutionary algorithms
[9], was proposed originally for combinatory optimizations.
However, researchers have attempted to extend the approach
to continuous optimization and have made many progresses.
Current continuous EDA approaches involves extensions of
discrete EDA from several aspects: space partitioning [25,
20, 28], introducing Gaussian distributions [26, 27, 13, 7,
20], or adopting pattern analyze methods [29]. A survey of
EDA an their applications to continuous optimization can
be found in [24, 14, 23] and [13, 7, 10].

Most continuous EDAs adopt Gaussian mutation to en-
able local search. It had been discovered that the model
parameters, i.e., the variances/covariances, impact the per-
formance greatly [5]. The determination of the variance or
the covariance matrix is relatively independent to the algo-
rithms. Existing continuous EDAs usually define the vari-
ance in the following manners:
(1) Using a constant or decaying variance [29, 10];
(2) Self-adaption: adjust the variance as in a (1,λ) evolu-
tionary strategy [27, 21];
(3) Selecting-and-accounting: learn the variance from elite
samples [27, 13, 15];
or the combination of (2) and (3) [21, 5]. The first method
is too rigid to fit various problem landscapes. The latter
two approaches do achieve substantial success, but there are
also negative results concerning that self-adaption trends to-
wards local search [27] and selecting-and-accounting might
shrink the variance too fast [21]. The optimal choice of the
variance remains an open problem.

In this paper we connect the problem of parameter learn-
ing to the framework of Boltzmann selection [18], which is
a theoretically important method in combinatory optimiza-
tion. We circumvent the trouble of estimating the exact
Boltzmann distribution by adopting a Gaussian model to
approximate the final sampling distribution, preserving the
key features of the ideal distribution with the aid of the min-
imum Kullback-Leibler divergence [8] principle, thus get to a
continuous version of Boltzmann selection which interprets
parameter learning as deciding a proper selection pressure.
We also developed a method to adapt the selection pres-
sure based on measuring the successfulness of the last evo-
lution cycle. Combining both results we achieve an adaptive
framework of continuous EDA, called BGEDA, which tracks
a temperature-decreasing Boltzmann distribution and per-
forms well in the experiments.

In section 2, we describe the formal basis of continuous
Boltzmann selection. In section 3, we give the method of
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adapting selection pressure according to the progress in the
last generation. In section 4 we connect our approach to
some previous results in related fields. Experiment results
are given in section 5 before concluding in section 6.

2. BOLTZMANN SELECTION IN CONTIN-
UOUS OPTIMIZATION

In this section, we introduce some theoretical backgrounds
and notations, then present our approach based on them.

2.1 Probabilistic Modeling
EDA features in iteratively creating a distribution model

q(x) from selected individuals of current population and
generating new population by sampling the model. For
continuous EDAs, proposed distribution models include his-
togram [25], multivariate Gaussian distribution [15], Gaus-
sian Networks [13] and mix of Gaussians [9, 20, 6], Helmholtz
machines [29], etc. In this paper, we consider the following
multivariate Gaussian distribution:

q(x) =
1

(2π)n/2|Γ|1/2
e−

1
2 (x−µ)T Γ−1(x−µ), x ∈ Rn (1)

where µ is the mean vector and Γ is the covariance matrix.
Consider the following real-parameter optimization prob-

lem:

f(x) : Rn → R, x∗ = arg max
x∈Ω

{f(x)}, Ω ⊂ Rn.

where f(x), bounded on Ω, is usually called the fitness func-
tion in evolutionary algorithms. One question arises for the
above probabilistic modeling approach:

Problem 1. Given a set of samples {X1, X2, .., Xm|Xi ∈
Ω} (the population) and their fitness {f(X1), f(X2), ..,
f(Xm)}, what is the proper parameter set for q(x) to design
a good optimization algorithm over f(x)?

2.2 Boltzmann Distribution and Boltzmann
Selection

Inspired by statistical physics, many researchers [18, 2,
3, 4, 17, 10] have proposed to represent the object function
f(x) with a Boltzmann distribution:

p(x, T ) =
1

Z(T )
ef(x)/T , where Z(T ) =

�

Ω

ef(x)/T dx. (2)

Here Z(T ) is called the partition function, and T > 0 is
the temperature parameter. In this way each value of the
object function is mapped onto a sample probability. When
T → ∞ the distribution converges to a uniform distribution
over the entire domain; on the other hand, when T → 0 it
converges to a distribution which uniformly charges only the
optimal solutions. Some researchers also adopt the Gibbs
distribution, which has almost the same property.

To simplify the notation, we denote β = 1/T , which is
called the inverse temperature [16].

Mühlenbein pointed out that the Boltzmann distribution
fulfills the Holland’s Equation [17], which is an important
property of a good population-based optimization algorithm.
In a Boltzmann distribution with temperature t, for a schema-
ta ξ with corresponding marginal distribution xξ and β =
1/t, it holds that

dp(xξ, t)

dβ
= p(xξ, t)(f̂ξ(x, t) − f̄(t)). (3)

Here f̄(t) is the average fitness under current distribu-

tion and f̂ξ(x, t) is the average fitness of all solutions with
schemata ξ. Equ. 3 describes that the probability of sam-
pling a given schemata will increases in a rate proportional
to its superiority over certain solutions as the temperature
decreases. If an evolving population can track the temper-
ature-decreasing Boltzmann distribution, it will improve it-
eratively and eventually converges to optimal solutions.

This conclusion gives an answer to Problem. 1 by arguing
that a proper probabilistic model should approximate the
Boltzmann distribution with the temperature decreasing to-
wards zero. Thus the Boltzmann distribution has significant
value in optimization theory.

The exact form of the Boltzmann distribution cannot be
expressed without knowing the fitness function of every point
in the space. To make use of the Boltzmann distribution,
Mühlenbein et.al. proposed the Boltzmann Selection and the
Boltzmann Estimation of Distribution Algorithm(BEDA)
[18] for combinatory optimization. Given the estimated dis-
tribution p(x) and the temperature T , Boltzmann Selection
calculates the following distribution

ps(x) =
p(x)ef(x)/T�
y p(y)ef(y)/T

(4)

and generates new samples according to it. To estimate
p(x), BEDA, especially FDA [18], decomposes the distrib-
ution into marginal distributions and estimates them from
sampled points. Such estimation is efficient in discrete cases
where the state space is enumerable, but it is infeasible in
continuous cases because there is no universal way to infer
the form of the distribution based on finite points. So the
Boltzmann selection cannot be applied to continuous opti-
mization directly.

In this paper we attempt to implement Boltzmann selec-
tion without explicitly estimating p(x). We start from a
population that approximately follows a Boltzmann distri-
bution, and create a model to generate new samples that
closely follows the distribution in Eq. 4. We adopt previ-
ous approach by Gallagher et.al. [10] which approximates
the Boltzmann distribution of fixed temperature with a uni-
variate Gaussian model via the Kullback-Leibler divergence,
and extend it in three scopes: firstly, we adopt a multivari-
ate Gaussian model; secondly, we change the calculation of
K-L divergence so that both the mean vector and the covari-
ance matrix can be decided; thirdly, we use a temperature-
decreasing Boltzmann distribution instead of a fixed one.

2.3 Kullback-Leibler Divergence
The Kullback-Leibler divergence (KLD) [8], also known

as the relative entropy, measures the distance between two
distributions:

D(p(x)||q(x)) =

�

Ω

p(x) log
p(x)

q(x)
(5)

Eq. 5 is not symmetric to p(x) and q(x). If we try to
approximate a target distribution p(x) with a model dis-
tribution q(x), we can either minimize D(q(x)||p(x)) or
D(p(x)||q(x)). Previous works [3, 4, 10] choose to mini-
mize D(q(x)||p(x)) in order to avoid the trouble of calcu-
lating the partition function Z in Eq. 2. In this paper, on
the contrary, we minimize D(p(x)||q(x)) to acquire more
information.
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2.4 Continuous Boltzmann Selection with
Gaussian Models

Now we treat the Boltzmann distribution p(x, T ) in Eq. 2
as the target distribution, and q(x) in Eq. 1 the model
function. If the random variable x follows the distribution
p(x, T ), it can be derived that

E[ln q(x)] =

�

Ω

p(x, T ) ln q(x)dx

= −H(p(x, T )) − D(p(x, T )||q(x)).

Here E(x) is the expectation of x and H(p) is the entropy
of p. From the above equation we see than minimizing
D(p(x, T )||q(x)) is equivalent to maximizing E[lnq(x)].

We write

E[ln q(x)] =

�

Ω

p(x, T ) ln q(x)dx

=

�

Ω

p(x, T )[−1

2
(x − µ)T Γ−1(x − µ)

−1

2
ln |Γ| − n ln(2π)

2
]dx. (6)

For a non-singular Γ, denoting B = Γ−1, the derivative
of Eq. 6 is:

∂E

∂µ
=

�

Ω

p(x, T )B(x − µ)dx,

∂E

∂B
= −1

2

�

Ω

p(x, T )[(x − µ)(x − µ)T − Γ]dx. (7)

Forcing Eq. 7 equal to zero yields:

µ =

�

Ω

p(x, T )xdx = E(x),

Γ =

�

Ω

p(x, T )(x − µ)(x − µ)T dx = V ar(x). (8)

which is the parameter set that maximizes Eq. 6. If a
random sampling can be drawn according to p(x, T ), this
result will be trivial since it is merely the maximum likeli-
hood estimation of the mean vector and covariance matrix of
a certain Gaussian distribution. However, it has been noted
above that such a distribution cannot be acquired unless
T → ∞, which is a uniform random distribution. Boltz-
mann selection suggests a means to solve this problem.

Replacing 1/T with β, the Boltzmann selection fulfills the
following lemma:

Lemma 1. If p1(x) = eβf(x)
�

z∈Ω
eβf(z)dz

is a Boltzmann distri-

bution, then

p2(x) =
p1(x)eΔβf(x)�

z∈Ω

p1(z)eΔβf(z)dz
=

e(β+Δβ)f(x)�
z∈Ω

e(β+Δβ)f(z)dz

is also a Boltzman distribution.

The proof of the lemma can be found in [18] with the
summation replaced by the integration. From this lemma we

see that Boltzmann selection generates a lower-temperature
Boltzmann distribution from a higher one. A larger Δβ
indicates a higher selection pressure, and vice versa.

Lemma 2. If X1, X2, .., Xm are i.i.d random variables ∼
p(x), and g(x) is a bounded function on Ω,
E[g(x)] =

�
Ω

p(x)g(x)dx, then

lim
m→∞

1

m

m�
i=1

g(Xi)
P−→ E[g(x)].

Proof. Since g(x) is bounded, ∀ i, the variance

D[g(Xi)] < ∞.

Note that functions of independent random variables are
also independent random variables, from the Chebyshev ’s
theorem we get that ∀ ε > 0,

lim
m→∞

P (| 1

m

m�
i=1

g(Xi) − E[g(x)]| < ε)

= lim
m→∞

P (| 1

m

m�
i=1

g(Xi) − 1

m

m�
i=1

E[g(Xi)]| < ε)

= 1.

From the above lemma we get the following result:

Theorem 1. If X1, X2, .., Xm are i.i.d random variables
following the Boltzmann distribution p1(x) = p(x, 1/β) for
the bounded fitness function f(x), p2(x) = p(x, 1/(β + Δβ))
is another Boltzmann distribution, then for any function
g(x) satisfying

�

Ω

p1(x)g(x)dx < ∞,

�

Ω

p2(x)g(x)dx < ∞,

lim
m→∞

m�
i=1

[eΔβ·f(Xi)g(Xi)]

m�
i=1

eΔβ·f(Xi)

P−→
�

Ω

p2(x)g(x)dx.

Proof.

lim
m→∞

m�
i=1

[eΔβ·f(Xi)g(Xi)]

m�
i=1

eΔβ·f(Xi)

= lim
m→∞

1
m

m�
i=1

[eΔβ·f(Xi)g(Xi)]

1
m

m�
i=1

eΔβ·f(Xi)

=

lim
m→∞

1
m

m�
i=1

[eΔβ·f(Xi)g(Xi)]

lim
m→∞

1
m

m�
i=1

eΔβ·f(Xi)

P−→

�
Ω

p1(x)eΔβ·f(x)g(x)dx

�
Ω

p1(x)eΔβ·f(x)dx

=

�

Ω

p1(x)eΔβ·f(x)�
Ω

p1(z)eΔβ·f(z)dz
g(x)dx =

�

Ω

p2(x)g(x)dx.

This theorem suggests a method to derive some sufficient
statistics of one Boltzmann distribution with higher β from
a group of samples drawn from another Boltzmann distribu-
tion with lower β, without knowing the exact form of either
one. For a population {Xi} ∼ p1(x, 1/β) and a desired dis-
tribution p2(x, 1/(β + Δβ)), applying the theorem to Eq. 8
yields
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µ =
m�

i=1

eΔβ·f(Xi)Xi/
m�

i=1

eΔβ·f(Xi),

Γ =

m�
i=1

[eΔβ·f(Xi)(Xi − µ)(Xi − µ)T ]

m�
i=1

eΔβ·f(Xi)

. (9)

Eq. 9 gives a Gaussian model that closely executes the
Boltzmann selection in continuous space. Recalling the fact
that the uniform random distribution is the Boltzmann dis-
tribution with T → ∞, we can start from a random popula-
tion, and iteratively create a Gaussian model from current
population then sample from the model to achieve a new
one. If we assume that the characters of Boltzmann distri-
bution is still preserved in the new population, we get to
a way of evolving the population following a temperature-
decreasing Boltzmann distribution, thus a continuous ver-
sion of Boltzmann selection, without estimating the cur-
rent distribution p(x). The iteration resembles the BEDA
framework mentioned in section 2.2, and we call our version
the Boltzmann-Gaussian Estimation of Distribution Algo-
rithm(BGEDA), which is described in Table 1. The problem
of model parameter choosing in section 1 is also answered
by connecting it to determining the selection pressure repre-
sented by Δβ, which is called the annealing schedule in [16].
We will deal with it in section 3.

Compared to adopting Eq. 4 directly, the above approach
is beneficial in that merely a rough estimation is needed to
keep track of the target Boltzmann distribution, thus we do
not need a large sample set to figure out the exact probabil-
ity, which makes the framework feasible.

The replacement step in Table 1, which is popular in many
current EDA versions, introduces additional disturbances to
the distribution. However, since the Gaussian model favors
points around the mean vector while replacement encourages
points of good fitness, they seem to compensate each other
in more cases than to magnify the errors, provided that the
sample size is large enough.

We implemented two algorithms from the above frame-
work. The first one is called BG-UMDA(Boltzmann-Gaus-
sian Univariate Marginal Distribution Algorithm), which
utilizes univariate Gaussian function to estimate the mar-
ginal distribution in each dimension, and sample each vari-
able independently. The second one is called EMNA-B(Esti-
mation of Multivariate Normal Algorithm with Boltzmann
Selection), which adopt a single multivariate Gaussian model
containing all variables. For the replacement step, we use a
simple tournament replacement strategy [14].

3. DETERMINING THE ANNEALING
SCHEDULE

In the last section a problem is raised on how to choose a
proper selection pressure, thus a proper increment of the in-
verse temperature Δβ. Previous schedules for combinatory
optimization [16] can be adopted directly, but we try to in-
terpret them with deeper statistical background. We reveal
that the annealing schedule can be connected to implicit as-
sumptions about the probabilistic distribution of the fitness,
and give an approach to determine the annealing schedule
based on these assumptions. The key idea is to measure the

Table 1: Algorithm of Boltzmann-Gaussian Estima-
tion of Distribution Algorithm (BGEDA)

1 Generate a population P according to the uniform
random distribution; Initialize a random Δβ ≥ 0;

2 do {
3 With Δβ, Calculate the parameters of the

multivariate Gaussian model M with Eq.9
based on P ;

4 Sample an offspring population Q from M ;
5 Update the population P with Q using the

Replacement Strategy;
6 Update Δβ;
7 }until (stop criterion reached).

actual improvement of the population, thus the actual Δβ
achieved, during the last cycle. A large Δβ is then afforded
to a successful evolution record, and a small one is afforded
to a failed one.

Consider the distribution of samples in the space of fit-
ness: y = f(x), y ∈ V ⊂ R. Suppose we have created a
model M for a given optimization algorithm. Sampling from
M yields a random fitness value y with probability density
function pY (y). A population P = {y1, y2, .., ym} is gener-
ated from M with fitness y1, y2, .., ym. The sample mean of
the population is u and the variance is v2.

Now we execute a Boltzmann selection to the current dis-
tribution with unknown parameter Δβ:

p′
Y (y) =

pY (y)eΔβy

Z(Δβ)
, Z(Δβ) =

�

V

pY (y)eΔβydy.

Sampling from p′
Y (y) yields an offspring population O =

{z1, z2, .., zm}, with the mean fitness u′. Now given the two
populations P and O, we can estimate the annealing tem-
perature Δβ with the maximum likelihood method:

Δβ̂ = arg max
Δβ

{ln(
m�

i=1

p′
Y (zi)}. (10)

By solving Eq. 10 we get the actual improvement of the last
evolution step and we can simply adopt it as the attempted
annealing temperature of the coming step. The problem is
that pY (y) is generally unknown. However, by assuming
the form of pY (y) we can derive solutions with some desired
property. Consider the following two cases:

1) pY (y) ∼ N(u, v2), y ∈ (−∞,∞).
This assumption treats repeated sampling from M as a

random work from P , with equal chance of getting better or
worse results, which is by far the case of most optimization
processes, if the bounded condition of f(x) is ignored. With
this distribution the solution of Eq.10 can be given as:

Z(Δβ) = euΔβ+v2Δβ2/2, Δβ̂ =
u′ − u

v2
. (11)

This solution is almost identical to one of the annealing
schedules proposed in [16], which is derived from the Taylor
expansion of the average fitness. The difference is that in [16]
u and v2 are the mean and variance of current population
and u′ is the desired average fitness.

2) pY (y) = 1
v
e−

(u+v)−y
v , y ∈ (−∞, u + v].

This assumption means that the fitness has an estimated
upper bound (u + v) and follows a exponential distribution,
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which is analogue to the case that the population converges
near the optimum and it is hard to find a good sample.

Solving Eq.10 with this distribution yields:

Z(Δβ) =
eΔβ(u+v)

1 + vΔβ
, Δβ̂ =

1

v
[

u′ − u

v − (u′ − u)
]. (12)

The second term in the solution of Δβ in Eq. 12 usually
varies slower than the first one, since a larger deviation in
current population usually indicates more chances to im-
prove the average fitness. Thus this solution, in some sense,
resemble the Standard Deviation Schedule (SDS) in [16],
with a slow-varying coefficient replacing a tunable constant.

Adopting this method, the new Δβ in step 6 in Table. 1
can be calculated from the old and the new population P
of each generation. We set Δβ = 0 for the first generation,
since it is observed in the experiments in section 5 that the
initial value of Δβ will not impact the result much. Also
in these experiments we did not find significant benefits to
adopt SDS or the annealing schedule in Eq. 12, so we use
the schedule suggested by Eq. 11.

4. RELATED WORKS
Berny [2, 3, 4] and Gallagher [9, 10] had investigated the

approach of approximating the Boltzmann distribution of
fixed temperature by the means of gradient descending, re-
spectively. For univariate Gaussian distribution, they got
the following update rule:

Berny:

Δμ = α(x − μ)(f(x) + T (1 + log Q(x))). (13)

Gallagher’s standard continuous PBIL:

Δμ = α(Xi − μ) arg max
i

{f(Xi)}. (14)

Gallagher’s PBIL-KLD:

Δμ = α(Xi − μ)
�

i

[f(Xi) − f̄ ], (15)

where α ∝ (nσ2T )−1.
The distinction between these works and our approach

had been discussed in section 2.2 and 2.3. Now we inves-
tigate their relationship. Rewriting Eq. 7 in the univariate
form, and approximate it with Theorem 1, we derive

∂E

∂μ
=

�
i

eΔβf(Xi)(Xi − μ)

σ2
�
i

eΔβf(Xi)
.

With the approximation Δβf(x) 
 1, and
�
i

(Xi − μ) ≈ 0,

we get

∂E

∂μ
≈ Δβ

nσ2
(Xi − μ)

�
i

[f(Xi) − f̄ ].

We see that Eq. 15 is the special case of the Boltzmann
selection when the selection pressure is very low. With the
same method we can get that Eq. 14 is also a special case
of Boltzmann selection with Δβ → ∞, which represent a
high selection pressure. This explains the experiment re-
sults in [10] that PBIL-KLD converges slower than standard

continuous PBIL in smooth fitness landscapes, but performs
better in noisy and fragmentary landscapes. Eq. 13 is ana-
logue to Eq. 15 but the Gibbs distribution is used instead
of the Boltzmann distribution.

Berny also investigated the multivariate case and gave the
gradient equation of both the mean vector and the covari-
ance matrix to approximate a fixed temperature Boltzmann
distribution, but it is exhausting in computation.

Sebag and Ducoulombier [27] proposed the PBILc algo-
rithm with the following update rule:

Δμ = α(Xbest1 + Xbest2 − Xbest − μ), (16)

which is inspired from differential evolution. They also pro-
vides four means of handling the Gaussian variance:
(1) Use a constant variance;
(2) Adapt the variance as in a (1,λ) ES;
(3) Estimate the variance from the diversity of the elite sam-
ples, i.e., selecting-and-accounting;
(4) Selecting-and-accounting with incremental learning.

Larañaga et.al. proposed a serial of continuous EDA which
are called UMDAc, MIMICc, EGNA and EMNA [13, 14, 15]
respectively. These algorithms utilize univariate Gaussian
marginal distribution, multivariate Gaussian distribution, or
Gaussian networks to create models, respectively. The ma-
jor difference between UMDAc, EMNA and our algorithms
proposed in section 2.4 is that they adopt selecting-and-
accounting scheme to determine the model parameter, and
handle the selection pressure by the proportion of selected
samples. In section 5 we will compare our approach with
these algorithms.

It has been studied [12, 11] that for UMDAc with truncate
selection or 2-to-1 tournament selection and in monotonous
landscape, the optimum might be missed if it is far away
from the initial model center, which shows the limit of the
selecting-and-accounting approach. Whether our approach
overcomes this problem is not clear, but with the weighted
average over the entire population the initial model center
is less likely to be severely biased and the variances will
decrease more softly.

5. EXPERIMENTS
In this section we test the proposed algorithms in sec-

tion 2.4 with some well-known benchmark problems for con-
tinuous EDA and compare their performance with previous
reports. We follow the exact problem definitions, stop crite-
ria and evaluating criteria of these benchmarks as they were
first introduced in the area of EDA. The expression of the
problems are not given due to the length limit of the paper.

5.1 Algorithms Tested
Since neither BG-UMDA nor EGNA-B adopts local struc-

tures, we compare them with continuous EDA versions that
are also uni-modal. We divide the candidate algorithms with
their learning style and their method of parameter choosing:

Algorithms with no dependency learning:

• Standard Continuous PBIL(sc-PBIL), with fixed vari-
ance parameter;

• BG-UMDA, which adopts continuous Boltzmann Se-
lection;

• UMDAc, which adopt selecting-and-accounting scheme;
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Table 2: Results for Test Problem 1
Algorithms F1 F2 F3
sc-PBIL 4.43 ± 0.4 7.54 ± 0.36 18.7 ± 0.63

(10,50)-ES 2.91 ± 0.45 7.56 ± 1.52 399.07 ± 6.97
PBILc 4.76 ± 0.78 10.99 ± 1 4803 ± 4986

BG-UMDA 4.83 ± 0.57 11.32 ± 0.72 107 ± 0.0002
EMNA-B 337 ± 110 326 ± 79 5.80 ± 0.99

• PBILc, which learn the variance incrementally;

• (μ,λ)-ES, which adopts self-adapt variance.

Algorithms with dependency learning:

• EMNA-B, which adopts continuous Boltzmann Selec-
tion;

• EMNA1, which adopt selecting-and-accounting scheme;

• EBNA, which adopt selecting-and-accounting scheme
and learns the network structure.

We also attempted to compare PBIL-KLD with these al-
gorithms, but there is not much previous results reported,
and it seems to converge slowly in the proposed benchmarks
to the best of our effort, so we did not give the results on it.

5.2 Test Problems and Results
The first set of benchmark problems are from [27], which

had been proposed for testing the performance of PBILc.
Each problem has a global maximum 107. Five algorithms
are compared in this experiment. For BG-UMDA, the pop-
ulation is set to 50 for F1, 75 for F2 and 100 for F3. For
EMNA-B, a fixed population of 1500 is used. For sc-PBIL,
as the base algorithm, we strive to seek a optimal parameter
set for it by combining various population (25-200), learn-
ing rate(0.01-0.2) and variance(0.1%-10% to the range of the
variable). The results of PBILc and ES are taken from [1].

The average best fitness of 20 runs for each algorithm after
200000 evaluations is depicted in Table 2. From the result
we see that BG-UMDA and PBILc outperform ES and sc-
PBIL in all these problems. The two algorithms performs
almost the same in F1 and F2, but in F3 where there is
no dependency between variables, BG-UMDA significantly
performs better. On the other hand, EMNA-B performs
significantly better than other algorithms in problems with
variable dependencies (F1 and F2), but performs very poor
in F3. This is not surprising since in EMNA-B there are
too many parameters(over 5000) to learn compared to the
number of evaluations but none of them is useful to speed
up the search.

The second experiment continuous to compare PBILc,
BG-UMDA and EMNA-B with the test problems suggested
in [13], which are all of 10 dimension. Among which the
SumCan function has a global maximum of 105 and other
functions have global minima of 0. The average best fitness
in 100 runs after 300000 evaluations is measured.

For EMNA-B, the population size is fixed as 400. For
BG-UMDA, the population size is chosen as 700,700,100.
For PBILc, we search for a combination of parameters with

1In fact EMNA and EBNA are a class of algorithms, in the
experiments we pick out their best results regardless of the
species.

Table 3: Results for Test Problem 2
Algorithms SumCan Schwefel Griewangk

PBILc 91002±28611 unstable2 0.11±0.57

ES 5910 03 0.034477

UMDAc 53460 0.13754 0.011076

EGNA 100000 0.0250 0.008175

BG-UMDA 79682±17960 0.0090±0.0030 0.0010±0.0056

EMNA-B 100000±0 2.7e−31±1.0e−31 5.8e−05±5.8e−4

the population from 50 to 2000, and the learning rate from
0.01 to 0.2. The result is depicted in Table 3. Reports for
UMDAc, EGNA and ES taken from [13] are also listed.

From Table. 3 we see that EMNA-B performs almost the
best in all problems. BG-UMDA outperforms UMDAc in all
three functions and outperform PBILc and EGNA in two of
the three functions.

In the third experiment we try to evaluate the perfor-
mance of both proposed algorithm in a more extensive way.
The set of benchmark problems in [14] is chosen.4 The
benchmark involve five 10-dimension and five 50-dimension
problems. The stop criterion is met when the best fitness
is within 10−6 error of the global optimal, or the number of
evaluations reaches 300000, or the algorithm converges. We
used a population size of 400 for BG-UMDA in all problems,
also for EMNA-B in all 10-dimension problems, and 1000 for
EMNA-B in 50-dimension problems. The average best fit-
ness in 10 runs is evaluated. Table 4 depicts the performance
data of BG-UMDA and EMNA-B, and Figure 1 displays the
comparison of their performance to the baseline algorithms.
In the figure all algorithms are aligned with mean fitness er-
ror to the global optimum (in logarithm coordination) and
the mean number of evaluations so that the algorithm with
the best performance is place at the left-bottom corner in
each subplot. For the runs that reach the target precision,
the errors are all set to 10−6.

To summarize the results in Figure 1. BG-UMDA and
EMNA-B altogether achieve best performance in 8 problems
out of 10. The deviation data in Tab. 4 validates that these
improvements are statistically significant. Each algorithm
significantly outperform the baseline algorithms in 6 cases.
They are dominated only in the Rosenbrock functions by
ES. This result shows the good quality of our approach.

In these three experiments, generally our approach per-
forms better than the algorithms using other schemes of
determine model parameters: constant, self-adaption and
selecting-and accounting. This may attribute to that with
Boltzmann selection the entire population is considered and
a balanced variance is achieved. But the ES with self-
adaption seems to be stronger in local search, and PBILc
sometimes performs better since it takes long-term and neg-
ative (Eq. 16) feedbacks. Another benefit of our approach
is that the only hand-tuned parameter is the population,
which makes it easy to apply. The experiment results are at
least a validation to the quality of our approach as adaptive
algorithms.

2The errors vary from 103 to 10−8, thus the average fitness
is meaningless.
3The precision is not given.
4The range of the Ackley function is not declared in the
book, we use the one suggested in [22], i.e., [-32.768,32.768].
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Figure 1: Performance Comparison on Test Problem 3

Table 4: Performance Data of BG-UMDA and
EMNA-B on Test Problem 3

BG-UMDA
Function Fitness No. Eval.

SumCan-10d 5.8e + 4 ± 2.3e + 4 300400 ± 0
SumCan-50d 1.39 ± 0.10 300400 ± 0

Griewangk-10d 1.27e − 4 ± 4.0e − 4 229000 ± 64000
Griewangk-50d 8.8e − 7 ± 7e − 8 71880 ± 420

Sphere-10d 5.9e − 7 ± 1.8e − 7 35720 ± 840
Sphere-50d 8.4e − 7 ± 8e − 8 82400 ± 460

Rosenbrock-10d 7.74 ± 0.08 300400 ± 0
Rosenbrock-50d 47.54 ± 0.07 300400 ± 0

Ackley-10d 8.3e − 7 ± 1.6e − 7 44000 ± 530
Ackley-50d 9.6e − 7 ± 4e − 8 98920 ± 530

EMNA-B
Function Fitness No. Eval.

SumCan-10d 100000 ± 1.1e − 7 92520 ± 840
SumCan-50d 99910 ± 160 301000 ± 0

Griewangk-10d 7.4e − 7 ± 1.1e − 7 134000 ± 47000
Griewangk-50d 9.2e − 7 ± 5e − 8 170100 ± 1700

Sphere-10d 7.5e − 7 ± 2.1e − 7 35200 ± 420
Sphere-50d 8.8e − 7 ± 1.1e − 7 192900 ± 1600

Rosenbrock-10d 6.33 ± 0.37 300400 ± 0
Rosenbrock-50d 47.08 ± 0.44 301000 ± 0

Ackley-10d 8.4e − 7 ± 1.0e − 7 43560 ± 610
Ackley-50d 9.42e − 7 ± 4e − 8 231800 ± 4300

6. CONCLUSION AND FUTURE WORKS
In this paper the Boltzmann selection in combinatory

EDA is extended to continuous optimization problems by
adopting multivariate Gaussian models and the K-L diver-
gence. The approach manages to approximate the Boltz-
mann distribution without demanding a large sample set
and leads to a method of choosing model parameters in
continuous EDAs to inherits the evolving property of Boltz-
mann selection. An annealing schedule is also given to adap-
tively determine a proper selection pressure based on evalu-
ating the improvement of the average fitness in the last evo-
lution cycle. These works lead to a framework of continuous
EDA which is nearly parameter-free. Experiment results
validate the quality of the approach in a set of benchmark
problems.

It has been pointed out in [30] that adopting a variance
larger than the maximum-likelihood estimation will be some-
times necessary for local search. Merging this observation
with the Boltzmann selection framework in this paper might
help to understand the nature of adapting variance strate-
gies [21, 5], which will be a tough work.

Although the proposed framework is implemented in uni-
modal EDAs in this paper, it can be directly extended to
multi-modal EDAs that adopts clustering by simply apply-
ing it to separated clusters. For EDAs with structural learn-
ing, if there is some necessity to incorporate Boltzman selec-
tion into them, theoretical works must be done to synthesize
the framework in this paper with machine learning theory
concerning specified model structure.

7. REFERENCES
[1] S. Baluja. Population Based Incremental Learning - A

Method for Integrating Genetic Search Based

395



Function Optimisation and Competitive Learning.
Technical Report CMU-CS-94-163, CMU, Jun. 1994.

[2] A. Berny. An Adaptive Scheme for Real Function
Optimization Acting As a Selection Operator. In First
IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks, pages 140–149.
IEEE, 2000.

[3] A. Berny. Selection and Reinforcement Learning for
Combinatorial Optimization. In Parallel Problem
Solving from Nature - PPSN VI, pages 601–610.
Springer Verlag, 2000.

[4] A. Berny. Statistical Machine Learning and
Combinatorial Optimization. In Theoretical Aspects of
Evolutionary Computation, pages 287–306. Springer
Verlag, 2001.

[5] P. Bosman and J. Grahl. Matching Inductive Search
Bias and Problem Structure in Continuous Estimation
of Distribution Algorithms. Technical Report 03/2005,
Dept. of Logistics, Mannheim Business School, 2005.

[6] P. Bosman and D. Thierens. Mixed IDEAs. Technical
Report UU-CS-2000-45, Utrech University, 1999.

[7] P. Bosman and D. Thierens. Expanding from Discrete
to Continuous Estimation of Distribution Algorithms:
The IDEA. In Parallel Problem Solving from Nature -
PPSN VI, pages 767–776, Paris, France, Sep. 2000.
Springer-Verlag.

[8] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley, 1991.

[9] M. Gallagher. Multi-layer Perceptron Error Surfaces:
Visualization, Structure and Modelling. PhD thesis,
University of Queensland, 2002.

[10] M. Gallagher and M. Frean. Population-Based
Continuous Optimization, Probabilistic Modelling and
Mean Shift. Evolutionary Computation, 13(1):29–42,
2005.
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