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ABSTRACT
It has previously been shown analytically and experimen-
tally that continuous Estimation of Distribution Algorithms
(EDAs) based on the normal pdf can easily suffer from pre-
mature convergence. This paper takes a principled first step
towards solving this problem. First, prerequisites for the
successful use of search distributions in EDAs are presented.
Then, an adaptive variance scaling theme is introduced that
aims at reducing the risk of premature convergence. Inte-
grating the scheme into the iterated density–estimation evo-
lutionary algorithm (ID�A) yields the correlation-triggered
adaptive variance scaling ID�A (CT-AVS-ID�A). The CT-
AVS-ID�A is compared to the original ID�A and the Evo-
lution Strategy with Covariance Matrix Adaptation (CMA-
ES) on a wide range of unimodal test-problems by means
of a scalability analysis. It is found that the average num-
ber of fitness evaluations grows subquadratically with the
dimensionality, competitively with the CMA-ES. In addi-
tion, CT-AVS-ID�A is indeed found to enlarge the class of
problems that continuous EDAs can solve reliably.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient meth-
ods; I.2 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms, Optimization, Performance, Scalability

Keywords
Evolutionary Algorithms, Estimation of Distribution Algo-
rithms, Numerical Optimization, Adaptive Variance Scaling

1. INTRODUCTION
This paper is in line with recent work and ongoing discus-

sion on strengths and limitations of continuous Estimation
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of Distribution Algorithms for real-valued function optimiza-
tion. The probabilistic models used in continuous EDAs are
often based on the normal pdf [1, 4, 6, 7, 9, 16, 17, 22, 23].
A major drawback of this approach is that, without precau-
tion, the variance of the normal pdf decreases fast on slope-
like regions of the search space, likely causing premature
convergence against sub-optimal solutions. This drawback
has been noticed experimentally [7] and has of late been
proved theoretically [11].

Recently, studies have been carried out that indicate that
the problems mentioned above may yet be coped with. Yuan
and Gallagher [25] showed in an initial investigation that
by artificially keeping the variance at a value of at least 1,
certain problems could be solved by a continuous EDA that
were previously intractable. Ocenasek et al. [20] used a self-
adaptation approach adopted from evolution strategies to
scale the normal kernels.

In this paper we discuss a scheme to solve the problem
of premature convergence. First, it is assessed which re-
quirements a probability distribution has to meet in order
to function properly as a search distribution in EDAs. Sec-
ond, these findings are exploited to develop a correlation-
triggered adaptive variance scaling scheme that helps reduc-
ing the risk of premature convergence of continuous EDAs
based on the normal pdf. The normal pdf is simple in its
nature and its use in an EDA is well understood. We are
therefore able to identify the exact problem at hand and
provide a proper, well-tailored remedy. This remedy is in-
tegrated into the iterated density–estimation evolutionary
algorithm (ID�A, see [6]), yielding the correlation-triggered
adaptive variance scaling ID�A (CT-AVS-ID�A). To vali-
date the applicability of the approach and to gain insights
into the running time complexity of the algorithm, we in-
vestigate the scale-up behavior of CT-AVS-ID�A. Such a
scale–up analysis of (variance–enhanced) continuous EDAs
is novel in itself. The results are compared to those of both
the ID�A without variance adaptation and the Evolution
Strategy with Covariance Matrix Adaptation (CMA-ES, see
[12, 13]) on a test bed of unimodal test-problems. The ex-
perimental results indicate that for all regarded algorithms
the number of fitness evaluations that is required to reli-
ably solve the problems grows subquadratically with respect
to the dimensionality of the problems. However, CT-AVS-
ID�A is capable of solving all problems, even in high di-
mensions, whereas the ID�A without variance scaling fails
on some of these problems. The integration of adaptive vari-
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ance scaling thus enlarges the class of problems that contin-
uous EDA can solve reliably and efficiently.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly summarizes results regarding convergence prop-
erties of continuous EDAs that have been obtained so far. In
this Section it is also assessed which requirements a proba-
bility distribution has to meet in order to function properly
as a search distribution in an EDA. Next, CT-AVS-ID�A
is proposed in Section 3 and experimental results are ob-
tained and interpreted in Section 4. The paper ends with
concluding remarks in section 5.

2. PREMISES FOR SUCCESSFUL CONTIN-
UOUS EDAS

2.1 A brief introduction into EDAs
Estimation of Distribution Algorithms [19] are descen-

dants of Evolutionary Algorithms (EAs). Similar to EAs,
EDAs are stochastic search methods that maintain a set of
candidate solutions, called the population, throughout the
search. Each individual has an associated fitness value that
measures its quality. An individual consists of a genotype
that is its genetic encoding, and a phenotype, that is the ac-
tual solution to the optimization problem at hand. Whereas
the quality of the individuals is measured on basis of the
phenotypes, new candidate solutions are constructed on ba-
sis of the genotypes. The goal of the EDA is to find the
individual of highest quality.

Usually, the initial population is filled with randomly gen-
erated solutions. All individuals are evaluated and the bet-
ter solutions are selected using a selection scheme (see [3]).
Selection pushes the EDA into promising regions of the search
space. What differentiates EDAs from other optimizers is
that they now explicitly learn a density estimate from the
genotypes of the selected individuals. Then, an EDA per-
forms induction on the set of selected solutions by randomly
sampling the density estimate. Thereby, new candidate solu-
tions are generated. The new candidate solutions replace the
old population partly or as a whole, advancing it to the next
generation. EDAs execute an iterative process of evaluation,
selection, model building, model sampling and replacement.
This process is stopped when a predefined stopping criterion
is met, like the convergence of the whole population against
a single solution.

For comprehensive overviews on EDA instances, we refer
the interested reader to the literature [8, 17, 21]. In this pa-
per, we focus on real-valued, continuous EDAs for numerical
optimization where both the genotype and the phenotype
are continuous, real-valued vectors.

Continuous EDAs mostly use the normal pdf as the ba-
sis of their probabilistic model because the normal pdf is
a commonly–used and computationally tractable approach
to estimating probability distributions in continuous spaces.
The normal pdf PN

(�,Σ) for an n− dimensional random vari-
able X is parameterized by a vector � of means and a sym-
metric covariance matrix Σ and is defined by

PN
(�,Σ)(X)(�) =

(2π)−
|�|
2

(det Σ)
1
2

e−
1
2 (�−�)T (Σ)−1(�−�) (1)

The number of parameters to be estimated from data
to fit the normal distribution to selected individuals equals
1
2
|�|2 + 3

2
|�|. A maximum likelihood estimation for the nor-

mal pdf is obtained from a vector � of samples if the param-
eters are estimated by the sample average and the sample
covariance matrix [2, 24]:

�̂=
1

|�|
|�|−1X
j=0

�j , Σ̂=
1

|�|
|�|−1X
j=0

(�j − �̂)(�j − �̂)T (2)

On the basis of the normal pdf, different probabilistic
models can be estimated from the selected individuals in
EDAs, e.g., Bayesian factorizations [4, 6], or mixtures of
normal pdfs [1, 7]. Since the number of parameters to be
estimated grows quadratically with |�|, estimating factoriza-
tions based on the normal pdf is relatively fast and efficient.

2.2 Limitations of UMDAc
Of late, there has been an ongoing discussion on the lim-

itations of continuous EDAs based on the normal pdf in
solving numerical optimization problems.

Analytical results on the convergence properties of the
univariate marginal distribution algorithm in the continu-
ous domain (UMDAc, see [16]) are available in [10] and [11].
UMDAc is a simple real-valued EDA that uses a univariate
factorization of the normal density as a fixed-structure prob-
abilistic model. The analysis of UMDAc revealed important
peculiarities of continuous EDAs based on the normal pdf.

To be more precise, the performance of UMDAc depends
heavily on the structure of the area of the fitness landscape
that UMDAc is currently exploring. Continuous search spaces
can be seen as arrangements of two elemental structures:
peaks and slopes. At the beginning of the search, the EDA
will in general be approaching a local or global optimum by
exploring a region that has a slope-like function. Eventu-
ally the search focuses around an optimum (either local or
global) in its final phases, i.e. the region to be explored is
then is shaped like a peak.

It has been shown that UMDAc can only reach the opti-
mum if the set of search points is close to the optimum [10,
11]. The reason for this is that the mean of the normal distri-
bution that is estimated by UMDAc can only move a limited
distance before converging due to shrinking of the estimated
variance. This means that on slope-parts of the search space,
UMDAc will perform extremely poorly whereas on peak-
parts UMDAc will perform nicely. Both studies assume that
UMDAc uses the estimated normal density to generate new
candidate solutions with no modification whatsoever.

UMDAc is a simple EDA with a univariately factorized
probabilistic model. It was found that using more flexible
probabilistic models does not help to solve this problem. In
fact, current continuous EDAs fail on some standard numer-
ical optimization test problems where other continuous EAs
or even classical gradient-based algorithms succeed. This
was first noticed in [7] and confirmed in [15] and [25].

2.3 Elementary requirements for search dis-
tributions in EDAs

The limited success of continuous EDAs that directly sam-
ple new candidate solutions from probabilistic models based
on the normal pdf raises (at least) two important questions:

1. Which properties render a probability distribution a
good choice for use as a search distribution in an EDA?

2. Is the normal pdf, based on these properties, a reason-
ably good choice for use in continuous EDAs?
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Generally speaking, the inductive bias of any search strat-
egy has to fit the structure of the problem it attempts to
solve. This has implications for the choice of search distri-
butions in EDAs.

Estimating the contours of the fitness landscapes on the
basis of a probability distribution, as done in any EDA,
results in a probabilistic representation of the true fitness
landscape. The induced bias of an EDA is based on this
internal probabilistic representation. The restrictions of the
model used and the estimation procedure however cause the
representation to only be an approximation of the optimal
distribution; the latter being a close representation of the
contours of the fitness landscape. To be more specific, a
probability distribution has to meet two essential require-
ments in order to function properly as a search-distribution
in EDAs [5]:

1. The probability-distribution class must be adequate.

2. The estimation procedure must be competent.

A class of probability distributions is considered adequate
with respect to a given optimization problem, if it is able
to closely model the contours of the fitness function of that
problem with arbitrary exactness. A class of probability dis-
tributions is considered inadequate with respect to a given
optimization problem, if it is not able to model the contours
of the fitness landscape of the problem without significant
loss of precision. Then, the estimated probabilistic represen-
tation of the fitness landscape can be (but not necessarily has
to be) misleading. This is especially the case, if it introduces
additional basins of attraction. It should then carefully be
assessed whether this density can be seen as a reliable source
of information for guiding the search. However, this is not
common practice in the current state of EDA research.

The density estimation procedure is considered competent
if it is actually able to obtain an estimate for the proba-
bility distribution that closely models the fitness landscape
and properly generalizes the sample set. This means that
the probabilistic representation of the true landscape is cor-
rect. If enough and proper data are available, the estimation
procedure should accurately model the fitness landscape.

We now assess briefly for the continuous problem domain,
whether the normal pdf is competent and adequate for peaks
and slopes; the two basic structures of continuous fitness
landscapes.

- Peaks:
The normal pdf can match contour-lines of a single
peak nicely as it always concentrates the search around
its mean and therefore can contract around a single
peak with arbitrary exactness. If the search is ini-
tialized near the peak, selection can shift the mean of
the pdf onto the peak. Thus, the normal pdf is ade-
quate for search on a single peak. An estimation pro-
cedure based on the standard maximum-likelihood es-
timates is competent, because by using the maximum-
likelihood estimates for the normal pdf, a properly
generalizing estimate can be constructed from data in
computationally tractable time. As a result, the UM-
DAc algorithm is able to converge on peaks, if it is
initialized near it. This agrees with initial results on
research into continuous EDAs [4, 17].

- Slopes:
Things are different for slope-like regions of the search
space. Contour-lines of slopes can not be matched
with the normal pdf. The true structure is misrepre-
sented using a maximum-likelihood estimation as the
normal kernel introduces an additional basin of attrac-
tion around its mean. The probabilistic representation
of the structure is different from the true structure. Es-
timates from the normal pdf are thus a much less reli-
able source of information for guiding the search com-
pared to exploring a single peak. Relying the search on
maximum-likelihood estimates of the normal pdf po-
tentially misleads the EDA and can cause premature
convergence on slope-like regions of the search space.

3. CORRELATION-TRIGGERED ADAPTIVE
VARIANCE SCALING IDEA

3.1 Adaptive variance scaling
In order to solve the problem of premature convergence,

a class of more involved probability distributions could the-
oretically be introduced for use as a search distribution in
continuous EDAs. However, contours of continuous fitness
landscapes can be of virtually any shape. As universal ap-
proximation in arbitrary exactness is computationally in-
tractable, we develop a simple remedy that allows to use
the normal pdf.

We propose a technique that modifies the estimation pro-
cedure of the normal pdf in continuous EDAs to make it
more reliable when traversing a slope. The smaller the vari-
ance is in the estimated probability distribution, the smaller
the area of exploration for the EDA. The variance in the
normal pdf is explicitly stored in the covariance matrix Σ.
Hence, a straightforward manner to allow the EDA to in-
crease the area of exploration and thereby increasing the
probability of traversing a slope is to enlarge the variance
beyond its maximum-likelihood estimate.

Therefore, an adaptive-variance-scaling coefficient cAVS is
maintained. Upon drawing new solutions from the proba-
bility distribution, the distribution is scaled by cAVS. This
means, that the covariance matrix used for sampling the
normal pdf is cAVSΣ instead of just Σ. If the best fitness
value improves in one generation, then the current size of
the variance allows for progress. Hence, a further enlarge-
ment of the variance may allow further improvement in the
next generation. To fight the variance diminishing effect of
selection, the size of cAVS is scaled by ηINC > 1. If on the
other hand the best fitness does not improve, the range of
exploration may be too large to be effective and the adaptive
variance scaling coefficient should be decreased by a factor
ηDEC ∈ [0, 1]. For symmetry, we set ηINC = 1/ηDEC.

We bound the magnitude of cAVS from above by a prede-
fined value cAVS-MAX and from below by a predefined value
cAVS-MIN. For symmetry, we set cAVS-MIN = 1/cAVS-MAX.
Moreover, if cAVS < cAVS-MIN, we set cAVS to cAVS-MAX in
order to stimulate exploration.

3.2 Correlation triggering
In the above scheme, improving best fitness values auto-

matically increase cAVS. Improving fitness values however
do not mean that the variance always needs to be enlarged.
This is especially the case if the normal kernel is near the
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optimum. In this case, the induced bias of the normal pdf
already leads the EDA to the optimum. Increasing the vari-
ance will then only slow down convergence, as the EDA is
forced to explore a larger area of the search space without
necessity. We distinguish between two situations:

1. The EDA is traversing a slope (adaptive variance scal-
ing is needed).

2. The EDA is searching around the optimum (adaptive
variance scaling is not needed).

To identify which structure dominates in a generation, we
exploit the relationship between normal density and the fit-
ness of the selected solutions. If the selected solutions are
clustered around an optimum, the density will strongly cor-
relate with the fitness, as the normal density decreases if one
moves away from the mean. This is desirable if the kernel
surrounds a peak, as then better solutions are sampled with
higher probability. If the selected solutions are spread on a
slope, the density and fitness are not as strongly correlated
with each other.

This motivates the triggering of adaptive variance scal-
ing on the basis of a correlation coefficient r between the
ranks of density and fitness. We use ranked correlation (see
[14], pp. 338 and 400) because a larger density should be
associated with a higher (lower) fitness in case of maximiza-
tion (minimization). The exact form of the fitness landscape
is less important. Assume now that we seek to minimize a
cost function. We propose a threshold value θcorr such that if
r ≤ θcorr, then the maximum-likelihood estimates are used
in EDAs without modification. If r > θcorr, the adaptive
variance scaling is used.

The principle of correlation-triggered adaptive variance
scaling is EDA-independent. We integrated it into a con-
tinuous EDA based on Bayesian factorizations of normal
pdfs, the iterated density- estimation evolutionary algorithm
(ID�A, [6]). The resulting algorithm is called correlation-
triggered adaptive variance scaling ID�A (CT-AVS-ID�A).
Pseudocode for CT-AVS-ID�A is presented in Figure 1.

4. EXPERIMENTAL SECTION

4.1 Setup
We perform experiments on test functions listed in table 1

using CT-AVS-ID�A, the ID�A without adaptive variance
scaling and the CMA-ES [12]. All functions are unimodal.
The optimum for functions 1-7 is obtained by setting xi = 0
for all i. For function 8 the optimum is obtained by setting
xi = 1 for all i. The optimum for functions 9 and 10 is
obtained by setting xi = 0 for all i > 1 and letting x1 go to
∞. The initialization range used for all functions is [−10, 5],
i.e. asymmetric around the optimum and for functions 9
and 10 far away from the optimum for variable x1.

Using a scalability analysis, the running time complex-
ity of the algorithms is experimentally approximated. To
be more specific, it is assessed how the total number of
fitness evaluations e and the population size n required to
solve the problems to optimality grows with the size of the
problem l. Therefore, the dimensionality l was varied: l ∈
{2, 4, 8, 10, 20, 40, 80}. For each dimensionality we used a
bisection method to obtain the minimally required popula-
tion size for which the problem’s value to reach was found
in at least 95 out of 100 independent consecutive runs. The

CT-AVS-ID�A( τ , n, ηDEC, cAVS-MAX )

1. Set generation counter t = 0.

2. Initialize population P with n random individuals.

3. Assign cAVS-MIN = 1/cAVS-MAX.

4. Assign ηINC = 1/ηDEC.

5. Assign cAVS = 1.

6. Evaluate solutions in P .

7. Store best fitness found in P in bt

8. Select best �τn� individuals and store them in S .

9. If bt = bt−1 then

(a) assign cAVS = cAVS · ηDEC.

else

(b) assign cAVS = cAVS · ηINC.

10. If cAVS < cAVS-MIN or cAVS > cAVS-MAX then

(a) assign cAVS = cAVS-MAX.

11. Estimate Bayesian factorization of normal pdf from S .

12. Compute ranked correlation coefficient r.

13. If r > θcorr then

(a) Assign Σ = cAVSΣ.

14. Sample n − �τn� new candidate solutions from esti-
mated normal pdf (with possibly scaled covariance ma-
trix) and store new candidate solutions in O.

15. Evaluate solutions in O.

16. Replace worst n − �τn� individuals in P with O.

17. Update generation counter, i.e. assign t = t + 1.

18. If termination criterion is not met, go back to 7.

Figure 1: CT-AVS-ID�A pseudocode (minimization).

scalability analysis is important, as it allows us to predict
whether CT-AVS-ID�A is a tractable approach for solving
real-world problems that are often of much higher dimen-
sionality.

For CT-AVS-ID�A we used ηDEC = 0.9, i.e. a small mul-
tiplication factor to allow for smooth adaptation of the vari-
ance multiplication factor. The correlation trigger threshold
θcorr was set to θcorr = −0.55 (see Section 4.2). The magni-
tude of cAVS was bounded from above by cAVS-MAX = 10.0.
Following the rule of thumb from [18], the selection thresh-
old τ was set to τ = 0.3 for both CT-AVS-ID�A and the
ID�A without variance adaptation.

4.2 Setting the correlation trigger threshold
In order to obtain a reasonable value for θcorr, we tested

when the ranked correlation coefficient between fitness and
density actually triggers scaling of the variance on the sphere
function. The sphere function is a single peak and can
be solved by EDAs without variance scaling. We varied
θcorr from -1.0 to 1.0 in steps of 0.01. For each value of
θcorr, 100 independent runs of CT-AVS-ID�A on the sphere
function in dimensionalities l ∈ {2, 4, 8, 10, 20, 40, 80} were
performed. Initial populations were drawn symmetrically
around the optimal solution of 0 for all dimensions in a range
of [−7.5, 7.5]. The population size that was used for a dimen-
sionality l was equal to the minimally required population
size for the ID�A to solve this problem optimally. In that
case variance scaling is not required because the induced
bias of the normal pdf itself suffices to locate the optimum.
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Name Definition Value to
reach

Sphere
Pl

i=1 x2
i 10−10

Ellipsoid
Pl

i=1 106 i−1
l−1 x2

i 10−10

Cigar x2
i +

Pl
i=2 106x2

i 10−10

Tablet 106x2
1 +

Pl
i=2 x2

i 10−10

Cigar Tablet x2
1 +

Pl−1
i=2 104x2

i + 108x2
l 10−10

Two Axes
P�l/2�

i=1 106x2
i +

Pn
i=�l/2� x2

i 10−10

Different Powers
Pl

i=1 |xi|2+10 i−1
l−i 10−15

Rosenbrock
Pl−1

i=1(100 · (x2
i − xi+1)

2 + (xi − 1)2) 10−10

Parabolic Ridge −x1 + 100
Pl

i=2 x2
i −10−10

Sharp Ridge −x1 + 100
qPl

i=2 x2
i −10−10

Table 1: Test functions and values to reach.

Figure 2 illustrates the percentage of generations in which
variance scaling was nonetheless triggered (averaged over
100 runs). As a rule of thumb, we propose to set θcorr to
θcorr = −0.55. For this value, the number of unnecessary
correlation triggers is rather constant and at most 25%. If
a smaller value (i.e. closer to -1.0) is chosen, it can be seen
from Figure 2 that the number of unnecessary correlation
triggers will grow with increasing dimensionality. Although
the value of −0.55 is rather robust, i.e. values between −0.6
and −0.4 lead to good results, the value for the correlation
trigger should not become much larger. If a larger value (i.e.
closer to 1.0) is chosen, the scaling of variances was observed
from initial experimentation not to be triggered when it is
required on slopes.
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Figure 2: Correlation trigger thresholds.

4.3 Results and interpretation
AVS-ID�A, ID�A and CMA-ES
Plots that reveal the influence of problem dimensionality on
the average number of evaluations and the minimal popu-
lation size required to solve the problems are presented in
figure 3. As the plots have a log-log scale, straight lines
indicate polynomial scalability. Additionally, table 2 shows

results from two linear least squares regressions on log-log-
scaled data where the average number of evaluations e and
the minimally required population size n depend on the di-
mensionality l of the problems as follows:

log n = log lα + ε and log e = log lβ + ε, (3)

where ε is a standard-normally distributed error term.

Function Algorithm α β
Sphere ID�A 0.5541 1.1635

AVS-ID�A 0.1994 1.6563
CMA-ES 0.0000 0.9601

Ellipsoid ID�A 0.6119 1.2171
AVS-ID�A 0.1870 1.6870
CMA-ES 0.0000 1.5183

Cigar ID�A 0.5052 1.1865
AVS-ID�A 0.2125 1.6976
CMA-ES 0.0000 1.1093

Tablet ID�A 0.4398 1.0860
AVS-ID�A 0.2066 1.6397
CMA-ES 0.0000 1.4178

Cigar Tablet ID�A 0.4521 1.1142
AVS-ID�A 0.1879 1.7155
CMA-ES 0.0000 1.2431

Two Axes ID�A 0.6603 1.2854
AVS-ID�A 0.2177 1.6551
CMA-ES 0.0000 1.7208

Different Powers ID�A 0.9355 1.4983
AVS-ID�A 0.8419 1.1692
CMA-ES 0.0000 1.5845

Rosenbrock ID�A not solved
AVS-ID�A 0.7475 1.9154
CMA-ES 0.6885 1.4872

Parabolic Ridge ID�A not solved
AVS-ID�A 0.1064 1.1160
CMA-ES 0.0000 1.0853

Sharp Ridge ID�A not solved
AVS-ID�A 0.1678 0.8563
CMA-ES 0.5228 1.4764

Table 2: Regression coefficients for scalability.

Results for α indicate that the population size n scales
sublinearly with the problem size l for all regarded algo-
rithms. For the ID�A without covariance adaptation, the
population size n grows approximately with the square root
of the dimensionality. For AVS-ID�A, the population size
n grows even slower. For CMA-ES ([13]) , the population
size needs not to be enlarged beyond the initial setting of
μ = 2 and λ = 4 for most functions, except for Rosenbrocks
function and the Sharp Ridge function. The reason for this
is that in the CMA-ES, the probability distribution used to
guide the search is not entirely rebuilt from scratch using
only the data in the current set of selected solutions. In-
stead, the distribution is weighted over a path of generations
past and hence represents an accumulation of information.

Results for β indicate that the average number of eval-
uations e for success grows subquadratically with l for all
regarded algorithms. The average number of evaluations
grows faster for the AVS-ID�A than for the ID�A with-
out variance adaptation. However, AVS-ID�A is capable
of solving all problems in high dimensionality which the
ID�A without variance adaptation can not. The ID�A with-
out variance adaptation is incapable of solving Rosenbrocks
function, the Parabolic Ridge function and the Sharp Ridge
function in higher dimensions. The reason for this is that to
find the optimum for the latter two functions, the value for
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(a) Normal ID�A without variance adaptation
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(b) AVS-ID�A
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Figure 3: Scalability results for Normal ID�A, AVS ID�A and CMA-ES.

402



 1

 10

 100

 1000

 10000

 1  10  100

P
op

ul
at

io
n 

si
ze

Dimensionality

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  10  100

A
ve

ra
ge

 n
um

be
r 

of
 e

va
lu

at
io

ns

Dimensionality

Figure 4: Scalability results for CT-AVS-ID�A (for legend, see Figure 3).

the first variable needs to be moved extremely far outside
its initial range. Although the gradient along that direc-
tion is straightforward, i.e. it is a simple linear slope, the
variance in the ID�A without variance adaptation shrinks
too fast and the slope cannot be traveled. In Rosenbrocks
function, again the variance shrinks too fast. Even though
the optimum lies inside the initial range, the valley in which
the optimum is contained is so narrow that the distribution
quickly converges to a part inside the valley that is far from
the optimum. The bottom of the valley, a curved slope,
needs to be traveled to find the optimum. This slope cannot
be traveled by the ID�A without variance adaptation.

Although the CMA-ES has a marginally better scalability
than AVS-ID�A on the first half of the benchmark prob-
lems, this is not the case for all problems. Moreover, both
algorithms scale sub–quadratically in the number of required
evaluations to find the optimum.

CT-AVS-ID�A
In Figure 4 scalability results are shown for the CT-AVS-
ID�A. From the results it can be seen that the addition of
the correlation trigger indeed reduces the search effort of the
AVS-ID�A. Up to 20 dimensions, although on the one hand
the population size scales similarly to the AVS-ID�A, the
number of evaluations scale more like those of the normal
ID�A, indicating that less evaluations are required because
variance scaling is not always required and is consequently
correctly detected and signaled by the correlation trigger.
However, for a dimensionality of 40 and 80, the correlation
trigger reduces in efficiency. On the Sharp Ridge function,
the correlation trigger even fails to trigger the scaling of vari-
ances altogether. The reason for this is that the correlation
trigger and the scaling of variances is done globally for all
directions, i.e. the entire covariance matrix. For the Sharp
Ridge function, all dimensions except one do not require the
scaling of variances. The signal obtained in the single non–
correlated dimension becomes insignificant as the dimension-
ality increases and hence variance scaling is no longer trig-
gered. Without variance scaling, the normal ID�A cannot
solve the problem and hence, the CT-AVS-ID�A fails. The
same will happen for the Parabolic Ridge function, albeit
for even higher dimensions and similarly for Rosenbrocks
function. For Rosenbrocks function, the problem can still
be solved for l = 80, albeit clearly no longer in a polyno-

mially scaling fashion, i.e. for even larger dimensionalities
the CT-AVS-ID�A will start to behave more like the normal
ID�A and hence fail. A solution to this problem may be to
factorize the correlation trigger and the scaling of variances.
In other words, to have various different variance scaling
and correlation triggering mechanisms that are specialized
in different directions.

5. CONCLUSIONS AND OUTLOOK
This paper contributed to the development of efficient and

reliable EDAs for the continuous domain. It briefly discussed
the defects of EDAs that directly sample the maximum-
likelihood normal pdf. It then proposed the correlation-
triggered adaptive variance scaling ID�A that scales the co-
variance matrix on slope-like regions of the search space. In
order to identify the structure of the currently investigated
region on the fly, we proposed the use of a ranked correlation
coefficient between density and fitness.

AVS-ID�A was shown to be effective on a test bed of
unimodal test functions. In comparison to the ID�A with-
out variance adaptation, it solves all functions from the test
bed and requires smaller populations. The total number
of fitness evaluations grows faster for AVS-ID�A than for
ID�A without variance adaptation. However, for both al-
gorithms the average overall fitness evaluations still grows
subquadratically with the number of dimensions. Adding
the correlation trigger is effective for smaller problems. It
does not always work well if the problem dimensionality is
higher than 40.

It is an important goal of GEC research to enhance EAs
such that they are able to solve an increasing array of prob-
lems. In this light, we have extended the class of prob-
lems that can be solved efficiently and reliably by continuous
EDAs based on the normal pdf.

The correlation trigger and adaptive variance scaling need
further research to ensure that scaling of the variances is
performed only in the directions in which it is necessary.
We also seek to expand the applicability of CT-AVS-ID�A
to multimodal problems. Further, continuous EDAs and
self-adaptive evolution strategies seem to be converging to
algorithms with similar properties. It will be stimulating to
investigate the similarities and differences between the two.
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