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1. INTRODUCTION
There are three important approaches to testing optimiza-

tion algorithms: (1) Testing on the boundary of the design
envelope using artificial test problems, (2) testing on classes
of random problems, and (3) testing on real-world problems
or their approximations.

The primary purpose of this work is to introduce a class
of random additively decomposable problems, which can be
used to test optimization algorithms that address nearly de-
composable problems. There are three goals in the design of
the proposed class of problems: scalability, known optimum,
and easy generation of random instances.

Additionally, we apply several simple and advanced ge-
netic and evolutionary algorithms to random instances of the
proposed class of problems. Specifically, we consider stan-
dard genetic algorithms (GAs), the univariate marginal dis-
tribution algorithm (UMDA), hill climbing (HC), and the hi-
erarchical Bayesian optimization algorithm (hBOA) [1]. The
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results provide important insights into the performance of
genetic and evolutionary algorithms in decomposable prob-
lems and the difficulty of decomposable problems.

We first present a brief description of the proposed class
of problems, then present selected experimental results, and
finally provide pointers to more information about this work.

2. RANDOM ADDITIVELY DECOMPOS-
ABLE PROBLEMS

Here we consider additively decomposable problems where
the overlap is relatively simple and the optimum can be veri-
fied using an efficient procedure based on dynamic program-
ming. The order of all subproblems is fixed to a constant
k and the amount of overlap is specified by a parameter
o ∈ {0, 1, . . . , k − 1} called overlap.

The first subproblem is defined in the first k string posi-
tions. The second subproblem is defined in the last o po-
sitions of the first subproblem and the next (k − o) posi-
tions. All the remaining subproblems are assigned string
positions analogically, always defining the next subproblem
in the last o positions of the previous subproblem and the
next (k − o) positions. To ensure that the subproblems are
not always located in consequent string positions, the string
can be reordered according to a randomly generated permu-
tation. Each subproblem is defined by a k-bit function and
the overall fitness is defined as the sum of all subproblems.

Assuming that the problem is decomposable according to
the above definition and that we know the subsets string
positions in each subproblem and the corresponding sub-
functions, it is possible to solve any problem instance using
dynamic programming in O(2kn) fitness evaluations.

To generate random instances of the proposed class of
problems, we must first choose the number m of subprob-
lems, the order k of decomposition, and the overlap o. Then,
we generate the 2k values that specify each subfunction ac-
cording to the uniform distribution over [0, 1), and the per-
mutation of string positions to eliminate the assumption of
tight linkage. Clearly, other distributions can be used to
generate the subfunctions and the permutation.
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(a) hBOA vs. UMDA and GA for o = 0
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(b) hBOA vs. HC for o = 0
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(c) hBOA vs. UMDA and GA for o = 1
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(d) hBOA vs. HC for o = 1

Figure 1: Comparison on random decomposable problems.

3. EXPERIMENTS
All algorithms were compared on problems of varying size

for k = 5 and overlap o = 0 or 1. For each combination
of values of n, k, and o, 1000 random problem instances
were generated and tested. All algorithms were required to
successfully converge to the optimum in 10 out of 10 inde-
pendent runs. Population size for GA, UMDA, and hBOA
was set to its optimal value using bisection method to ensure
reliable convergence. For more information, see [2].

Figure 1 compares the performance of hBOA, GA,
UMDA, and HC on random problems with o = 0 and o = 1
(more results can be found in [2]). The results show that the
best performance is achieved with hBOA, which can solve
all variants of random decomposable problems with only
O(n2.02) (for o = 2) function evaluations or faster. GA,
UMDA and HC perform much worse than hBOA, usually
requiring a number of evaluations that appears to grow ex-
ponentially fast. Recombination-based methods appear to
be much less sensitive to overlap than the methods based on
local search operators. Although deception is not enforced
for any subproblem, linkage learning remains important. Fi-
nally, the difficulty of random decomposable problems does
not seem to vary much for constant n, k, and o.

For more detailed results and their discus-
sion, please see [2], which can be downloaded at
http://medal.cs.umsl.edu/, where you can also find
the source code of the problem generator and the fitness
function in ANSI C. Since it is widely believed that many
real-world problems are nearly decomposable and the

proposed class of problems covers many potential problems
of this form, the proposed class of random problems
can be used to provide valuable information about the
performance of various optimization algorithms in many
real-world problems and to design automated methods for
setting algorithm-specific parameters in a robust manner.
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