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ABSTRACT
Organising evolution strategies hierarchically has been pro-
posed as a means for adapting strategy parameters such
as step lengths. Experimental research has shown that on
ridge functions, hierarchically organised strategies can sig-
nificantly outperform strategies that rely on mutative self-
adaptation. This paper presents a first theoretical analysis
of the behaviour of a hierarchically organised evolution strat-
egy. Quantitative results are derived for the parabolic ridge
that describe the dependence on the length of the isolation
periods of the mutation strength and the progress rate. The
issue of choosing an appropriate length of the isolation pe-
riods is discussed and comparisons with recent results for
cumulative step length adaptation are drawn.

Categories and Subject Descriptors
G.1.6 [Optimization]: Unconstrained Optimization; I.2.8
[Problem Solving, Control Methods, and Search];
I.2.6 [Learning]: Parameter Learning

General Terms
Algorithms, Performance, Theory

Keywords
Hierarchically organised evolution strategies, step length
adaptation, ridge functions

1. INTRODUCTION
Evolution strategies [5] are a type of evolutionary algo-

rithm that is most commonly used for the optimisation of
functions f : IRN → IR. In an attempt to achieve optimal
or near optimal performance, they typically adapt their step
lengths throughout the optimisation process. Step length
adaptation mechanisms that have been proposed include
mutative self-adaptation [3, 13, 16], cumulative step length
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adaptation [1, 9], and the use of hierarchically organised
strategies [7, 14, 15].

A motivation for the use of hierarchically organised strate-
gies is the insight that strategy parameter adaptation really
is an optimisation problem. Consequently, evolutionary al-
gorithms can be applied to solve it. Several populations
(sometimes referred to as species) with differing strategy
parameter settings evolve in isolation of each other. After
some time, the amount of progress that has been made by
the various populations is compared. The strategy parame-
ter settings of the most successful populations are subjected
to variation, and a new set of species is set up and run
with those new strategy parameter settings. Thus, evolu-
tionary optimisation happens on two levels: the search space
of the lower level strategy is that of the optimisation prob-
lem at hand; that of the upper level strategy is the strat-
egy parameter space of the lower-level strategies. Variation
and selection are used on both levels. Notice that mutative
self-adaptation can be interpreted as a special (trivial) case
of hierarchically organised evolution strategies where each
species consists of a single individual, and where isolation
periods last for a single generation. Also notice that adap-
tation by means of hierarchically organised strategies is not
limited to step lengths but can be applied to other strat-
egy parameters as well. Herdy [8] considers the problem of
adapting the optimal number of offspring generated per time
step and demonstrates empirically that near optimal values
on the hyperplane and sphere models can be obtained.

While having been proposed a long time ago [14], there
is not yet much knowledge — neither empirical nor theo-
retical — with regard to the capabilities and limitations of
hierarchically organised evolution strategies, and relatively
few publications have dealt with the issue. A notable ex-
ception is a paper by Herdy [7] in which the performance
of strategies using a hierarchical organisation for adapting
step lengths is compared empirically with that of strate-
gies using mutative self-adaptation. Several objective func-
tions are considered, including the sphere model as well
as the sharp and parabolic ridges. It is found that iso-
lation is detrimental to the performance of the strategies
on the sphere. The sphere model requires fast adaptation
of the step length, and isolation is neither necessary nor
useful for successful adaptation. The situation is differ-
ent on the ridges. On the parabolic ridge, mutative self-
adaptation generates step lengths that are much smaller
than optimal, resulting in slow progress. Short steps are
likely to succeed in the short term, but yield inferior long
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term performance. Without isolation, opportunistic indi-
viduals that make short steps are rewarded, hampering long
term progress. Herdy observes that hierarchically organ-
ised strategies with longer isolation periods generate much
larger step lengths and thus significantly outperform strate-
gies that use mutative self-adaptation. This situation is even
more pronounced on the sharp ridge where strategies that
use mutative self-adaptation drive their step lengths to zero
and stagnate while hierarchically organised strategies are ca-
pable of tracking the ridge. As ridges are common features
of many objective functions [17], the superior performance
on ridges of hierarchically organised strategies is likely to be
of practical significance.

Realising that isolation periods of different lengths are op-
timal in different environments, Herdy [7] proposes adding
yet another level to the hierarchy of evolutionary strategies,
with the goal of optimising the length of the isolation peri-
ods. He shows empirically that in the long term (i.e., after
many time steps), the strategy that adapts the length of
its isolation periods performs well on the sphere as well as
on the ridges. Of course, the process of adding higher lev-
els with the goal of optimising parameters of the strategy
one level below could be continued indefinitely. Practically,
limitations on the number of objective function evaluations
that can be performed before a result is expected typically
lead to flat hierarchies being used. Throughout this paper,
only two-level hierarchies are considered.

Overall, the behaviour of hierarchically organised evolu-
tion strategies is not well understood. In particular, there
is little knowledge with regard to the influence of strategy
parameter settings on the upper level of the strategy, in-
cluding the length of the isolation periods. A better under-
standing of the effects of design choices could presumably
lead to the more widespread use and acceptance of hierar-
chically organised strategies. This paper makes a first step
toward such an understanding by analysing the behaviour
of a nontrivial hierarchically organised evolution strategy
on the parabolic ridge. Its remainder is organised as follows.
Section 2 describes hierarchically organised evolution strate-
gies and introduces useful notation. Section 3 briefly sum-
marises previously derived results with regard to the perfor-
mance of (non-hierarchically organised) evolution strategies
on the parabolic ridge. Those results are used in Section 4
which presents an analysis of the performance of hierarchi-
cally organised evolution strategies on the parabolic ridge.
The approach relies on several simplifications and assump-
tions. The very concise results have the advantage of being
easily understood and interpretable. However, they are not
exact. In Section 5, it is verified that despite their sim-
plicity, the theoretically obtained results qualitatively agree
with experimental observations. Implications for the choice
of the length of isolation periods are discussed, and com-
parisons with recently obtained results for cumulative step
length adaptation are drawn. Section 6 concludes with a
brief summary and suggestions for future research.

2. HIERARCHICALLY ORGANISED EVO-
LUTION STRATEGIES

The strategy considered in this paper is an instance of the
general [μ′/ρ′ +, λ′(μ/ρ +, λ)γ ]-ES described in [7, 15]. This
section first describes the lower and then the upper level
strategies.

2.1 Lower Level Strategy
The lower level strategy considered here is the (μ/μ, λ)-ES

with isotropic mutations and intermediate recombination. It
is popular both because it is relatively well understood and
because of its good performance [5]. The (μ/μ, λ)-ES is an
instance of the more general (μ/ρ +, λ)-ES where ρ = μ (i.e.,
the entire population is parent to every offspring candidate
solution generated), and comma selection is used (i.e., the
life span of an individual cannot exceed a single genera-
tion). More specifically, the (μ/μ, λ)-ES in every generation
updates a search point x ∈ IRN (the centroid of its popula-
tion) using the following three steps:

1. A set of λ offspring candidate solutions y(i) = x+σz(i),
i = 1, . . . , λ, is generated. Mutation strength σ > 0
determines the step length and the z(i) are vectors
consisting of N independent, standard normally dis-
tributed components.

2. The objective function values f(y(i)) of the offspring
candidate solutions are determined. The index k; λ is
used to refer to the kth best (i.e., the kth largest if the
task is maximisation and the kth smallest if the task
is minimisation) of the offspring candidate solutions.

3. The average

x =
1

μ

μX
k=1

x(k;λ)

of the μ best of the offspring candidate solutions is
computed and replaces the previous search point.

Notice that the mutation strength σ is constant throughout
an entire run of the lower level strategy. Also notice that our
lower level strategy differs from that considered by Herdy [7]
only in that we use intermediate recombination rather than
discrete recombination. The choice has been made as the
former is easier to handle analytically.

2.2 Upper Level Strategy
The mutation strength σ is the single strategy parameter

that is adapted by the upper level strategy. Thus, while
the lower level strategy faces an N -dimensional optimisation
problem, that of the upper level strategy is one-dimensional.
As a consequence, a very simple algorithm can be used:

1. The search point x and the mutation strength σ are
initialised.

2. Parameter α is set to a value uniformly drawn from
the interval [1.1, 1.5].

3. Two runs of the lower level strategy are conducted
in parallel. The runs last for γ generations each and
both use x as their initial search point. One run uses
mutation strength σ · α, the other one uses σ/α.

4. The objective function values of the final search points
generated in the two runs of the lower level strategy
are compared. The search point x of the upper level
strategy is set to the better of those two points; mu-
tation strength σ is set to the mutation strength used
in the more successful of the two runs.

5. The process is terminated if a prescribed number of
steps has been made or otherwise continues with step 2.
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In the notation introduced in [7, 15], the overall strategy
thus described is a [1, 2(μ/μ, λ)γ ]-ES. The purpose of step 2
is to generate two mutation strengths, one larger than the
previous one and one smaller. The exact nature of the rule
for doing so is of minor significance. We have randomised
the choice of α rather than simply using α = 1.3 as Herdy [7]
did in order no to be confined to a discrete set of mutation
strengths that would lead to artifacts in the performance
graphs below. In general, admitting larger values of α al-
lows for potentially faster adaptation while at the same time
leading to stronger fluctuations in the adaptation process.
For values of α very close to 1, the difference between the
final search points of the two populations is dominated by
random factors rather than being governed by the differ-
ent mutation strengths used, and a random walk behaviour
of the mutation strength may result. From our experience,
constraining α to be in [1.1, 1.5] avoids both strong fluctua-
tions and random walk behaviour.

3. THE PARABOLIC RIDGE
The parabolic ridge is a commonly used function for test-

ing the ability of optimisation strategies to make progress
in one particular direction in search space, where deviation
from that direction is penalised. It can be described by ob-
jective function

f(x) = x1 − d

N

NX
i=2

x2
i (1)

where x = 〈x1, . . . , xN 〉 ∈ IRN and where the task is max-
imisation. Figure 1 shows a plot of the function for N = 2.
Notice that while the ridge function has no finite maximum,
maximisation still is a meaningful task if progress towards
larger objective function values is considered the goal of op-
timisation. The x1-axis is referred to as the ridge axis. It
is important to realise that while in the definition used here
the ridge is aligned with an axis of the coordinate system,
that fact is irrelevant for strategies that rely on isotropic
mutations such as those considered here and described in
Section 2. Evolution strategies with isotropically distributed
mutations do not exploit separability of the objective func-
tion. The coordinate system could be subjected to an arbi-
trary rotation without affecting the strategies’ performance.

According to Eq. (1), candidate solutions with superior
fitness can be achieved in two different ways: by making
progress in the direction of the ridge axis (i.e., by increasing
x1), or by reducing the distance

R =

vuut NX
i=2

x2
i

from the ridge axis. In the long term, only the former
is a viable possibility as the first term on the right hand
side of Eq. (1) can increase indefinitely while the second
can never exceed zero. However, for the parabolic ridge,
progress in the direction of the ridge axis enters the compu-
tation of the fitness linearly while the reduction of R makes
a quadratic contribution. Small mutation strengths afford
the short term advantage of reducing the distance from the
ridge axis, but lead to slow long term progress.

For large values of N , the performance of the (μ/μ, λ)-ES
on the parabolic ridge is relatively well understood. Oy-
man et al. [11, 12] have studied the behaviour of the (1, λ)-

x1

x2

f(x)

Figure 1: A plot of the two-dimensional parabolic
ridge.

ES. Oyman and Beyer [10] have generalised the analysis for
the (μ/μ, λ)-ES. All of these studies assume fixed mutation
strengths. More recently, Arnold and Beyer [2] have in-
vestigated the influence of different forms of noise on the
performance of the (μ/μ, λ)-ES on the parabolic ridge, and
they have analysed the behaviour of cumulative step length
adaptation. In Section 5, results from that study will be
contrasted with those obtained in Section 4 for hierarchi-
cally organised strategies. The remainder of this section
summarises the relevant insights gained in [10], adapted to
conform to the somewhat different notation used here and
simplified by dropping any terms that disappear in the limit
N → ∞.

In all of what follows, R denotes the distance of the strat-
egy’s search point from the ridge axis. For fixed mutation
strength σ, the (μ/μ, λ)-ES tracks the parabolic ridge at a
varying distance R. After initialisation effects have faded,
the distribution of R values is time invariant. The distance
of the population centroid from the ridge axis fluctuates
around a stationary average value while the value of the x1-
component increases. By considering the case that N → ∞,
results from the analysis of the sphere model can be used to
derive an approximation for the average distance at which
the ridge axis is tracked. Introducing for notational conve-
nience � = 2Rd/N as the normalised distance of the popu-
lation centroid from the ridge axis and σ∗ = σd/μcμ/μ,λ as
the normalised mutation strength of the strategy, in [2, 10]
it has been seen that

�2(σ∗) =
σ∗2

2
+

r
σ∗4

4
+ σ∗2 (2)

can be used as an approximation for the average squared
normalised distance from the ridge axis provided that N is
sufficiently large. That is, the distance from the ridge axis
increases monotonically with increasing mutation strength,
and for large mutation strengths the dependence is nearly
linear. Figure 2 illustrates this relationship and demon-
strates that even though having been obtained for N → ∞,
Eq. (2) provides a reasonably good description of evolution
strategy behaviour even for small values of N .

Furthermore, defining the progress rate ϕ of the strategy
as the expected distance in direction of the x1-axis that the
strategy’s search point travels per generation and introduc-
ing normalisation ϕ∗ = ϕd/μc2

μ/μ,λ, it can be derived from

439



0.0

1.0

2.0

3.0

4.0

0.0 1.0 2.0 3.0 4.0

N=4
N=40

N=400

mutation strength σ∗

d
is

ta
n
ce

�
fr

o
m

th
e

ri
d
g
e

a
x
is

Figure 2: Normalised distance � from the ridge axis
plotted against normalised mutation strength σ∗.
The solid line has been obtained from Eq. (2). The
points represent results measured in runs of the
(μ/μ, λ)-ES with μ = 3 and λ = 10 in search spaces
with N ∈ {4, 40, 400} and d = 1.0.

the results in [10] that

ϕ∗(σ∗) =
σ∗2

σ∗2/2 +
p

σ∗4/4 + σ∗2
(3)

can serve as an approximation for the normalised progress
rate provided that N is sufficiently large. It is easy to see
from Eq. (3) that the progress rate of the (μ/μ, λ)-ES in-
creases monotonically with increasing mutation strength,
and that for large values of σ∗ the normalised progress rate
tends toward a value of 1. Figure 3 illustrates this relation-
ship. It can be seen how the quality of the approximation
improves with increasing N .

4. PERFORMANCE ANALYSIS
This section uses the results describing the performance

of the (μ/μ, λ)-ES on the parabolic ridge to derive a char-
acterisation of the behaviour of the hierarchically organised
strategy outlined in Section 2. The analysis assumes that
the isolation periods are sufficiently long in order for several
simplifications described below to be made. It will be seen
in experiments that the accuracy of the predictions that can
be obtained is good for large values of γ and N , but that the
formulas derived also provide a good qualitative understand-
ing of the behaviour of the hierarchically organised strategy
for relatively small values of those parameters.

Central to the analysis of the performance of hierarchically
organised evolution strategies is the need to characterise the
cumulative effect of running the lower level strategy for the
duration of an isolation period. More specifically, given a
population centroid x that has been arrived at with a muta-
tion strength of σ, it is necessary to estimate the objective
function value of the population centroid x′ obtained after
running the lower level strategy with a mutation strength of
ς (which here is either σ ·α or σ/α) for a further γ time steps.
The respective values of f(x′) for the different populations
that evolve in parallel determine the mutation strength used
in the next iteration of the upper level strategy. It is partic-
ularly easy to obtain such an estimate if the following three
assumptions are made.
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Figure 3: Normalised progress rate ϕ∗ plotted
against normalised mutation strength σ∗. The solid
line has been obtained from Eq. (3). The points
represent results measured in runs of the (μ/μ, λ)-
ES with μ = 3 and λ = 10 in search spaces with
N ∈ {4, 40, 400} and d = 1.0.

1. At the end of an isolation period, the lower level strat-
egy is in the stationary limit state described by Eq. (2).

2. That limit state is reached so early in the isolation pe-
riod that it can be assumed that all of the progress in
the direction of the ridge axis made during the isola-
tion period is made in that limit state.

3. For the purpose of comparing fitness values of popula-
tion centroids, it is sufficient to consider their expected
values; i.e., fluctuations can be ignored.

Clearly, validity of the second assumption implies validity of
the first. Both of them hold if the length γ of the isolation
periods is sufficiently large, where what is sufficient depends
on the mutation strengths σ and ς as well as on the popu-
lation size parameters μ and λ and the search space dimen-
sionality N . The more ς differs from σ, the larger γ needs
to be in order for the assumptions to hold with a certain
accuracy. As for the third assumption, it is generally valid
if ς is sufficiently different from σ. While again, quantifying
what is sufficient is a difficult task and depends on, among
other things, the search space dimensionality, it will be seen
that the qualitative agreement of results derived under the
assumption with experimental measurements is good.

Assuming that γ is sufficiently large, the population cen-
troid is at a normalised distance �(σ∗) from the ridge axis
at the beginning and at a normalised distance �(ς∗) at the
end of the isolation period, where mutation strengths are
normalised as outlined above and where the distances from
the ridge axis are described by Eq. (2). From Eq. (1) with
the normalisation of the distance from the ridge axis, the
objective function values at the beginning and at the end
of the isolation period are f(x) = x1 − N�2(σ∗)/4d and
f(x′) = x′

1 − N�2(ς∗)/4d, respectively. The expected dif-
ference between the objective function values of population
centroids x and x′ is thus

Δf = f(x′) − f(x)

= γϕ(ς∗) − N

4d

`
�2(σ∗) − �2(ς∗)

´
.
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The first of the two terms on the right hand side is due
to progress in the direction of the ridge axis and has been
computed as the product of the expected progress per time
step and the number of steps made. (Recall that progress is
assumed to have been made in the limit state assumed at the
end of the isolation period.) The second term on the right
hand side is due to the change in distance from the ridge axis
that results from the altered mutation strength. With the
normalised length γ∗ = γμc2

μ/μ,λ/N of the isolation periods,
it thus follows

Δf(γ∗, σ∗, ς∗) =
N

d

„
γ∗ϕ∗(ς∗) − �2(σ∗)

4
+

�2(ς∗)
4

«
(4)

for the difference between the objective function values of x
and x′.

The [1, 2(μ/μ, λ)γ ]-ES described in Section 2 evolves two
populations in parallel, one with mutation strength σ · α
and one with mutation strength σ/α. After γ generations,
the objective function values of the centroids x′

1 and x′
2 of

the two populations are compared. The population with the
larger objective function value of its centroid passes on its
mutation strength to the next iteration of the upper level
strategy. Letting

g(α) =
d

N

`
f(x′

1) − f(x′
2)

´
it is clear that the mutation strength used in the next it-
eration of the upper level strategy is σ · α (the mutation
strength that led to x′

1) if g(α) ≥ 0 and σ/α (the mutation
strength that led to x′

2) otherwise. Function g(α) is referred
to as the gain difference. With Eq. (4) it follows that

g(α) =
d

N
(Δf(γ∗, σ∗, σ∗ · α) − Δf(γ∗, σ∗, σ∗/α))

= γ∗ϕ∗(σ∗ · α) − γ∗ϕ∗(σ∗/α)

− �2(σ∗ · α)

4
+

�2(σ∗/α)

4
(5)

where � and ϕ∗ are given by Eqs. (2) and (3), respectively.
Rather than attempting to determine the distribution of

the normalised mutation strength in the limit of large γ,
we will see that an approximation of the average value of
σ∗ can be computed by relatively simple means. It is clear
from Eq. (5) that g(1) = 0 independent of γ∗ and σ∗. For
sufficiently small values of α, the sign of g(α) in the vicinity
of 1 is thus determined by the derivative g′(1) = ∂g/∂α|α=1.
The mutation strength of the next iteration of the upper
level strategy is σ · α if g′(1) > 0 and it is σ/α if g′(1) < 0.
That is, as α > 1 by definition of the algorithm in Section 2,
the mutation strength is increased if g′(1) > 0 and it is de-
creased if g′(1) < 0. For g′(1) = 0, there is no strong pres-
sure to either increase or decrease the mutation strength,
and which one of σ ·α and σ/α prevails is a matter of chance.
Thus, the mutation strength for which g′(1) = 0 can be used
as an approximation for the average mutation strength that
the hierarchically organised strategy generates.

Figure 4 plots the gain difference g(α) for γ∗ = 10.0 and
several values of σ∗. For σ∗ = 1.0, the derivative g′(1) is
positive and the mutation strength will be increased. For
σ∗ = 4.0, the sign of g′(1) is negative and the mutation
strength will be decreased. For σ∗ = 2.0, the curve is nearly
flat at the origin and whether the mutation strength is in-
creased or decreased is largely random. Thus, σ∗ = 2.0
can be expected to be not far from the average normalised
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Figure 4: Gain difference g(α) plotted against the
step length multiplier α for γ∗ = 10.0 and several
values of σ∗. Notice that the scale of the horizontal
axis is logarithmic.

mutation strength of the [1, 2(μ/μ, λ)γ ]-ES on the parabolic
ridge with γ∗ = 10.0. This is confirmed in experiments sum-
marised below. Notice that the range of the horizontal axis
in Fig. 4 is larger than the interval from which α-values are
drawn, thus justifying the reliance on the sign of g′(1) for
determining the sign of g(α).

Using Eqs. (2), (3), and (5), the gain difference can be
written as

g(α) =
γ∗σ∗2α2

�2(σ · α)
− γ∗σ∗2

α2�2(σ/α)
− �2(σ · α)

4
+

�2(σ/α)

4
.

Computing the derivative with respect to α for α = 1 results
in

g′(1) =
2γ∗σ∗2

�4(σ∗)

„
2�2(σ∗) − σ∗ d�2

dσ∗

«
− σ∗

2

d�2

dσ∗ .

It is easily verified from Eq. (2) that

�4(σ∗) = σ∗2 `
�2(σ∗) + 1

´
and that

d�2

dσ∗ = σ∗ �2(σ∗) + 1

�2(σ∗) − σ∗2/2
.

It follows that

g′(1) =
2γ∗

�2(σ∗) + 1

„
2�2(σ∗) − σ∗2 �2(σ∗) + 1

�2(σ∗) − σ∗2/2

«

− σ∗2

2

�2(σ∗) + 1

�2(σ∗) − σ∗2/2

=
σ∗2

�2(σ∗) − σ∗2/2

„
2γ∗

�2(σ∗) + 1
− �2(σ∗) + 1

2

«
.

Demanding that g′(1) = 0 thus yields condition

4γ∗ =
`
�2(σ∗) + 1

´2
.

Taking the square root results in

�2 =
p

4γ∗ − 1 (6)

as an approximation for the average squared normalised dis-
tance at which the [1, 2(μ/μ, λ)γ ]-ES tracks the parabolic
ridge.
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Using Eq. (6) in Eq. (2) results in

p
4γ∗ − 1 − σ∗2

2
=

r
σ∗4

4
+ σ∗2.

Squaring both sides and rearranging terms it follows that

σ∗2
=

p
4γ∗ − 2 +

1√
4γ∗

=
(
√

4γ∗ − 1)2√
4γ∗ . (7)

Taking the square root yields

σ∗ =

√
4γ∗ − 1

(4γ∗)1/4

= (4γ∗)1/4 − (4γ∗)−1/4
(8)

as an approximation for the average normalised mutation
strength of the [1, 2(μ/μ, λ)γ ]-ES on the parabolic ridge.

Finally, using Eqs. (2), (6), and (7) in Eq. (3) results in

ϕ∗ =
σ∗2

�2(σ∗)

=

√
4γ∗ − 1√

4γ∗

= 1 − 1√
4γ∗ (9)

as an expression for the normalised progress rate of the
[1, 2(μ/μ, λ)γ ]-ES on the parabolic ridge. Notice the remark-
able simplicity of Eqs. (6), (8), and (9).

5. DISCUSSION
Figures 5, 6, and 7 compare results from Eqs. (6), (8),

and (9) with measurements made in runs of hierarchically
organised evolution strategies on parabolic ridges of different
dimensionalities. It can be seen that for N = 400 the accu-
racy of the predictions is good except for the smallest values
of γ∗. Note that due to the normalisation of the length of
the isolation periods, the smallest γ values represented in the
graphs are indeed small; for N = 4, the leftmost data points
in Figs. 5, 6, and 7 correspond to γ = 1 and thus no iso-
lation at all. For the smaller search space dimensionalities,
larger deviations of the measured results from those that
have been obtained theoretically occur. However, except for
small values of γ∗, the deviations that can be observed in the
figures appear to be of the same order of magnitude as those
in Figs. 2 and 3 that had been obtained for the (μ/μ, λ)-ES
with fixed mutation strength. As the results for that strat-
egy have been used in the derivation of the results for the
hierarchically organised strategy, more accurate predictions
could not have been expected. Any additional inaccuracies
are due in part to the fact that the mutation strength is not
constant but instead fluctuates, and that those fluctuations
have not been considered in the analysis in Section 4. Al-
together, Eqs. (6), (8), and (9) provide a useful qualitative
description of the behaviour of the strategy even for N as
small as 4.

As seen in [10] and illustrated in Fig. 3 above, on the
parabolic ridge it is always beneficial for the long term suc-
cess of evolution strategies to increase the mutation strength.
As for the hierarchically organised strategy longer isolation
periods result in larger mutation strengths, the graph in
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Figure 5: Average normalised distance � from the
ridge axis plotted against normalised length γ∗ of the
isolation periods. The solid line has been obtained
from Eq. (6). The points have been measured in runs
of the [1, 2(3/3, 10)γ ]-ES with d = 1.0.

0.0

1.0

2.0

3.0

0.0 5.0 10.0 15.0 20.0

N=4
N=40

N=400

isolation period γ∗

m
u
ta

ti
o
n

st
re

n
g
th

σ
∗

Figure 6: Average normalised mutation strength σ∗
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Eq. (8). The points have been measured in runs of
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Fig. 7 is monotonically increasing. On other objective func-
tions, such as the sphere model, long isolation periods pre-
vent fast adaptation of the mutation strength and hamper
progress. Adapting the length of the isolation periods as
suggested by Herdy [7] is a possibility, but it adds to the
computational costs of the strategy. It is thus desirable to
give a recommendation for the length of the isolation peri-
ods that yields satisfactory performance on both the sphere
and the ridge (and, hopefully, on other functions as well). It
can be seen from Fig. 7 that a large proportion of the max-
imal progress rate is achieved already with relatively small
values of γ∗. Equation (9) suggests that for γ∗ = 1, the
[1, 2(μ/μ, λ)γ ]-ES achieves 50% of its maximal progress; for
γ∗ = 4 it achieves 75%. Figure 7 shows that for finite N , the
proportions of the maximal progress rate that are achieved
with those values of the normalised length of the isolation
periods are even higher. For the parabolic ridge, choosing

γ =
βN

μc2
μ/μ,λ

(10)

where β ∈ [1.0, 4.0] thus guarantees that a substantial pro-
portion of the maximal progress rate is achieved. Increasing
γ further would yield a speed-up of at most 33%. The length
of the isolation periods should thus be chosen proportional
to the dimensionality of the search space. Equation (10)
also suggests that using larger values of μ and λ (and thus
increasing the denominator) allows operating with shorter
isolation periods. It is important to keep in mind however
that the results from Section 4 are not sufficiently accurate
in order to determine optimal settings of the population size
parameters, and more work will need to be done in order to
confirm the value of Eq. (10) for the choice of the length
of the isolation periods. It also remains to be seen what
proportion of the optimal progress rate on the sphere model
can be achieved with that recommendation.

Finally, it is interesting to compare the results for the hier-
archically organised strategy with those for the (μ/μ, λ)-ES
with cumulative step length adaptation. In [2] it has been
seen that a (μ/μ, λ)-ES with cumulative step length adapta-
tion on the parabolic ridge in the limit N → ∞ employs an
average normalised mutation strength of σ∗ = 1/

√
2. With

that step length, the average normalised distance from the
ridge axis and the resulting normalised progress rate are
� = 1 and ϕ∗ = 1/2, respectively. With long isolation pe-
riods, the hierarchically organised strategy can thus achieve
nearly twice the progress rate of the strategy that uses cu-
mulative step length adaptation. However, it is important
to keep in mind that the hierarchically organised strategy
evolves two populations in parallel. For the same value λ,
its computational costs (quantified as the number of ob-
jective function evaluations) per time step are thus twice
as high. The progress per unit of cost is thus roughly the
same for both strategies. It is also interesting to note that
the time scales on which the strategies adapt the mutation
strength are similar. According to [6], for cumulative step
length adaptation the cumulation parameter is commonly
chosen to be inversely proportional to the search space di-
mensionality. It thus takes order N steps for the information
accumulated in the search path to fade. For the hierarchi-
cally organised strategy, Eq. (10) suggests that the length
of the isolation periods should be chosen proportional to N .
Thus, for both strategies order N steps are required for the
mutation strength to change by a constant factor.

6. SUMMARY AND CONCLUSIONS
To conclude, this paper has presented a first analysis of

the behaviour or a hierarchically organised evolution strat-
egy on the parabolic ridge. Equations have been derived
that describe the average mutation strength as well as the
progress rate achieved by the strategy. While several sim-
plifications and assumptions have been made in the deriva-
tion of the results, numerical experiments suggest that the
accuracy of the results is good for not too small values of
the length of the isolation periods and of the search space
dimensionality. It has been seen that both the average
mutation strength of the hierarchically organised strategy
and the average distance at which the ridge axis is tracked
increase with the fourth root of the length of the isola-
tion periods. The progress rate asymptotically approaches
its optimal value (that is obtained for very large mutation
strengths), and the deviation from the optimal value is in-
versely proportional to the square root of the length of the
isolation periods. Choosing the length of the isolation peri-
ods according to Eq. (10) ensures that a substantial propor-
tion of the maximal progress rate is realised. A comparison
with the (μ/μ, λ)-ES that employs cumulative step length
adaptation has shown that potentially, the [1, 2(μ/μ, λ)γ ]-
ES can achieve twice the progress rate, albeit at twice the
computational costs per time step.

Clearly, this paper is but a first step in the analysis of the
behaviour of hierarchically organised evolution strategies.
Numerous ways of generalising and extending its results are
conceivable. First, it is desirable to obtain a more accurate
description of the behaviour of the strategy for short isola-
tion periods and for small values of N . Such an approxi-
mation would be useful for the task of computing optimal
population size parameters for the lower level strategy. Sec-
ond, it is interesting to study the influence of the choice of
distribution used for generating the step length multiplier α
on the performance of the strategy. It seems conceivable
that larger populations on the lower level may allow using
larger values of α, thus enabling faster adaptation. Third,
other objective functions remain to be studied. Of particu-
lar interest is the sphere model as it requires relatively short
isolation periods for efficient performance. The techniques
used by Beyer [3] for the analysis of mutative self-adaptation
may be useful for that task. Another interesting candidate
for analysis is the general ridge function class, and in par-
ticular the sharp ridge. For fixed mutation strength, such
an analysis has been presented by Beyer [4], and the ap-
proach pursued here should be easily adapted to that case.
Also of interest is the case that there is noise present in the
optimisation process. Results obtained in [2] indicate that
cumulative step length adaptation performs less than opti-
mally in the presence of noise, and it will be of great interest
to derive corresponding results for hierarchically organised
strategies and compare them. Finally, the potential of hi-
erarchically organised strategies for step length adaptation
in the CMA-ES described by Hansen and Ostermeier [6] re-
mains to be explored.
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