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ABSTRACT
We consider the (1+λ) ES and the (1,λ) ES, which are sim-
ple evolutionary algorithms for minimization in Rn, using
isotropic mutations. General lower bounds on the num-
ber of mutations that are necessary to reduce the approx-
imation error in the search space, i. e. the distance from
the optimum (or from any other fixed point in the search
space), are proved. Therefore, we generalize a lower-bound
method recently introduced by Witt in a runtime analysis
of the (μ+1) EA for the search space {0, 1}n, which was also
already successfully applied in an analysis of a (μ+1) ES.
Namely, we prove that both, the (1+λ)ES as well as the
(1,λ) ES need Ω(n · λ/ ln λ) function evaluations with an
overwhelming probability to halve the approximation error
in the search space – independently of how the isotropic
mutations are adapted and of the function to be optimized.

On the other hand, for an upper bound we consider the
following concrete scenario: the minimization of the well-
known Sphere-function using Gaussian mutation vectors
adapted by the 1/5-rule. We prove that the (1+λ)ES needs

O(n · λ/
√

ln λ) Sphere-evaluations with an overwhelming
probability to halve the approximation error. Moreover, by
some kind of reduction, we show that this upper bound also
holds for the (1,λ) ES.

Finally, the gap of size O(
√

lnλ) between the lower bound
and the upper bound is discussed.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Runtime Analysis; G.3 [Probability and Statistics]:
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and Search]: Evolution Strategies
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1. INTRODUCTION
(1+, λ) evolutionary algorithms (EAs) are simple evolution-

ary algorithms. The “1” indicates that a (parent) popula-
tion of size 1 is used; thus, cross-over is not possible and
mutation is the only evolutionary search operator that is
used to evolve a search point c. The “λ” indicates that,
in a single step, λ offspring of the current search point c
are generated by λ independent mutations. When using eli-
tist selection (indicated by the “+”), the best of these λ
mutants replaces/becomes the current individual c if (and
only if) it is at least as good as its parent. When comma
selection is used (indicated by the “,”), the best of the λ mu-
tants replaces/becomes the current individual c irrespective
of whether it is worse than its parent or not. We have just
described a single step; this step is repeated in the so-called
evolution loop until a stopping criterion is met. Fortunately,
for the results we are aiming at here, we need not define a
stopping criterion, yet consider an infinite evolution loop.

Evolutionary algorithms for optimization in the contin-
uous search space Rn, however, are commonly subsumed
under the term evolution(ary) strategies (ESs) which was
coined by Rechenberg and Schwefel; cf. Rechenberg (1973)
and Schwefel (1995). Probabilistic analyses of the runtime of
ESs like those by Jägersküpper (2003, 2005) for the (1+1) ES
using Gaussian mutations adapted by the 1/5-rule succeeded
only recently. Therein, unimodal functions, essentially the
well-known Sphere-function and positive definite quadratic
forms, are considered. However, an almost uncountable
number of experimental results exist. In attempting to find
an explanation for the experimental findings obtained for
search space dimensions usually ranging from 10 to 30, some
works additionally present some calculations for the 1-dimen-
sional search space R. Unfortunately, such calculations can-
not help us with an analysis of how the runtime grows with
the dimension of the search space, i. e., with explaining the
effect which an increasing search space dimensionality has
on the performance of an ES on a given class of functions.

In the considerably developed theory on local performance
measures (progress rate, quality gain; cf. Beyer (2001)), the
progress which a single step yields (after the single-step gain
has become steady-state) is analyzed, i. e., the optimization
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process is (implicitly) assumed to stabilize w. r. t. the one-
step progress. Moreover, the analytical challenges that the
inherent randomness of the search process bears are circum-
vented by looking at a simplifying, in particular (more) de-
terministic model of the process – raising the need for exper-
imental validation of the prediction quality of the behavior-
describing equations (obtained for/in the simplified model).

In the present paper, however, rigorously tackling the ran-
domness is the focus of the analysis.

Since the very first successful applications of EAs, one has
desired to explain the principles of EAs from a theoretical
point of view (e. g. the Schema Theorem by Holland (1975)
and Rechenberg’s (1973) investigations of the (1+1) ES). In
the last decade, there has been a growing interest in the-
oretical runtime analysis of specific EAs on specific fitness
functions and classes of functions, which is sometimes (some-
what confusingly) called “computational time complexity”
of EAs. In this framework, it is examined by means of math-
ematical proofs how many evaluations of the fitness function
are performed until the EA finds a global optimum. The
hope is to identify practically relevant classes of functions
where the EA behaves efficiently, i. e., where on average it
takes only a small (polynomial) number of evaluations.

Probabilistic runtime analyses started with simple EAs,
such as the (1+1) EA, on simple functions like OneMax,
e. g. Droste et al. (2002). Nowadays, one is able to ana-
lyze the (expected) runtime of the (1+1) EA on practically
relevant problems such as the maximum matching problem
(Giel and Wegener, 2003), the minimum spanning tree prob-
lem (Neumann and Wegener, 2004), and simple scheduling
problems (Witt, 2005). It has turned out that from our
complexity-theoretical perspective, the (1+1) EA is surpris-
ingly efficient on such problems.

Despite the successful analyses of the (1+1) EA, runtime
analyses should also explain the utility of the ingredients of
more complex EAs, e. g., populations and variation opera-
tors. Studies of the utility of populations were performed,
amongst others, for a (1+λ)EA (Jansen and De Jong, 2002)
and a (μ+1) EA (Witt, 2004). The impact of a crossover
operator was also investigated (Storch and Wegener, 2003).
All of these studies of more complex EAs, however, have
been confined to discrete search spaces, more precisely, to
pseudo-Boolean functions f : {0, 1}n → R. With respect to
continuous search spaces, i. e. f : Rn → R, most of the stud-
ies are experimental (as we already discussed above). As the
probabilistic analyses of the simple (1+1) ES have reached a
certain extend, a study of more complex EAs for continuous
search spaces should again start with such simple functions
like Sphere. Jägersküpper and Witt (2005) successfully fol-
lowed this approach for an analysis of a (μ+1) ES.

In the following section, we look at the algorithm under
consideration and at fitness-landscapes that are covered. In
Section 3 some notions and results that are used are recapit-
ulated. Subsequently, we present the lower-bound result in
Section 4 and the upper-bound result in Section 5. Finally,
we discuss those results and conclude in the last section.

2. ALGORITHM, FITNESS LANDSCAPE
As mentioned above, we consider the well-known Sphere

function defined by Sphere(x) :=
Pn

i=1 x2
i = |x|2 = x�Ix,

where I denotes the identity matrix and |x| the L2-norm
of the vector x, i. e. its length in Euclidean space. It can
easily be seen that the results are valid also for transla-

tions of this function, i. e., f(x) = (x − x∗)�I(x − x∗)
for some fixed minimum search point x∗ ∈ Rn. Since we
concentrate on the approximation error in the search space
(which is defined as the distance from the optimum), the
results are in fact valid for any unimodal function satisfying
∀x, y ∈ Rn : |x − x∗| < |y − x∗| =⇒ f(x) < f(y), where
x∗ ∈ Rn is the unique minimum. Note: For Sphere, re-
ducing the approximation error in the search space by an
α-fraction (α ∈ [0, 1]; for example α = 0.5 for halving the
distance) corresponds to a reduction of the Sphere-value
by a (2α − α2)-fraction (0.75 in the example so that the
Sphere-value is reduced to 25%).

As mentioned in the introduction, we will consider the
1/5-rule for the adaptation of the mutation strength, which
was introduced by Rechenberg in the 1960s for the (1+1) ES.
(It is a priori not clear how much sense this adaptation
makes for (1+, λ)ESs. We will discuss this later.) The idea
behind the 1/5-rule is that an isotropic mutation should re-
sult in an improvement with a probability of roughly 1/5.
Therefore, the optimization is observed for Θ(n) steps. After
each observation phase, the scaling factor σ for the adapta-
tion of the length of the mutation vector (hereinafter called
mutation strength) is decreased if less than 1/5 of the muta-
tions in the respective observation phase have been success-
ful, and otherwise, it is increased. Namely, σ is multiplied
by a positive constant smaller resp. greater than 1. To keep
the proofs as simple as possible, here the observation phase
will last n steps and σ will be halved resp. doubled.

Commonly, in the (μ+, λ)ES framework each individual
consists of a search point and an associated mutation
strength. As we have μ = 1 and concentrate on 1/5-rule-
like adaptation mechanisms, the mutation strength σ is not
endogenous here. We use two counters, “g” and “b”, to
remember the number of “good” resp. “bad” mutations.

The (1+λ)ES for minimization of f : Rn → R we consider
works as follows – when using Gaussian mutations adapted
by the 1/5-rule: For a given initialization of the evolving
search point c ∈ Rn and the mutation strength σ ∈ R>0,
an evolution loop is performed:

1. FOR (int i := 1; i ≤ λ; i++) DO

(a) Create a new search point y[i] := c + m with
m := σ · fm, where each component of fm ∈ Rn

is independently standard-normally distributed.

(b) IF f(y[i]) ≤ f(c)
THEN g := g + 1 ELSE b := b + 1.

2. IF b + g ≥ n THEN

(a) IF g < (g + b) · (1/5)
THEN σ := σ/2 ELSE σ := σ · 2.

(b) g := 0. b := 0.

3. IF mini∈{1,...,λ}{f(y[i])} ≤ f(c)

THEN c := argmini∈{1,...,λ}{f(y[i])}.
4. GOTO 1.

It’s understood that λ = poly(n). In practice, obviously,
the GOTO is conditioned on a stopping criterion. Fortu-
nately, for the results we are aiming at, we need not define
a reasonable stopping criterion. Rather we will consider a
run of a (1+, λ)ES as an infinite stochastic process. We are
interested in how fast c evolves.
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We obtain the (1,λ) ES by dropping the IF-condition in
instruction (3), implying that the best of the λ offspring al-
ways replaces (and becomes) the current search point. Un-
like the (1+λ)ES, the (1,λ) ES may accept mutations that
result in a worse (w. r. t. the function value) search point.
(Obviously, a (1,1) ES results in pure random search and,
thus, does not make much sense.)

Our choice (in the instructions (2)) to adapt σ after a
step in which the nth mutation (after the previous adap-
tation) took place, i. e. after 
n/λ� iterations/steps, was
somehow arbitrary. The number of steps between two sub-
sequent σ-adaptations must merely be Θ(n/λ) if λ = O(n),
and/or Θ(1) otherwise. Furthermore, the constants for the
σ-adaptation, which we chose to be 1/2 resp. 2 for notational
convenience, can be chosen arbitrarily (strictly smaller resp.
larger than 1, of course). Any such σ-adaptation is covered
by the term “1/5-rule” here. (In fact, we may even consider
a corresponding “1/4-rule” or a “1/6-rule.)

The lower bound on the runtime, which we define as the
number of function evaluations, however, will be valid inde-
pendently of the adaptation of σ. In fact, it will even be
independent of the distribution of |fm|. For instance, |fm|
could be distributed according to a Cauchy distribution,
rather than according to a χ-distribution (with n degrees
of freedom) as the length of a Gaussian mutation. More-
over, the two σ-scaling-factors may even depend on n. The
only restriction – besides the isotropy of fm – is that after
each step, the (1+, λ)ES

∗
(as we will call this more general

ES template) decides whether to keep σ unchanged, or to
up-scale, or to down-scale the mutation strength.

For the Sphere scenario which is considered here this
means that we are interested in how fast (number of function
evaluations w. r. t. n, the dimensionality of the search space)
the distance from the optimum/origin o is reduced. Note
that for Sphere (and all other functions for which every
plateau of constant fitness has zero n-volume), the function
value of a mutant generated in instruction (1.a) differs with
probability 1 from every function value seen before. As a
consequence, there will always be exactly one best mutant
in instruction (3). As another consequence, we obtain that
on the Sphere function, the (1+λ)ES with λ = 1 resembles
the (1+1) ES as considered by Jägersküpper (2003).

3. PRELIMINARIES
We say that a statement holds “for n large enough” if it is

true for all n ≥ n′, where n′ is an absolute constant. Recall
the following asymptotics, where g, h : N → R are positive
for n large enough:
g(n) = O(h(n)) iff there exists a positive constant κ such
that g(n) ≤ κ · h(n) for n large enough,
g(n) = Ω(h(n)) iff h(n) = O(g(n)),
g(n) = Θ(h(n)) iff g(n) is O(h(n)) as well as Ω(h(n)),
g(n) = poly(n) iff g(n) = O(nk) for a constant k.

As we are interested in how the runtime depends on n,
the dimensionality of the search space, all asymptotics are
w. r. t. to this parameter (unless stated differently).

A probability is exponentially small (in n) if it is upper
bounded by exp(−Ω(nε) for a constant ε > 0. An event
E(n) happens with an overwhelming probability (w. o. p.) if
1 − P{E(n)} is exponentially small.

As mentioned above, we will consider isotropic mutations
for Rn. For m ∈ Rn let |m| denote m’s Euclidean length,
i. e. its L2-norm.

Definition 1. A given probability distribution over Rn

is isotropic if (and only if) ∀x, y ∈ Rn : |x| = |y| ⇒ D(x) =
D(y), where “D(x)” denotes the distribution’s density at x.

This implies two very useful properties for an isotropic mu-
tation m:

• the normalized vector m/|m| is uniformly distributed
upon the unit hyper-sphere {x ∈ Rn | |x| = 1} and

• the random length |m| is independent of the random
direction m/|m|.

Each component of a Gaussian mutation vector fm ∈ Rn

is independently standard-normally distributed. Thus, the
density at x ∈ Rn equals

nY
i=1

exp(−xi
2/2)√

2π
=

exp(
Pn

i=1 −xi
2/2)√

2π
=

exp(−|x|2/2)√
2π

,

implying that a Gaussian mutation is in fact isotropic. It
is easy to see that a scaled Gaussian mutation σ · fm with
σ > 0 is also isotropically distributed. Scaled Gaussian mu-
tations are commonly used, for instance within Rechenberg’s
1/5-rule or Schwefel’s σ-self-adaptation.

We should note, however, that within the more sophisti-
cated covariance matrix adaptation (CMA) due to Hansen
and Ostermeier (1996), σ ·B ·fm makes up the mutation vec-
tor with a matrix B ∈ Rn×n which is also adapted. Thus,
unless B = s · I for some scalar s, the mutation vector is not
isotropically distributed. Consequently, CMA is not covered
by the results presented here (at least not in general).

However, the crucial property of an isotropic mutation is
that we can first choose a random direction and subsequently
sample a point on the already chosen half line according to
the distribution of |m|; or we can (and will) do it vice versa:
First we sample the mutation’s length 	 according to the
random variable |m|; subsequently, the mutant is uniformly
distributed upon the hyper-sphere with radius 	 centered at
the mutated search point.

Let G� denote the spatial gain of an isotropically dis-
tributed mutation vector m parallel to an arbitrarily fixed
direction, given that (the random variable) |m| takes the
value 	 > 0; note that G� ∈ [−	, 	]. In other words, when
c ∈ Rn is mutated and c′ := c + m is the mutant, then the
absolute value of G� equals the distance between the two
hyper-planes containing c resp. c′ that are perpendicular to
the predefined direction, respectively. Jägersküpper (2003)
shows that for n ≥ 4 the density of the random variable G�

at g ∈ [−	, 	] equals

(1/	) · `
1 − (g/	)2

´(n−3)/2 ‹
Ψ, (1)

where P{G� ∈ [−	, 	]} = 1, i. e. Ψ :=
R 1

−1
(1 − x2)(n−3)/2 dx

lies in the interval
√

2π
‹√

n − [1.5 ± 0.5] (normalization).
With this density function, the probability of c′ being

closer to some fixed point in the search space than c has been
estimated. For notational convenience, we consider w. l. o. g.
the distance from the origin o so that we can use |c| for this
distance. Obviously, if 	 > 2|c| then |c′| > |c|; if 	 ≤ 2|c|,
however, |c′| ≤ |c| if and only if the spatial gain parallel to−→c o is at least 	2/(2|c|) (cf. Jägersküpper (2003)) Thus, for
instance, the (conditional) probability (given |m| = 	) that
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the mutant is at least as close to the optimum/origin as its
parent equals

P
˘|c′| ≤ |c| given that |m| = 	

¯
=

1

Ψ
·

Z 1

min{1 , �/(2|c|)}

`
1 − x2

´(n−3)/2
dx (2)

(since |c′| ≤ |c| is impossible if 	 > 2|c|). The density of G�

will be considered again and in more detail in Section 5.

4. LOWER BOUND
As mentioned before, we want to obtain a general lower

bound on the number of steps to reduce the distance from
a fixed point in the search space Rn, for instance from the
(or a fixed) optimum of the function to be optimized. In
particular, we want to know how this number depends, on
the one hand, on n (the search space’s dimensionality) and
on the offspring-population size λ, on the other hand.

The idea behind this bound is the “curse of dimensional-
ity” in Rn. Therefore, first consider the search space {0, 1}n

and the standard mutation operator (namely, each bit is
independently flipped with probability 1/n). When we re-
peatedly mutate a search point without doing selection, then
each point in the search space is hit infinitely often as the
number of mutations approaches infinity.1 In particular, the
number of steps it takes the random search to visit a cer-
tain point is finite. Now consider Rn for n ≥ 3. Lets start
with a fixed point and repeatedly add an isotropically dis-
tributed vector (with an arbitrary distribution of the length
that might be degenerate, but not concentrated at 0) to
this point. Despite the fact that our starting point is never
exactly hit again, even the probability to get close to our
starting point tends to zero as the dimensionality increases,
even if the number of mutations approaches infinity.

Obviously, the search of a (1+, λ) ES is not purely random,
yet guided by selection – unless a flat fitness landscape is
given. Selection, however, merely means that search paths
that do not seem promising are no longer followed (pruned).
One may imagine that also these search paths would be
followed – in addition to the promising ones, of course.

In the following we modify the (1+, λ) ES
∗

such that we end
up with a search procedure that is independent of the func-
tion to be optimized and, thus, purely random: Consider the
(1+, λ) ES

∗
after initialization, i. e., an initial starting point

and an initial mutation strength are given. In the first step,
λ mutants are generated by respectively adding σ · fm to
the starting point. In contrast to the original (1+, λ) ES

∗
, we

now do not select one of the λ(+1) individuals, yet keep all
1 + λ search points as a population P1. After the first step,
σ may be up- or down-scaled – depending on the individu-
als’ function values. Thus, to also get rid of this function-
dependency, each of the 1 + λ points in P1 is mutated 3
times: once without changing σ, once with an up-scaled σ,
and once with a down-scaled mutation strength. Again we
keep all (1 + λ) · 3λ newly generated individuals. Conse-
quently, we have (1 + λ) + (1 + λ) · 3λ = (1 + λ)(1 + 3λ)
individuals after the second step in the population P2. Re-
peating this procedure, after i iterations a population Pi is

1this is also true, just for instance, for pure (i. e. selection-
less) random local search, where in each step one uniformly
chosen bit is flipped

generated which contains

(1 + λ)(1 + 3λ)i−1 ≤ (1 + 3λ)i = exp(ln(1 + 3λ) · i)
individuals. The crucial point is that Pi is built without
any dependency on the function to be optimized, and that
all search paths of the original (1+, λ)ES

∗
emerge in this

modified search procedure with the same probability den-
sity: Let S ⊂ Rn denote some (measurable) set. Then, the
probability that Pi hits S, namely P{S ∩ Pi �= ∅}, is an up-
per bound on the probability that the search point evolved
within i iterations of the original (1+, λ)ES

∗
is in S.

Now, if we knew that the probability that an individual
in Pi hits S is very small, say, upper bounded by e−ξn for
some ξ > 0, then the probability that Pi contains at least
one point from S would be bounded above by

#Pi · e−ξn =
exp(ln(1 + 3λ) · i)

exp(ξn)
= exp(ln(1 + 3λ) · i − ξn)

(note that the probability of a union of events is upper
bounded by the sum of the single-event probabilities even,
and in particular, if the events are not independent, which is
obviously the case here). Then we could choose i such that
ξn− ln(1+3λ) · i ≥ n · ξ/2, i. e., i ≤ (ξ/2) ·n/ ln(1+3λ). We
would obtain that (ξ/2) ·n/ ln(1+3λ) steps suffice only with

a probability of at most e−n·ξ/2. In other words, if ξ was
Ω(1), then Ω(n/ ln λ) steps (i. e. λ · Ω(n/ ln λ) mutations in
the original (1+, λ)ES

∗
) would be necessary w. o. p. (namely

with probability of 1−e−Ω(n)) to hit S. Obviously, we would
finally chose S to be the hyper-ball exactly consisting of all
points having at most halve the distance from the optimum
as our starting point.

After sketching the proof, we begin filling in the details
by noting some rather obvious properties of isotropically
distributed vectors.

Proposition 1. Let x ∈ Rn be isotropically distributed
and M ∈ Rn×n a fixed orthogonal matrix (i. e., M�M =
I). Then the distribution of Mx equals the one of x.

Proof. The multiplication with M corresponds to an
orthonormal transformation, and thus, x �→ Mx is a bijec-
tion in Rn that preserves the inner product, implying that
|Mx| = |x|. Thus, each vector in Rn has exactly one unique
pre-image, and both vectors have the same length. Finally,
vectors of the same length have equal density due to the
isotropy.

In other words, an isotropic distribution over Rn is invari-
ant w. r. t. orthonormal transformations and, in particular,
w. r. t. rotations of the orthonormal system.

Lemma 1. Let the vectors x, y ∈ Rn be independently
(not necessarily identically) isotropically distributed. Then
z := x + y is also isotropically distributed.

The proof can be found in the appendix. By induction, we
directly obtain

Corollary 1. Let the vectors x1, . . . , xk ∈ Rn be inde-
pendently (not necessarily identically) isotropically distribut-
ed. Then y := x1 + · · ·+ xk is also isotropically distributed.

All the individuals in Pi originate from the initial starting
point by adding isotropically distributed vectors to it. Due
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to our modifications – for which we pay with an exponential
growth of the population – all those vectors are indepen-
dently distributed. The preceding corollary tells us, that
each x ∈ Pi is isotropically distributed around the starting
point. We do not know the distribution of x’s distance from
the starting point, though. Yet this does not matter as the
next lemma will tell us.

Lemma 2. Let s ∈ Rn \ {o} be fixed and m ∈ Rn be iso-
tropically distributed. Then P{|s + m| ≤ |s|/2} is at most

e−0.647 (n−1)(2πn)−1/2 · (1 + Θ(n−2)).

Proof. Let d := |s| and z := d/2. Furthermore, let
r := |m| be the length of m. Henceforth, we assume r to
take some fixed value maximizing P{|s + m| ≤ z ||| |m| = r}.
According to the law of total probability, this leads to an
upper bound on P{|s + m| ≤ z}.

rz
α

h
SrSz

C

co

Let Sr ⊆ Rn be the hyper-sphere with radius r centered
at s and let Sz ⊆ Rn be the hyper-sphere with radius z
centered at the origin o. Moreover, let S≤z denote the ball
with hypersurface Sz. Let C := Sr ∩ S≤z denote the hyper-
spherical cap cut off from Sr by Sz. Obviously, |s + m| ≤ z
iff s+m ∈ C. Let A(C) and A(Sr) denote the hypersurface
areas of C resp. Sr. Since m is isotropically distributed,
P{|s + m| ≤ z} = A(C)/A(Sr), and hence, we need to esti-
mate A(C). Therefore, let R := Sr∩Sz denote the boundary
of the cap C.

Let L denote the line segment connecting o to s and let
c := L∩C. Then c ∈ C is the center of the cap C. Note that
all points in R, the boundary of the cap, have equal distance
from L. Let h denote this distance and let α := arcsin(h/r).
Then rα is the distance of c from R, the boundary of the cap,
within the (n−1)-space C, namely the spherical distance
w. r. t. the hyper-sphere Sr ⊃ C.

If we can show that A(C) is bounded above by the vol-
ume of an (n−1)-dimensional ball of radius αr, we can ap-
ply standard formulas for hypersurface areas and volumes
(where “Γ” denotes the well-known Gamma function):

A(C)

A(Sr)
≤ π

n−1
2 · (α · r)n−1

Γ
`

n−1
2

+ 1
´ .n · π n

2 · rn−1

Γ
`

n
2

+ 1
´

=
π

n−1
2 · (α · r)n−1

n · √π · π n−1
2 · rn−1

· Γ
`

n
2

+ 1
´

Γ
`

n−1
2

+ 1
´

=
αn−1

n · √π
· Γ(n/2 + 1)

Γ(n/2 + 1/2)

=
αn−1

n
√

π
· `p

n/2 + Θ(1/
√

n)
´

=
αn−1

√
2πn

· (1 + Θ(n−2)).

Hence, α ≤ 1 − ε for some constant ε > 0 will imply

that P{|s + m| ≤ z} = e−Ω(n). To show that α is indeed
bounded away from 1, we have to estimate h/r. A geometric
argument (in the next paragraph) yields h/r ≤ z/d. Since
z/d = 0.5 and h, r > 0, arcsin(h/r) ≤ arcsin(0.5) < e−0.647.
This will imply the lemma.

To show h/r ≤ z/d, let r ∈ R be some point in the
boundary of the cap and observe that the area of the triangle
defined by o, s, r is bounded above by half the area of a
rectangle with edges of length z and r. Since the area of the
triangle equals hd/2, we obtain hd/2 ≤ zr/2, implying the
claimed inequality since d, r > 0.

We still have to show that the hypersurface area A(C) can
be bounded by the volume of an (n− 1)-dimensional ball of
radius α r. Intuitively, we are confronted with the error
that is introduced by mapping the area of a part of a sphere
(e. g., the area of a continent) onto a plane (e. g., a map of
the continent). Of course, the larger the area compared to
the sphere, the greater the error is. Formally, for α ≤ π/2,
the hypersurface area of C can be expressed as

A(C) = rn−1 · 2π ·
Z α

0

(sin β)n−2dβ ·
n−3Y
i=1

Z π

0

(sin β)idβ

(cf. Appendix B in Ericson and Zinoviev (2001)). Since
sin β ≤ β for β ≥ 0, we obtain (by estimating the first
integral) that

A(C) ≤ 2π

n − 1
· (αr)n−1

n−3Y
i=1

Z π

0

(sin β)idβ.

The last expression is the anti-derivative of the hypersurface
area of an (n−1)-dimensional ball of radius αr, i. e., the
volume of this ball.

This lemma, which formalizes the curse of dimensionality
mentioned above, enables us to obtain the lower bound:

Theorem 1. Let a (1+, λ) ES
∗

optimize an arbitrary func-
tion f , and let y ∈ Rn be some fixed point (for instance
an optimum). Assume the initial search point has distance
d > 0 from y. Then, for n large enough, the number of
f-evaluations until |c − y| ≤ d/2b, where b : N → N such
that b = poly(n), for the first time is w. o. p. larger than
b · λ · 0.64n/ln(1 + 3λ), which is Ω(b · n · λ/ lnλ) for λ ≥ 2.

Proof. First note that e−0.647 (n−1)/Θ(
√

n) ≤ e−0.647 n

for n large enough. Thus, we can choose ξ := 0.647 in the
reasoning preceding Proposition 1. Rather than splitting ξ
into ξ/2+ξ/2 as done there, we split 0.647 into 0.64+0.007,
and obtain an upper bound of e−0.007n on the probability to
halve the distance. Finally, we add up the b “failure prob-
abilities” to obtain an upper bound of b · e−0.007n = e−Ω(n)

(because b = poly(n)) on the probability that (at least) one
of the b halvings needs only 0.64n/ ln(1+3λ) (or even fewer)
steps.

For Sphere, reducing the distance by a factor of 1/
√

2 cor-
responds to halving the Sphere value. Choosing z := d/

√
2

rather than d/2 in the proof of Lemma 2 and noting that
arcsin(1/

√
2) < e−0.241 directly yields:

Theorem 2. Let a (1+, λ) ES
∗

minimize Sphere and let
b : N → N such that b = poly(n). Then (unless the initial
search point is optimal) for n large enough, the number of
mutations until the Sphere-value is reduced to a 2−b-frac-
tion (of the initial one) is larger than b · λ · 0.24n/ln(1 + 3λ)
(which is Ω(b · n · λ/ ln λ) for λ ≥ 2) w. o. p.
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5. UPPER BOUND
Naturally, the upper bound on the runtime crucially de-

pends on the σ-adaptation which is actually used. We con-
sider the 1/5-rule, a deterministic (non-endogenous) adap-
tation. Jägersküpper (2003) proves that the (1+1) ES using
Gaussian mutations adapted by the 1/5-rule is able to keep
σ = Θ(|c|/n) for an arbitrary polynomial number of steps.
The proof can easily be adapted for the (1+λ) ES. Although
we cannot repeat the whole proof here due to the page limit,
we want to give the main ideas behind the reasoning:

The length of a Gaussian mutation differs from its mean
by ±10% only with probability 1 − Θ(1/n). As a conse-
quence, when σ = Θ(|c|/n), which results in an expected
spatial gain towards the optimum of optimum order Θ(|c|/n),
we expect all but a constant number of mutations in an ob-
servation phase (of n steps) to have a length of actually
Θ(|c|/√n). Then, by Chernoff bounds, w. o. p. in more
than 90% of the steps in a phase (where σ is kept con-
stant) |m| differs by no more than ±10%. Furthermore,
for a fixed σ, the success probability of a mutation, i. e. the
probability that the mutant is closer to the optimum than
its parent, drops as the distance from the optimum gets
smaller; cf. Equation (2). Hence, during an observation
phase the steps’ success probabilities cannot increase. As
a consequence, if the success probability in the first step of
a phase is small, say 0.1, then we expect at most 10% of
the phase’s steps to be successful. By Chernoff bounds, less
than 20% are actually successful so that σ is halved after the
phase – resulting in an increase of the success probabilities
in the next phase. Even though the success probability is
already small at the beginning of such a phase, each of the
steps yields a gain of maximum order Θ(|c|/n) with proba-
bility Ω(1). Again by Chernoff bounds, the number of steps
in the phase each of which actually yields a gain of Θ(|c|/n)
is Ω(n) w. o. p., so that, finally, the total gain of the phase is
w. o. p. a constant fraction of the distance from the optimum
at the beginning of the phase.

The treatment of a phase with a large success probabil-
ity like 0.4 is analog, in fact, even a little simpler since the
distance from the optimum cannot increase (recall: elitist se-
lection). All in all, we have that – for Sphere – the 1/5-rule
is able to make the right decisions (concerning the scaling
of σ). In particular, the progress of a phase cannot become
that large (w. o. p. in a polynomial number of steps) that the
mutation strength is no longer of optimal order Θ(|c|/n).

For the (1+λ) ES we consider the interesting case λ ≥ 2
and λ = O(n) (otherwise σ is adapted in each step anyway).
The mutation strength is kept unchanged for 
n/λ� itera-
tions, i. e., after fewer than 2n mutations adaptation takes
place. As we have seen in the lower bound on the runtime in
Section 4, the progress (between two sequent adaptations)
cannot be that large that the 1/5-rule would fail to follow.

Hence, we investigate the (expected) gain of a step of the
(1+λ) ES next. Therefore, we consider again the random
variable G�, the density of which is given in Formula (1).
Let J denote the hyper-plane containing c and being perpen-
dicular to line passing through c and the optimum/origin.
Then G� correspond to the “distance” of c + m from J ,
where m is isotropically distributed with |m| = 	; note that
this “distance” is negative if the mutant lies in the half-space
(w. r. t. J) that does not contain the optimum. The analysis
of the (1+1) ES utilizes that P{G� ≥ α · 	/√n} = Ω(1) for
any constant α. Since 	 = Θ(|c|/√n) (at least w. o. p. for

any polynomial number of steps) due to the 1/5-rule (as we
have recapitulated above), each step yields a spatial gain of
α · Θ(|c|/√n)/

√
n) = α · Θ(|c|/n) with probability Ω(1).

In the (1+, λ)ES, however, we consider the best of λ such
mutations. Since (1−Θ(1/λ))λ = Θ(1), we want to know for
which g ∈ [0, 	] we have P{G� ≥ g} = Θ(1/λ) because such a
gain g would be realized by the best of the λ mutations with
probability Ω(1). Therefore, we need a better approximation
of the integral over G�’s density (Formula (1) in Section 3).

Namely, we have for
√

n/3 ≥ β = Ω(1) and n ≥ 9Z 1

β/
√

n

(1 − x2)(n−3)/2 dx

≥
Z 2β/

√
n

β/
√

n

(1 − x2)(n−3)/2 dx

>
β√
n
· (1 − (2β)2/n)(n−3)/2 dx

using (1 − 1/k)k−1 > e−1 yields

>
β√
n
· exp

„
− (n − 3)/2

n/(2β)2 − 1

«

=
β√
n
· exp

„
−2β2 n − 3

n − 4β2

«

≥ β√
n
· exp

`−4β2´
On the other hand,Z 1

β/
√

n

(1 − x2)(n−3)/2 dx

≤
�√n/β	X

i=1

β√
n
· `

1 − (iβ/
√

n)2
´(n−3)/2

=
β√
n
·
�√n/β	X

i=1

`
1 − (iβ)2/n

´(n−3)/2

using (1 − 1/k)k < e−1 yields

<
β√
n
·

∞X
i=1

exp

„
− (n − 3)/2

n/(iβ)2

«

≤ β√
n
·

∞X
i=1

exp(−(iβ)2/3)

<
β√
n
· exp(−β2/3) · 1

1 − exp(−β2)

=
β√
n
· exp(−β2/3) · O(1),

where the last inequality follows because the summands of
the series drop by a factor of

exp(−(i+1)2β2/3)

exp(− i2 β2/3)
= exp(−(2i+1)β2/3)

i≥1

≤ exp(−β2).

As a consequence, for β = Ω(1) but β ≤ √
n/3Z 1

β/
√

n

(1 − x2)(n−3)/2 dx =
β√
n
· e−Θ(β2).

(Note that the integral’s value is obviously bounded by e−Ω(n)

for β ∈ [
√

n/3,
√

n ].) Thus, for
√

n/3 ≥ β = Ω(1)

P
˘
G� ≥ 	 · β/

√
n

¯
=

β√
n
· e−Θ(β2)

‹
Ψ = β · e−Θ(β2). (3)
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Let Gλ
� denote the maximum of λ independent copies of

G�. Since β · e−Θ(β2) = Θ(1/λ) for β = Θ(
√

lnλ) as well
as 1 − (1 − Θ(1/λ))λ = Ω(1), for any constant α we have
P{Gλ

� ≥ α · 	 · √ln λ/
√

n)} = Ω(1).
Thus – when σ = Θ(|c|/n) as discussed above – a step

yields a spatial gain of Ω(
√

ln λ·|c|/n) with probability Ω(1).
Recall that this gain was Ω(|c|/n) for the (1+1) ES. Thus,
doing λ ≥ 2 scaled Gaussian mutations instead of one in a
single step yields a factor of Θ(

√
lnλ) for (the lower bound

on) the gain of a single step (that is realized with a con-
stant probability) only – compared to the factor of λ in the
number of necessary function evaluations. However, exactly
– up to the additional Θ(

√
ln λ)-factor – re-doing the anal-

ysis presented by Jägersküpper (2003) for the upper bound
on the runtime of the (1+1) ES, finally results in the upper
bound for the (1+λ)ES:

Theorem 3. Let the (1+λ) ES minimize Sphere using
Gaussian mutations adapted by the 1/5-rule. Assume that
σ = Θ(|c|/n) after initialization. Then the number of steps
until the approximation error is reduced to a 2−b-fraction,
b : N → N s. t. b = poly(n), is O(b · n/

√
ln λ) w. o. p. (the

number of Sphere-evaluations is O(b ·n ·λ/
√

ln λ) w. o. p.).

So what about the (1,λ) ES? Reconsider the density of
G� (Formula (1) in Section 3): It is symmetric. In other
words, for any g ∈ [0, 	], we have P{G� ≥ g} = P{G� ≤ −g};
let p denote this probability. For Gλ

� , however, we have
P

˘
Gλ

� ≥ g
¯

= 1 − (1 − p)λ apposed to P
˘
Gλ

� ≤ −g
¯

= pλ.

Since 1 − (1 − p)λ ≥ 3 · pλ for λ ≥ 2 (since 0 ≤ p ≤ 0.5,
see appendix), a positive spatial gain of at least g ≥ 0 is
at least thrice as probable as a negative gain of at most
−g ≤ 0, for any g ≥ 0. In particular, this implies that
E

ˆ
Gλ

�

˜ ≥ E[Gλ
� · 1{Gλ

� ≥0}] /2, where the indicator variable
1{Gλ

� ≥0} zeroes out negative gains. Thus, for λ ≥ 2, the
difference between elitist and comma selection gets lost in
asymptotic notation we use.

However, as mentioned in Section 3, for Sphere a spatial
gain of 	2/(2|c|) is necessary for a mutation to be successful.
For small λ like 2, the factor 1/2 that we loose (at least in
the analysis) by switching from elitists selection to comma
selection is crucial. We have to choose λ large enough such
that E

ˆ
Gλ

�

˜ ≥ (1 + ε) · 	2/(2|c|) for a constant ε > 0. A
simple calculation (see appendix) yields that we can choose
λ = O(1). Then not only the expected drift away from
the hyper-plane J (which contains the parent), yet also the
expected drift towards the optimum is of the same order as
for elitist selection. In particular, this drift ensures that the
search never (w. o. p. for any polynomial number of steps)
increases the distance from optimum by an ε-fraction again,
where the constant ε can be chosen arbitrarily small. This
implies that the 1/5-rule keeps σ = Θ(|c|/n) also for comma
selection. Hence, we obtain

Theorem 4. A constant κ exists such that for λ ≥ κ
Theorem 3 also holds when using comma selection (instead
of elitist selection).

6. DISCUSSION AND OUTLOOK
Naturally, one may ask why the upper and the lower

bound on the runtime do not meet – they differ by a fac-
tor of O(

√
ln λ) for λ ≥ 2. The model-based result on the

progress-rate by Beyer (2001, Formula 3.116) indicates that

the lower bound “w. o. p. Ω(n/ ln λ) iterations” is tight, i. e.,
that an (1+, λ) ES using appropriately adapted isotropic mu-
tations should be able to halve the approximation error in
O(n/ ln λ) iterations (i. e., λ ·O(n/ ln λ) Sphere-evaluations
should suffice) with a high probability.

If so, two possibilities are left: Either the analysis pre-
sented here resulting in the upper bound is too weak, or
the 1/5-rule fails to adapt the mutation strength σ appro-
priately. And indeed, the 1/5-rule fails. The reason is that
this rule tries to maximize the expected gain of a single
(isotropic) mutation. Yet in fact, the gain of the best of λ
mutants should be maximized. Therefore, a slightly larger
mutation strength seems appropriate – and necessary. This
does not mean, however, that a “success frequency”-based
rule cannot work at all: For the (1+λ) ES, a slight modifica-
tion of the 1/5-rule indeed results in optimal performance:
Therefore, assume λ = O(n1−ε) for a constant ε > 0. The
(1+λ) ES with modified 1/5-rule reads

1. FOR (int i := 1; i ≤ λ; i++) DO

Create a new search point y[i] := c + m with
m := σ · fm, where each component of fm ∈ Rn

is independently standard-normally distributed.

2. IF mini∈{1,...,λ}{f(y[i])} ≤ f(c)

THEN g := g + 1 and c := argmini∈{1,...,λ}{f(y[i])}
ELSE b := b + 1.

3. IF λ · (b + g) ≥ n THEN

(a) IF g < (g + b) · (1/5)
THEN σ := σ/2 ELSE σ := σ · 2.

(b) g := 0. b := 0.

4. GOTO 1.

The number of steps for observation/between two sequent
σ-adaptations (namely 
n/λ�) is Ω(nε). The number of steps
in which the best of the lambda mutants is at least as good
as its parent is counted – rather than the number of mu-
tants. Recall that there is a certain α′ = Θ(1) such that
P{Gλ

� ≥ α′ · 	 · √ln λ/
√

n)} = 1/5 as we have seen in the
previous section. Recall also that for a mutation with |m| =

	, |c+m| ≤ |c| ⇔ G ≥ 	2/(2 |c|). Solving α′ ·	 ·√ln λ/
√

n =

	2/(2 |c|) for 	 yields 	′ := 2 · |c| · α′ · √ln λ/
√

n. Thus, if
isotropic mutations with length 	′ were used, then a step
would succeed (i. e., the best of the λ mutants is at least as
good as the parent) with probability 1/5. Interestingly, 	′ is

by a factor of Θ(
√

ln λ) larger than the expected length of a
scaled Gaussian mutation when using the original 1/5-rule.

So, 	′ is such that P{Gλ
�′ ≥ 	′2/(2 |c|)} = 1/5. More-

over, 	′2/(2 |c|) = 2 · |c| · α′2 · lnλ/n = Θ(lnλ · |c|/n).
The results from the previous section tell us that in fact
P

˘
Gλ

�′ ≥ β · lnλ · |c|/n
¯

= Ω(1) for any constant β. In
particular, we can choose β such that (given |m| = 	′)
P{|c + m| ≤ |c| − ln λ · |c|/n} = Ω(1), i. e., the distance from
the optimum is reduced by a (ln λ/n)-fraction with proba-
bility Ω(1) – if isotropic mutations of length 	′ were used.

If there was no page limit, we would now show that the
modified 1/5-rule in fact ensures σ = Θ(

√
ln λ · |c|/√n) (at

least w. o. p. for any polynomial number of steps) so that

E[σ · fm] = Θ(	′) = Θ(
√

lnλ · |c|/n) for scaled Gaussian mu-

tations – which is precisely by a factor Θ(
√

ln λ) larger than
with the original 1/5-rule. Then we could again re-do the
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analysis presented by Jägersküpper (2003), and we would
finally obtain

Theorem 5. Let the (1+λ) ES, where λ = O(n1−ε) for
a constant ε > 0, minimize Sphere using Gaussian muta-
tions adapted by the modified 1/5-rule. Assume that after
initialization σ = Θ(lnλ · |c|/n). Then the number of steps
until the approximation error is reduced to a 2−b-fraction,
b : N → N such that b = poly(n), is O(b·n/ ln λ) w. o. p. (the
number of Sphere-evaluations is O(b · n · λ/ ln λ) w. o. p.).

It remains an open question, however, whether there is a
“simple” (deterministic?) σ-adaptation (for isotropic muta-
tions) that makes also the (1,λ) ES achieve optimal perfor-
mance on Sphere. The question may also read: Can we
prove that it does achieve optimal performance.
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Jägersküpper, J., Witt, C. (2005): Rigorous runtime analy-
sis of a (μ+1)ES for the sphere function. In Proc. Genetic
and Evolutionary Computation Conference (GECCO),
849–856, ACM Press.

Jansen, T., De Jong, K. A. (2002): An analysis of the
role of offspring population size in EAs. In Proc. Genetic
and Evolutionary Computation Conference (GECCO),
238–246, Morgan Kaufmann.

Neumann, F., Wegener, I. (2004): Randomized local search,
evolutionary algorithms, and the minimum spanning tree
problem. In Proc. Genetic and Evolutionary Computa-
tion Conference (GECCO), vol. 3102 of LNCS, 713–724,
Springer.

Rechenberg, I. (1973): Evolutionsstrategie. Frommann-
Holzboog, Stuttgart, Germany.

Schwefel, H.-P. (1995): Evolution and Optimum Seeking.
Wiley, New York.

Storch, T., Wegener, I. (2003): Real royal road functions for
constant population size. In Proc. Genetic and Evolution-
ary Computation Conference (GECCO ’03), vol. 2724 of
LNCS, 1406–17, Springer.

Witt, C. (2004): An analysis of the (μ+1) EA on sim-
ple pseudo-boolean functions. In Proc. Genetic and Evolu-
tionary Computation Conference (GECCO), vol. 3102 of
LNCS, 761–773, Springer.

Witt, C. (2005): Worst-case and average-case approxima-
tions by simple randomized search heuristics. In Proc.
22nd Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS), vol. 3404 of LNCS, 44–56,
Springer.

Yao, X., Liu, Y., Lin, G. (1999): Evolutionary programming
made faster. IEEE Transactions on Evolutionary Compu-
tation, 3(2):82–102.

APPENDIX
Proof of Lemma 1
The density of (the distribution of) z at a point b ∈ Rn is

Dz(b) =

Z
a∈Rn

Dy (b − a) · Dx(a) da.

We must merely show that Dz(Mb) = Dz(b) for any orthog-
onal matrix M ∈ Rn×n since, by choosing M appropriately,
any vector of length |b| is covered. Recall that x �→ Mx
actually defines a bijection in Rn that preserves the vectors’
lengths. We have

Dz(Mb) =
R

a∈RnDy(Mb − a) · Dx(a) da

=
R

a∈RnDy(Mb − Ma) · Dx(Ma) da

because {Ma | a ∈ R
n} = R

n

=
R

a∈RnDy(M (b − a)) · Dx(Ma) da

=
R

a∈RnDy(b − a) · Dx(a) da = Dz(b)

because Dy(M (b−a)) = Dy(b−a) and Dx(Ma) = Dx(a)
as we have already seen in the proof of Proposition 1.

Proof of an inequality
We prove 1 − (1 − p)λ ≥ 3 · pλ for λ ≥ 2 and 0 ≤ p ≤ 0.5,
starting with λ = 2.

1 − (1 − p)2 ≥ 3p2

⇐⇒ 2p − p2 ≥ 3p2

⇐⇒ 2p ≥ (2p)2

For λ ≥ 3, we have 3pλ = pλ−2 · 3p2 as well as

1 − (1 − p)λ = (1 − p)λ−2
`
(1 − p)2−λ − (1 − p)2

´
≥ (1 − p)λ−2`

1 − (1 − p)2
´
,

and hence, we merely have to show that (1− p)λ−2 ≥ pλ−2,
which in fact holds since p ∈ [0, 1/2].

Moreover, if 0 ≤ p ≤ 1/2 − ε for a constant ε > 0, then
for any constant c, we can choose λ large enough such that

(1 − p)λ−2 ≥ (1/2 + ε)λ−2 ≥ c · (1/2 − ε)λ−2 ≥ c · pλ−2

(and consequently 1− (1− p)λ ≥ 3c · pλ). Thus, if g is such
that P{G� ≥ g} ≤ 1/2 − Ω(1), namely g = Ω(	/

√
n), then

P
˘
Gλ

� ≥ g
¯ ≥ 3 · c · P˘

Gλ
� ≤ −g

¯
for λ large enough.
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