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ABSTRACT

Simulated annealing and the (141) EA, a simple evolution-
ary algorithm, are both general randomized search heuris-
tics that optimize any objective function with probability
converging to 1. But they use very different techniques
to achieve this global convergence. The (14+1) EA applies
global mutations than can reach any point in the search
space in one step together with an elitist selection mecha-
nism. Simulated annealing restricts its search to a neighbor-
hood but employs a randomized selection scheme where the
probability for accepting a move to a new point in the search
space depends on the difference in function values as well as
on the current time step. Otherwise, the two algorithms are
equal. It is known that the different philosophies of search
implemented in the two heuristics can lead to exponential
performance gaps between the two algorithms with respect
to the expected optimization time. Even for very restricted
classes of objective functions where the differences in func-
tion values between neighboring points are strictly limited
the performance differences can be huge. Here, a more local
point of view is taken. Considering obstacles in the fitness
landscapes it is proven that the local performance of the
two algorithms is remarkably similar in spite of their differ-
ent search behaviors.
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1. INTRODUCTION

General randomized search heuristics are a broad class of
algorithms that are often applied to optimization problems
when no satisfactory problem-specific algorithm is at hand.
Well-known examples for such search heuristics are simu-
lated annealing (SA) and evolutionary algorithms (EAs).
While these algorithms are important for the pragmatic so-
lution of real-world problems, there is a growing body of
theoretical work concerned with the analysis of the perfor-
mance such algorithms can deliver and their restrictions.
One aspect that routinely is studied is the global conver-
gence of these search heuristics, i.e., the question whether
an algorithm finds an optimal solution for any given objec-
tive function with a probability that converges to 1 with
increasing run time of the algorithm. In particular, such
studies have been made for simulated annealing (see for ex-
ample [2, 5]) as well as for evolutionary algorithms (see for
example [15]). Due to the generality of these results they
cannot come with any upper bound on the optimization time
that is of practical relevance: since they hold for any objec-
tive function they also hold for classes of very hard problems
where all algorithms need on average exponential optimiza-
tion time [3]. More relevant with respect to practical ap-
plications are studies of the expected optimization time on
restricted classes of objective functions. Examples of studies
for concrete classes of functions include [11, 16, 17] among
many others.

Considering simulated annealing and a very simple evolu-
tionary algorithm, namely the (141) EA, it is interesting to
see how the two algorithms manage to guarantee global con-
vergence. We consider both algorithms for the maximization
of a pseudo-boolean function f, i.e., f: {0,1}" — R. Both
algorithms search based on one single current point in the
search space and create in each round only one new point
by randomly changing the current search point. Whereas
simulated annealing picks this point from the neighborhood
of the current point the (14+1) EA can choose any point in
the search space using standard bit mutations. It is this
property that is crucial for the global convergence of the
(141) EA. After the new point is chosen, both algorithms
consider the function values of the old and the new point
and decide whether they want to accept the new point as
new current search point or rather stick to the old one. The
(141) EA keeps the old point if its function value is larger
than that of the new point. In simulated annealing, the same
rule is applied. In addition, the new point may still replace
the old point (if its function value is smaller) with some
probability depending on the difference in function values



and the time elapsed since the start of the algorithm. The
function that defines this probability is referred to as cool-
ing schedule and only the choice of an appropriate cooling
schedule guarantees global convergence.

In some sense simulated annealing and the (14+1) EA are
quite similar: they perform a random search based on a pop-
ulation of size 1 using an offspring population of size 1 and
relying on mutation and selection, only. On the other hand,
the two algorithms are very different. The (141) EA relies
on a global mutation and uses strict elitist selection together
guaranteeing global convergence. Simulated annealing uses
a local mutation but a more complex probabilistic selection
leading to global convergence given that an appropriate cool-
ing schedule is used. It is therefore natural to ask if the two
randomized search heuristics show similar performance or if
reasons for performance differences can be identified. An-
swers to these questions can help to choose the appropriate
search heuristic when characteristics of the objective func-
tion are known.

Without any restriction on the objective function, it is
not difficult to come up with example functions that demon-
strate an exponential performance gap between the expected
optimization time of simulated annealing and the (14+1) EA
— in both directions. If an objective function has a unique
global optimum that is surrounded by a (with respect to
Hamming distance) small valley with enormously small
function values, the (14+1) EA will have no difficulties to
jump over this valley whereas simulated annealing needs ex-
ponentially many steps to accept such a huge decrease in
function value. If, on the other hand, an objective func-
tion has a unique global optimum that is located at the end
of a thin ridge of linear length with function values that
on the ridge are almost constant but only decreasing very
slightly then simulated annealing can perform an almost un-
biased random walk on this ridge and find the optimal solu-
tion quickly whereas the (14+1) EA will wait an exponential
amount of time for a big mutation across the ridge to the
global optimum. In [7], such examples are elaborated and
the performance of the two search heuristics is analyzed rig-
orously. Therefore, restrictions on the objective functions
are necessary in order to come to more meaningful results.

Again in [7], a class of functions f: {0,1}" — Z called
smooth integer is defined, where the function values of two
Hamming neighbors differ by at most 1. Clearly, the exam-
ples discussed above are not smooth integer functions. But
even on such smooth functions simulated annealing and the
(1+1) EA may have expected optimization times that dif-
fer by a factor that can be as large as n* for any constant
k. Here, we consider such smooth integer functions and
describe obstacles in the fitness landscapes the two search
heuristics may encounter. We present a rigorous perfor-
mance analysis of the expected time needed to overcome
one such local obstacle. In this sense, we present an analy-
sis of the local performance of simulated annealing and the
(14+1) EA. We show that in spite of the very differing global
performance the time needed to overcome such local obsta-
cles is remarkably similar for the two algorithms. This is, as
far as we know, the first theoretical analysis of such different
general search heuristics on a quite large class of functions
yielding such a general result.

In the next section, we present formal definitions of both
algorithms, the class of functions considered, and the type of
obstacles we investigate. In Section 3, we present and prove
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results on the expected time needed to overcome these obsta-
cles. We conclude with remarks on possible future research
in Section 4.

2. DEFINITIONS

Kirkpatrick, Gelatt, and Vecchi [12] introduced simulated
annealing as a global optimization heuristic that is inspired
by the annealing process in metallurgy. The algorithm is a
generalization of the well-known Metropolis algorithm [13].
We give a formal definition of SA suitable for maximization
of a function f: {0,1}" — R.

Simulated Annealing (SA)

0. t:=1

Choose z; € {0,1}" uniformly at random.

2. Y=y
Choose i € {1,...,n} uniformly at random,
set the bit y; := 1 — y;.

3. With probability min{1, a(t)? @ =F(=0)} get
Tiy1 =y, else set xi41 1= x4,

4, t:=t+1

5. Continue at line 2.

—_

The function «: N — [1; 00( plays the role of the cooling
schedule. Usually one has, in the case of maximization, a

probability min{l,e(f(y)ff(z))/T(t)} for accepting a move

from x to y where T'(t) is the current temperature. In our

notation, we set a(t) := e/T® which implies that a(t) > 1.
(14+1) EA

0. t:==1
Choose z; € {0,1}" uniformly at random.
2. Y=y
Independently for each bit y;, with
probability pm (t) set y; := 1 — y;.
3. If f(y) > f(xe), set xe41 =y, else set Try1 1= x¢.
4. t:=t+1
5.  Continue at line 2.

Usually, the (14+1) EA is used with a fixed mutation prob-
ability pr, with p,, = 1/n being the most recommended and
usual choice. It is known that situations exist where this
standard setting is far from being optimal [8]. Moreover,
it is also known that for some problems choosing a time-
dependent schedule for the mutation probability can be very
beneficial [10]. Therefore, we consider the (14+1) EA with
a mutation schedule that may change in every generation.
This is in better accordance with a fair comparison with
SA, too, since SA uses a time-dependent cooling schedule
and not a fixed temperature.

Since both algorithms find a global optimum of any
pseudo-boolean function f with probability 1 — at least
if the parameters o and p.,, are set appropriately — the
most interesting question to ask is how long this takes. For
both algorithms, we define a random variable that we call
Tea(f) for the (14+1) EA with mutation probability pm(t)
and Tsa(f) for simulated annealing. Both variables are de-
fined by min{t > 1| f(x:) = max{f(z') | 2’ € {0,1}"}}.
We call Tea(f) and Tsa(f) the optimization time and are
mostly interested in E (Tea(f)) and E (Tsa(f)), the expected
optimization times.

Run time analyses of (randomized) algorithms are hardly
ever exact to the level of single steps. Typically, worst case
analyses presenting asymptotic results with respect to the

—_



size of the inputs n are given [1, 14]. We adopt this ap-
proach and present analyses presenting asymptotic results
with respect to the dimension of the search space n. We
give a formal description for the well-known notions for the
asymptotic growth of functions for the sake of completeness.

DEFINITION 1. Let f,g: N — R™ be two functions.

e f=0(g) iff Ino € N,c € R": ¥n > ng:
f(n) <c-g(n).

o [=Q(g) iff 9= O(f).
o f=0(g) iff f=0(g) and f = Q(g).
o [=olg) iff lim f(n)/g(n)=0.

o f=wl(g) iff g=o(f).

Since large differences in function values present one main
source of performance differences for SA and the (14+1) EA,
we rule this out by considering smooth integer functions,
only. Moreover, we will restrict ourselves to functions of
unitation, i.e., functions where the function value f(z) de-
pends on the number of one-bits in z, only. The latter choice
makes the description of the functions much easier. Note,
however, that for more general smooth integer functions ef-
fects may occur that cannot be observed with functions of
unitation. In this sense we present a quite specific analysis,
here.

DEFINITION 2. A pseudo-boolean function f: {0,1}" —
R is called smooth integer (s.i.), if f(z) € Z for all x €
{0,1}" and if |f(z) — F(y)] < H(z,y) for all z,y € {0,1}",
where H(x,y) denotes the Hamming distance between x and

Y.

DEFINITION 3. A pseudo-boolean function f: {0,1}" —
R is called a function of unitation, if f(x) = f(y) holds for
all z,y € {0,1}" with H(z,0") = H(y,0™). Let U, denote
the set of all such functions. Let U, denote the set of all
functions from U, that have a unique global optimum at the
all one bit string 1™.

Clearly, the class U,; is a quite restricted class of pseudo-
boolean functions. Note, however, that many example func-
tions typically considered when analyzing the performance
of evolutionary algorithms belong to this class. Moreover,
many other example functions can be changed in such a way
that they keep their characteristic properties while becom-
ing members of U,,.

We are interested in comparing the local performance of
SA and the (141) EA when meeting “obstacles” in the land-
scape defined by some objective function from U,;. Since
the unique global optimum is at 1", we measure the average
time the heuristics need to reach 1™ when considering the
optimization time. Assume that the current search point
contains k one-bits (with & < n) and consequently n — k
zero-bits. Clearly, both algorithms need to visit some point
with at least k + d one-bits (with d > 0) in order to reach
the global optimum. More particular, SA needs to visit at
least one point with exactly £+ d one-bits for each d < n—k
before reaching the global optimum. This is due to the lo-
cal search operator used by SA. The (1+1) EA, on the other
hand, may reach 1" via a direct mutation. But this becomes
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Figure 1: Illustration of an (k,d)-obstacle for the
(14+1) EA.

less likely with increasing distance to the optimum. One may
believe that this can be counteracted by increasing the mu-
tation probability. But since the number of possible “target
points” (i.e., strings with at least k + d’ one-bits) decreases
with increasing d’ rather rapidly, this counteraction is useful
only to a certain extent. This reasoning assumes, however,
that we have k > n/2. But we are safe to assume this any-
way, since restarts are a common and useful mechanism to
increase the performance of any randomized search heuristic
[6]. Using an appropriate restart mechanism one can have
runs where initially the number of ones in the population
is bounded below by (n/2) + v with probability close to 1
for not too large values of v. For v = Q(y/n) however, this
probability converges to 0 quickly with growing v. Thus, we
restrict our considerations to obstacles at positions k where
k = (n/2) + Q(v/n) holds. Obstacles at positions k with
smaller values of k can pose no difficulties that cannot be
escaped by restarts alone.

Since SA and the (1+1) EA employ quite different search
strategies, different kinds of landscapes pose difficulties for
these two algorithms. We mirror this fact in the following
definition of an obstacle for the two algorithms.

DEFINITION 4. Let f € U} be a function of unitation and
smooth integer and let v; be its value on inputs with exactly i
ones. The function f has an (k,d)-obstacle for the (1+1) EA
if vm < v if kK <m < k+d and vgrqa > vi. The function
has a (k,d)-obstacle for SA if vik > Vk41 > -+ > Uktd—1
and Vkid > Vk41-1-

Since the (141) EA does not accept any point with smaller
function value, any region with function values strictly
smaller than that of the current search point is an obsta-
cle for the (141) EA. The exact function values in that
region are of no importance. An illustration of one such
(k, d)-obstacle for the (14+1) EA can be seen in Figure 1.

Simulated annealing can accept any neighboring point as
new search point but the probability for a move decreases
with the function value of the new point. Thus, we define
an obstacle for SA as a sequence of points with decreasing
function values. An illustration of such an obstacle is given
in Figure 2.

Note that obstacles for simulated annealing are stronger:
each (k,d)-obstacle for SA is also a (k, d’)-obstacle for the
(1+1) EA for some d’ > d. The converse is not true.

We use the notion “an algorithm can overcome a (k,d)-
obstacle” to describe that the expected time the algorithm
needs to to reach a level [ where [ > k -+ d starting from level
k is polynomial if steps to levels I’ < k are never accepted. In
this restricted framework, we are now prepared to compare



number
of ones

Figure 2: Illustration of an (k,d)-obstacle for SA.

the performance of simulated annealing and the (1+1) EA
in sight of such obstacles. Note that for both algorithms
appropriate settings of the parameters can and should be
used. Thus, ‘SA can overcome an obstacle’ means that it can
do so using an appropriate annealing schedule. Similarly,
‘the (14+1) EA can overcome an obstacle’ means it can do
so using an appropriate mutation probability.

3. ANALYSISOF THE PERFORMANCEAT
OBSTACLES

While the expected optimization time is a global measure
we take a more local point of view, here. We determine
which obstacles the two heuristics can overcome in expected
polynomial time. Note that this is still a much more global
point of view than considering the one-step behavior. In
particular, it is known that comparing the one-step behavior
of search heuristics may have no relevance with respect to
the global performance at all [9].

We begin with a result for simulated annealing that gives
an asymptotically precise answer to the question which size
obstacles may have that still allow for polynomial expected
optimization times.

THEOREM 1. SA can overcome (k(n),d(n))-obstacles for
SA with k(n) = (n/2) + Q (v/n) iff
log(n — k(n)) )
log(n) —log(n — k(n))

d(n):O<1+

holds.

PRrROOF. Let k(n) < m < k(n) + d(n) and let the cur-
rent string of SA contain exactly m ones. The probabil-
ity that the string of the next generation contains m — 1
ones equals m/n and the probability that the string of the
next generation contains m+ 1 ones equals (n—m)/(a(t)n).
Since a(t) > 1 and SA cannot over-jump levels, we can set
a(t) = 1.

First, we optimistically replace the probabilities to k(n)/n
for going one level down and (n — k(n))/n for going one
level up. Then we are in the situation of the gambler’s ruin
problem [4]. It takes an expected time of O(n) to reach
level k(n) + 1. Then Alice owns one dollar and Bob owns
d(n) — 1 dollars. Alice’s probability of winning one round
equals (n — k(n))/n < 1/2. For t(n) = k(n)/(n — k(n)), the
probability that Alice ruins Bob before being ruined herself
equals

t(n) —1
t(n)dm —1°
Such a win is necessary to overcome the obstacle. She
needs an expected number of trials to ruin Bob once that is
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polynomially bounded iff the reciprocal
t(n)*™ —1
t(n)—1

is polynomially bounded. This is equivalent to the condition
that ¢(n)%™ is polynomially bounded, more precisely

This is equivalent to

d(n) (log(n) — log(n — k(n))) = O(logn)

and

B log(n — k(n))
d(n) =0 <1 + log(n) — log(n — k(n))) .

We have made the optimistic assumption that the prob-
ability of going one level up does not decrease as it does in
reality. It gets its smallest value of (n — k(n) —d(n) +1)/n
one level below the target level. Then the critical term ¢(n)
equals

k(n)+d(n) —1
n—k(n)—dn)+1°
As long as d(n) fulfills the inequality derived above this value
is at most by a constant ¢ larger than the best situation one

level above the initial level. Since d(n) = O(logn), ¢™ is
polynomially bounded and we have proved the theorem. [l

The following examples illustrate the bound of Theorem 1.
Let v(n) :=n — k(n). Then

e v(n) = cn and ¢ < 1/2 implies d(n) = O(log n).
e v(n) = n/logn implies d(n) = O(log(n)/loglogn).
e y(n) = O(n®) and € < 1 implies d(n) = O(1).

The closer the obstacle is located to the unique global op-
timum 1", the smaller it has to be if simulated annealing
is to cope with it on average in polynomial time. This is
due to the search bias induced by the local search opera-
tor of simulated annealing. The closer the algorithm gets
to the unique global optimum the less likely are steps still
decreasing the Hamming distance to this point. Clearly, the
(1+1) EA with its mutation operator acting globally can
behave quite differently. Interestingly, the following result
reveals that the performance with respect to the obstacles
we consider is nevertheless very similar.

THEOREM 2. The (1+1) EA can overcome (k(n),d(n))-
obstacles for the (1+1) FA with k(n) = (n/2) + Q (/n) iff
log(n — k(n)) )
log(n) — log(n — k(n))

d(n):O(1+

holds.

PRrROOF. The (1+1) EA overcomes a (k(n), d(n))-obstacle
iff a mutation of the current string containing exactly k(n)
ones and ~y(n) zeros (with v(n) = n — k(n) as above) pro-
duces an offspring with at least k(n) + d(n) ones. This
happens if exactly [ 4+ ¢ out of the v(n) zeros and ¢ out
of the k(n) ones flip for some I € {d(n),d(n) +1,...,v(n)},
1€{0,1,...,v(n) —l}. Let pi(n,k(n),l,i) denote the prob-
ability for the mutation of ¢ out of k(n) ones and let po(n,



k(n), I, ©) denote the probability for the mutation of [ + ¢
out of y(n) zeros. Clearly, we have

<’f(.”)> (&) - (1 = ()

p1(n, k(n),l, 1)

2

po(n, k(n), L) <”(”).> () (1= pa (1))

l+1
and
q(n, k(n),1,4)

() v(n)—l

> po(n,k(n),1,i) - pi(n, k(n),1,4)

=0

l=d(n)

as probability to overcome a (k(n),d(n))-obstacle. This

probability depends on the mutation probability.

We want to determine when ¢(n, k(n), 1,i) ! = n®® holds.

Considering the definition of g(n,k(n),l,i) we see that for
each value of [ the inner sum equals the probability to pro-
duce an offspring with exactly k(n) + [ ones. Since there
are O(n) different values [ takes, the total probability is
bounded below by the reciprocal of some polynomial iff one
of the summands is. Since there are O(n) different values 4
takes, the same holds for the inner sum. Thus, we consider

p1(n, k(n),L,7) - po(n, k(n),1,1)

_ <’ZS:L2) . <k(zn)> ()2 (1 = p ()

in the following. Considering the first derivative we see that
this term takes its maximal value for p.(t) = (I 4+ 2i)/n.
Therefore, we restrict our attention to this choice in the
following. We see that

(p1(n,k(n),1,4) - po(n, k(n), 1, i))71 =nW

holds iff p1(n, k(n),1,i)~t = n®® and po(n, k(n),l,7)~?
n°® both hold. This is due to the fact that pi(n, k(n),l, )
and po(n, k(n), [, i) are both probabilities. Thus, if one of the
two probabilities converges to 0 super-polynomially fast the
other factor cannot compensate for that since it is bounded
above by 1.

We consider p1(n, k(n),, ) first and begin with the special
case i = 0. We have

I k(n) I (n/1)-1-(k(n)/n)
p1(n, k(n),1,0) = <1 — —) = <1 - —)

n n
— o~ OWkm)/m)) _ 0

and see that p1(n, k(n),1,0)"! = n°® holds iff | = O(log n).

For ¢ > 0, let M; denote the number of flipping ones.
This implies Prob (M1 = i) = p1(n, k(n),l,7). The expected
number of flipping ones equals k(n) - (I + 2¢)/n and we see
that

S(l42i) >
holds. This implies
Prob (M1 = i) < Prob (M; <i) < (i+ 1) - Prob (M1 =)

since Prob (M, = i) grows with increasing i. Since we have
0 < 7 < n it suffices to consider Prob (M; < ¢). Application
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of Chernoff [14] bounds yields
Prob (M; < 4)
ni

Prob <M1 = <1_ (1 - m))

k(n)(l + 2i)
n
n n i \2 lk(n)+2ik(n)—ni)?
< TR (- EE) /2 L R
. n 2
(l+21 k(ﬁ)”’)

_27

— ¢ Ty (20

—O(i+i)

We see that pi(n,k(n),l,i)~" = n°® holds iff | + i
O(logn). We take this into account when considering po(n,

k(n), 1, 4).

In the special case | + ¢ = y(n) we have
, 20\ 20 +9)\""
k(n),l,i) = —— kLA .
pO(n7 (’I’L), 72) ( n ) < < n
We see that (n/(2(1 + )))*" = n®®
in this case.

In the general case we use 0 < d(n) <1+ < y(n) and

holds iff I +¢ = O(1)

have
po(n, k(n)
) ey ey
+1 n
RGO (77((723)'“).(1221-)1“

4 2i\ T
)

.<1_
<\/( )(7((:))7 =) <v(n)7(7n; - i)w(n)_l_i
I+ N N
()" ()" ()

(1_l+ )v(n) - 1)

n
by Stirling’s formula. Remember that we have [ + i =
O(logn) and only want to determine when po(n, k(n), I,
i)™ = n°® holds. We see that

\/ (+)m) —1=9) _ o
v(n) ’
<l+i)m B <1+ i\ e
I+ 2 I+ 2
= 00 =00

and

420\ M\ T
(-57)

n
L2 i Y 1420)
(-=%)

LOU+) _ o)



hold. Thus, it suffices to determine when

Gia) () ()™
o ' D)
CESICORCE

_ 00
holds. Since
() s
<,y(n) li))"/(n) B <1 B l+i) T (41
v(n) v(n)
LOU+) _ 0()

holds, we only have to determine when

I+ i
n . n :no(l)
('y(n)flfi) (l+2’i)

holds. We consider (n/(l + 2i))* and remember that we can
assume [ + ¢ = O(log n). This implies ¢ = O(1) is necessary
for (n/(1+ 2i))" = n°®. Remembering that we have [ > d
we see that po(n, k(n),1,7)~! = n®D holds iff

n
din [ — ) = Ologn
(=) = otosm
holds. Clearly,

i—0 <1 4 log(y(n)) )

log(n) — log(v(n))

suffices since

log(y(n)) _ log(n)
<1  log(n) - 10g(7(n))) = Toa(n/(m))
implies
ain (v(n) = d)
_ log(n) o n
=0 (rog(n‘ () %% (wn) R CT . ))
= O(logn).
Furthermore,
W log(7(n))
4= (1 T Tog(n) - logmn)))

implies

dln <m) = w(logn)

n — k(n) completes the

in the same way. Using v(n)
proof. [

Theorem 2 reveals an interesting fact about the perfor-
mance of the (1+1) EA on functions from f € U, that are
smooth integer. Due to our definition, there are many ways
how the (141) EA can overcome a (k(n),d(n))-obstacle:
reaching any point with at least k(n) + d(n) ones suffices.
This is in some sense optimistic. When optimizing such a
function f it depends on the function values of search points
with at least k(n)+d(n) ones if the (k(n), d(n))-obstacle can
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really be overcome this way. From the calculations in the
proof of Theorem 2 we learn that all (k(n),d(n))-obstacles
are of equal difficulty. Reaching any level k(n) + d(n) + i
with ¢ > 0 is with respect to polynomial expected waiting
time not easier than reaching the level k(n) + d(n).

Due to the differences in the search operator and the dif-
ferent ways of accepting new search points, obstacles for SA
and the (1+1) EA are different. But Theorems 1 and 2 re-
veal that SA and the (141) EA can overcome obstacles of the
same size and location in expected polynomial time. Note,
however, that nothing is said about the concrete expected
number of steps needed by both algorithms. We know that
the expected time needed to overcome an obstacle is poly-
nomial for both algorithms (given that size and location of
the obstacle is given as described in Theorems 1 and 2) but
we should not expect to see polynomials of the same degree.

4. CONCLUSIONS

Simulated annealing and the (1+1) EA are two exam-
ples for general randomized search heuristics, a large class
of algorithms that are often used in real-world optimization
problems when no problem-specific algorithm can be used.
The theoretical analysis of such search heuristic has the po-
tential to deliver insights in the behavior of the algorithms
that can lead to guidelines describing what specific search
heuristic should be used given some characteristics of the
optimization problem at hand.

Simulated annealing and the (1+1) EA bear some resem-
blance but employ very different search mechanisms. It does
therefore not come as a surprise that they can exhibit very
different search behavior. Concentrating on a very restricted
class of objective functions, pseudo-boolean functions that
are functions of unitation with unique global optimum at
1™ and in addition smooth-integer, we considered the per-
formance of the two algorithms when confronted with an
obstacle in the landscape. Since the two algorithms employ
different variation operators and different selection strate-
gies, we defined two different types of obstacles, one for each
search heuristic under consideration. Keeping in mind that
we call algorithms efficient if they provide us with an polyno-
mially bounded expected optimization time, we say that an
algorithm is able to overcome such an obstacle if it is able
to come beyond this obstacle (closer to the unique global
optimum) on average in polynomial time. Our analysis is
local in the sense that we assume that the algorithm will
either overcome the current obstacle or stay at its beginning
— this neglects the possibility that the algorithm may won-
der off in some other region of the search space. Adopting
this local perspective we are able to prove that SA and the
(141) EA are able to overcome obstacles of the same size
and location. For both algorithms, the maximal allowable
size depends on the location of the obstacle: the closer the
obstacle is to the global optimum 1™ the smaller it needs to
be.

The definitions of local obstacles imply that any obstacle
for simulated annealing is also an obstacle of at least the
same size for the (141) EA. The converse, however, does
not hold in general. This may lead to the belief that simu-
lated annealing is a more robust search heuristic. But such
a conclusion ignores the assumptions made. In particular,
assuming that the algorithm does not leave the beginning
of the obstacle and cannot “get lost” in the search space
enabled us to use a(t) 1 (corresponding to an infinite



temperature) in the performance of SA. Clearly, this choice
lets simulated annealing degenerate to a pure random walk,
not a very useful general search heuristic. One would have
to come up with complete analyses of the expected opti-
mization time in order to show that simulated annealing
can benefit from this seemingly advantage when optimizing
some objective function.

Clearly, an analysis concentrating on the local perfor-
mance leaves interesting questions open. Can the similar-
ities that are revealed here be carried over to the analysis
of the expected optimization time of some function classes?
Can any relevant class of functions be identified where sim-
ulated annealing and the (141) EA behave similarly? Can
the two search heuristics have very different expected opti-
mization times on smooth-integer functions f € U,; where
only local obstacles are present where the two algorithms
behave similarly?

Answering such questions adds to our understanding of
the search mechanisms of simulated annealing and the
(141) EA. Clearly, such an understanding can lead to a bet-
ter understanding of other (but similar) randomized search
heuristics, in particular to a better understanding of more
complex evolutionary algorithms. Moreover, it may lead to
practical guidelines for the application of randomized search
heuristics to real-world problems.
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