
Comparison of Genetic Representation Schemes
for Scheduling Soft Real-Time Parallel Applications

Yoginder S. Dandass
Mississippi State University

Box 9637
Mississippi State, MS 39762, USA

+1(662)325-7502

yogi@cse.msstate.edu

Amit C. Bugde
Mississippi State University

Box 9637
Mississippi State, MS 39762, USA

+1(662)325-8274

acb157@msstate.edu

ABSTRACT
This paper presents a hybrid technique that combines List
Scheduling (LS) with Genetic Algorithms (GA) for constructing
non-preemptive schedules for soft real-time parallel applications
represented as directed acyclic graphs (DAGs). The execution
time requirements of the applications’ tasks are assumed to be
stochastic and are represented as probability distribution
functions. The performance in terms of schedule lengths for three
different genetic representation schemes are evaluated and
compared for a number of different DAGs.
The approaches presented here produce shorter schedules than
HLFET, a popular LS approach for all of the sample problems. Of
the three genetic representation schemes investigated, PosCT, the
technique that allows the GA to learn which tasks to delay in
order to allow other tasks to complete produced the shortest
schedules for a majority of the sample DAGs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search---Scheduling; C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems.

General Terms: Algorithms, Performance, Design.

Keywords: Soft real-time scheduling, genetic algorithms,
genetic list scheduling.

1. INTRODUCTION
Advanced architecture processors provide features such as caches
and branch prediction that result in improved, but variable,
execution time of software. Hard real-time systems require tasks
to complete within timing constraints. Consequently, hard real-
time systems are typically designed conservatively through the
use of tasks’ worst-case execution times (WCET) in order to
compute deterministic schedules that guarantee the tasks’
execution within given time constraints. This use of pessimistic
execution time assumptions provides real-time guarantees at the
cost of decreased application performance and resource
utilization.

Soft real-time systems, conversely, can tolerate applications
missing occasional deadlines. This affords considerable
flexibility in scheduling policies and allows the need for meeting
time constraints to be balanced with the need for improved
performance. Such systems can improve resource utilization and
performance by making scheduling decisions based on the
premise that, in a given interval of time, it is unlikely that all
successively activated tasks in an application will require their
full WCET to complete. However, reserving less than the
absolute maximum required time means that the deadlines will be
missed occasionally when successive tasks require more time than
was collectively reserved for them in the schedule.

There are a variety of systems in practice that tolerate occasional
deadline misses. For example, in multimedia systems, video
frames are decoded and displayed at a fixed rate. If the system
misses a frame-decoding deadline, then either a partial frame is
displayed or the frame is skipped entirely. Therefore, viewers
will tolerate the slight degradation in video quality resulting from
an occasional deadline miss. In another example, the over-
sampling of environmental parameters allows computer-driven
automatic control systems to function correctly as long as several
back-to-back deadlines are not missed.

This paper focuses on constructing schedules for parallel soft real-
time applications where the ability to tradeoff the probability of
missing deadlines for reduced schedule lengths is required. The
authors extend and improve on the previous work of a number of
researchers in using genetic list scheduling (GLS) algorithms for
scheduling real-time and non-real-time parallel applications that
are represented as directed acyclic graphs (DAGs). While the
schedules produced by the previous GLS-based techniques were
of higher quality than those produced using non GLS approaches,
further analysis of those schedules revealed several opportunities
for further optimization. The techniques reported in this paper
improve on the GLS algorithm from the previous research
resulting in further reductions in schedule lengths.

The remainder of this paper is organized as follows: Section 2
provides a detailed problem definition, describes the parallel
processing environment, and identifies the assumptions made
regarding the communication infrastructure. Section 3 provides a
brief overview of existing List Scheduling (LS) and GLS
techniques. Section 4 describes the GLS approach used in this
research. Section 5 presents experimental results and analysis.
Key contributions and avenues for further research are
highlighted in Section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

523

2. PROBLEM STATEMENT
The problem under study is as follows: given a directed acyclic
graph (DAG) representing a parallel soft real-time application,
devise a scheduling algorithm that minimizes schedule lengths
while simultaneously enabling the predictable tradeoff of quality-
of-service for improved resource utilization. A DAG G = {V, E}
consists of a set V = {v1, v2, …, vn} of n vertices and a set E = {e1,
e2, …, ek} of k directed edges connecting the vertices. The
vertices represent computational tasks in a parallel application
and the edges represent communication and precedence relations
between the tasks. The ordered pair ei = (vsrc, vdest) indicates that
the direction of edge ei is from vertex vsrc to vdest.
Figure 1 depicts a hypothetical DAG. Edges e1, e2, e3, and e4 are
designated as (v0, v3), (v1, v3), (v2, v3), and (v3, v4), respectively.
Task execution time probabilities are depicted at the right of each
vertex and edge. For example, when vertex v0 is executed, it can
take 4, 5, or 6 time units to complete with equal probability. The
weight of vertices and edges, determined through analytical or
empirical analysis, are assumed to be independent random
variables and are represented as discrete probability distribution
functions. These probability distribution functions (PDFs) can
essentially be viewed as histograms representing the relative
frequency with which different execution times are observed.
Independence between PDFs implies that the variations in vertex
and edge weights are unrelated (i.e., the variations in execution
times are caused by architectural features such as caches and
speculative execution and not because of variations in the size of
the data being processed). Therefore, the problems being
addressed here are primarily in the domain of real-time signal and
image processing applications where successive “frames” of data
gathered by sensors are processed repeatedly by a dedicated
system.
It is assumed, without loss of generality, that the vertex and edge
weights are specified as integer values (i.e., by selecting an
appropriate scale for the time units). Furthermore, it is assumed
that the weight probabilities are non-zero only over a finite range
of weight values. This is a valid assumption because real-time
systems are designed to have as little variance in execution time
as possible. These assumptions imply that vertices and edges
have weight values only within a well-defined range of integers.
The scheduling technique developed in this research prevents the
real-time tasks from being preempted at arbitrary instances of
time. Instead, tasks are preempted only at vertex or edge
boundaries. Therefore, in applications where rapid task switching
is required, large tasks must be partitioned into strings of vertices
or edges. For example, a loop in a task can be unrolled such that
individual loop iterations are represented by distinct vertices.
This restriction on preemption enables a more accurate
determination of individual tasks’ execution times because the
disruptive effects of interrupt handling and task switching on
instruction pipelines and caches are isolated to task boundaries.
A homogeneous parallel machine is assumed for executing the
parallel application. The use of identical processors implies that
the time taken to execute a computational task is the same on any
processor. Also, a uniform point-to-point network capacity is
assumed over the entire parallel system. This implies that the
time needed to complete a particular communication operation is
the same over any combination of distinct source and destination
processors.

v0 v1 v2

v3

v4

e1
e2

e3

e4

Figure 1. A hypothetical DAG (adapted from [7])

Table I. PDFs for the DAG in Fig 1 (adapted from [7])

Task
Weight: 4 5 6 v0

Probability: ⅓ ⅓ ⅓
Weight: 7 8 9 v1

Probability: ⅓ ⅓ ⅓
Weight: 1 2 3 v2

Probability: ⅓ ⅓ ⅓
Weight: 1 2 v3

Probability: ½ ½
Weight: 2 3 4 v4

Probability: ⅓ ⅓ ⅓
Weight: 1 2 3 (v0, v3)

Probability: ⅓ ⅓ ⅓
Weight: 7 8 9 (v1, v3)

Probability: ⅓ ⅓ ⅓
Weight: 1 2 3 (v2, v4)

Probability: ½ 9/20 1/20
Weight: 7 8 9 (v3, v4)

Probability: ⅓ ⅓ ⅓

The time required to complete the execution of vertex v is a
function of v’s weight and the processor, p, on which it is to be
executed. In homogeneous systems, the choice of processor to
execute a task is assumed to have no impact on execution time.
Therefore, the vertex weight directly represents execution time.
The time required to complete a communication operation
between two vertices depends on the weight of the corresponding
edge, w(e), and the processors on which the source and
destination vertices are scheduled. In particular, the cost of
communication operations between vertices scheduled on the
same processor is assumed to be negligible. Therefore, the time
required to complete the communication operation corresponding
to edge e is computed as follows:

⎩
⎨
⎧ =

=
otherwise)(

 when0
),,(

ew
pp

ppet ds
ds , (1)

where ps and pd are the source and destination processors, for e,
respectively.
Each processor is assumed to have a pair of simplex interfaces to
the homogeneous virtual point-to-point network (one for
incoming and one for outgoing data). Therefore, while full
duplex operations are permitted, only a single incoming operation

524

and a single outgoing communication operation can occur at each
processor-network interface at a time. However, the switched
network fabric is assumed to be contention free (i.e., there is
sufficient network capacity available or packets can be sent along
alternate routes in order to prevent congestion).
Non-preemptively scheduling DAGs with the goal of minimizing
schedule lengths is known to be NP-hard in general [5].
Therefore, a number of heuristic approaches have been proposed
that can produce near-optimal schedules in polynomial time [3,
11, and 16]. This paper presents a GLS-based offline scheduling
approach for parallel soft real-time applications with precedence
constraints. Following are the two main objectives of the
scheduling algorithm investigated in this research:
1. Assign tasks in the DAG onto a parallel machine so as to

minimize schedule length while utilizing as few processors
as possible. Of two schedules with identical lengths, the
schedule requiring fewer processors is preferred.

2. Compute the completion time PDF of the application. This
PDF provides a means for precisely determining how to
trade off the probability of meeting deadlines for reduced
application execution time.

3. RELATED WORK
Ahmad and Kwok [16], Grajcar [13], and Dandass [6, 7] have
shown GLS to be an effective technique for constructing non-
preemptive schedules for DAGs with fixed execution times.
Fundamentally, GLS is a combination of LS and a Genetic
Algorithm (GA). LS is an iterative algorithm for schedule
construction. During each iteration, a list of ready vertices is
constructed and prioritized. A ready vertex is an unscheduled
vertex whose precedence constraints have been met (i.e., a ready
vertex either has no preceding vertices in the DAG or all of its
predecessor vertices have been previously scheduled and have
completed execution). Prioritization essentially consists of
ordering the ready vertices according to some criteria. The highest
priority ready vertex is then scheduled on the processor that
allows the earliest execution of the selected vertex. Note that
scheduling a vertex, v, implies that all edges incident on v must
also be scheduled and have to complete before v can begin
execution.
The ready vertex prioritization scheme is the heuristic aspect of
LS and a number of different prioritization criteria for LS have
been proposed in the literature.
The Dynamic Critical Path (DCP) heuristic [15] computes the
critical path (CP) of the partial schedule and selects the ready
vertex with the least mobility for scheduling first. The CP of a
DAG is the longest path in the DAG from an entry vertex to a
terminal vertex. DCP outperforms the other LS heuristics for a
majority of the DAGs tested. However, because of its
complexity, DCP also requires long execution times. The
Mobility Directed (MD) heuristic [19] does not fix the starting
times of scheduled vertices until all nodes have been scheduled.
In MD, vertices are scheduled in increasing order of their relative
mobility. The relative mobility attribute of a vertex provides an
indication of the amount by which the vertex can be delayed and
still meet precedence constraints.
Highest Level First with Estimated Times (HLFET) [2] is a simple
(and consequently fast) LS heuristic in which ready vertices are
scheduled according to non-decreasing order of the longest path

between the ready vertex and a terminal vertex in the DAG. A
terminal vertex is one that has no outgoing edges. The Earliest
Time First (ETF) LS [14] uses a greedy heuristic that prioritizes
vertices according to their earliest start times. The algorithm
exhaustively examines all ready vertex and processor pairs and
schedules the ready vertex that can start the earliest on the
processor that allows the earliest start time.
In GLS, a GA is used for prioritizing the vertices and edges.
Kwok and Ahmad’s GLS algorithm produces better schedules
than the DCP algorithm for several test case DAGs and takes less
time than the DCP algorithm [16]. Grajcar’s GLS algorithm [13]
produces schedules for a heterogeneous machine. Grajcar also
points out certain DAG structures for which LS and GLS
algorithms cannot find optimal schedules. Dandass [6] has
reported the results of applying GLS towards scheduling DAGs
with multicast communication in resource limited point-to-point
network environments. Dandass has also applied GLS towards
constructing soft real-time schedules using DAGs [7].
A variety of techniques relying on preemption have been
developed for scheduling hard and soft real-time systems with
fixed execution time requirements. A survey of these techniques
can be found in [17]. Recently, research in scheduling tasks with
stochastic execution times has gained attention. Proposed
techniques include Statistical Rate Monotonic Scheduling
(SRMS) [4], Probabilistic Time-Demand Analysis (PTDA) [18],
Stochastic Time Demand Analysis (STDA) [10] and Bandwidth
Reservation [1]. These techniques typically assume that tasks can
be preempted and that the cost of switching tasks is negligible.
Dogan and Ozguner [9] have developed techniques for stochastic
scheduling of tasks in heterogeneous distributed computing
systems. Their simulation studies showed that using stochastic
scheduling provided better results in heterogeneous environments
as compared to deterministic scheduling.
However, the stochastic scheduling algorithms described above
cannot be used for scheduling DAGs in parallel environments
because these algorithms are either intended for fully preemptive
systems, or for uniprocessor environments, or do not account for
interprocess communication and precedence constraints.

4. APPROACH
Figure 2 provides an overview of the GLS algorithm used in this
paper. This is a steady-state algorithm in that new chromosomes
derived from genetic operators immediately replace members of
the current population.

4.1 Genetic Representation
Most existing LS and GLS algorithms focus on prioritizing
vertices in the ready list and can schedule the incoming edges of a
vertex in arbitrary order because communication contention is
ignored. However, when communication contention is allowed,
the order in which edges are scheduled also impacts schedule
length. Therefore, the genetic representation in this research is
used for prioritizing the DAG’s vertices and, equally importantly,
its edges. For this paper, two new priority-encoding schemes,
PosCT, and PriNT were implemented and compared to the PosNT
scheme previously used by Dandass [6, 7]. The three schemes are
described in detail below.

525

4.1.1 Positional with No Thresholds
In the Positional with No Thresholds (PosNT) encoding scheme,
each chromosome in the GLS has two vectors of genes. The
vertex gene vector contains a gene for each vertex in the DAG
and the edge gene vector contains a gene for each edge in the
DAG (i.e., there are |V| + |E| genes in each chromosome). Each
gene is a 32-bit value identifying the corresponding task (vertex
or edge) in the DAG. The position of the vertex and edge genes
in their respective vectors determines the priority of the
corresponding vertices and edges used by the list scheduler. For
example, consider two ready vertices vx and vy appearing at
indices ix and iy, respectively in the vertex gene vector. If ix < iy,
the pointer for vx appears before the pointer for vy in the vertex
gene vector, and therefore, vx is given higher priority. Edge
priorities are similarly determined by ordering of edge genes in
the edge gene vector. The PosNT-based GA searches for an
optimal ordering of vertices and edges in the chromosomes.

4.1.2 Positional with Customized Thresholds
In the Positional with Customized Thresholds (PosCT) encoding
scheme, each chromosome has three vectors of genes and there
are a total of 2 * (|V| + |E|) genes in a chromosome. The vertex
gene vector and the edge gene vector are identical in structure and
function as in the PosNT representation described previously. In
addition to the positional genes, PosCT also contains genes in an
overlap threshold gene vector. This vector contains one threshold
gene for every vertex and edge in the DAG. The threshold gene
specifies the overlap threshold value for the corresponding task
represented as an 8-bit unsigned integer. It is a fractional value in
the interval [0, 1] computed by dividing the gene value by 255.
The overlap threshold is used to determine if a task (vertex or
edge), Tc, to be scheduled on processor Ps such that another task,
Ts, already in the schedule for Ps, is delayed in order to allow task
Tc to execute first (see section 4.6 for additional details).
Unlike the positional genes, the threshold genes occur at fixed
locations in the gene vector (i.e., the threshold for vertex vx is
located at position x in the overlap threshold gene vector and the
overlap threshold for edge ey is located at position |V|+y). In
addition to searching for optimal vertex and edge positions, the
PosCT-based GA also searches for optimal threshold assignments
for tasks.

4.1.3 Priority with No Thresholds
In the Priority with Fixed Thresholds (PriNT) encoding scheme,
each chromosome in the GLS has one vector of genes that directly
represent the relative priorities of the vertices and edges. There
are |V| + |E| genes in each chromosome. Each priority gene is a
32-bit integer that encodes the priority of the corresponding edge
or vertex. Unlike the positional genes in PosNT, priority genes
for specific vertices and edges occur at fixed locations in the gene
vector (i.e., the priority gene for vertex vx is located at position x
in the priority gene vector and the priority gene for edge ey is
located at position |V|+y). The PriNT-based GA searches for an
optimal prioritization of vertices and edges in the chromosomes.

4.2 The Selection Operator
In order to reduce the occurrence of premature convergence, the
ability of high quality chromosomes to dominate the population is
reduced by using the following fitness function proposed by
Grajcar [13]:

1|)(|
)()(

+
=

coffspring
crankcϕ , (2)

Where, the rank of chromosome c is the number of chromosomes
in population Ω that produce poorer schedules than c. The
chromosome with the largest fitness value in a random subset
from Ω is selected for reproduction. Similarly, the chromosome
with the least fitness value from another random subset from Ω is
selected for replacement. In the experiments reported here,
selection subset sizes ranging from 2% to 10% of |Ω| worked well
for populations ranging from 200 to 1000 chromosomes.

Figure 2. Overview of the GLS Algorithm

4.3 Recombination Operators
Three different crossover operators, standard crossover (SX),
ordered crossover (OX) [8] and vector crossover (VX) are used in
this GLS algorithm. SX is used for recombining the genes in the
priority vectors in PriNT and the overlap threshold vectors in the
PosCT representation schemes. In SX, the chromosome is treated
as a sequence of bit positions and a crossover bit position in the
vector is randomly selected. The offspring chromosome’s genes
are composed from a copy of the first parent’s gene sequence
prior to the crossover point appended to the copy of the second
parent’s gene sequence beginning at the crossover point.
OX is used for recombining the genes in the positional vertex and
edge vectors in the PosNT and PosCT representation schemes. In
OX, a single crossover point is randomly selected in the vertex
vector. The sequence of genes prior to the crossover point is
copied from the first parent to the front of the vertex vector in the
offspring chromosome. The remaining genes in the first parent
(i.e., following the crossover point) are copied into the offspring
gene in the order they appear in the second parent. The same
operation is also performed on the edge and threshold vectors to
construct the offspring chromosome.
In VX, the first parent contributes a complete copy of its vertex
vector and the second parent contributes a complete copy of its
edge vector to construct the offspring chromosome.
A mutation operator is also used in this research. The mutation
operator swaps the location of a pair of genes within the vertex
position, edge position, priority, and threshold vectors (where
applicable).

Generate the initial population of chromosomes;

Use LS to construct schedules for each chromosome in order to
assign fitness values;

While the termination criteria are not satisfied, loop
{

Randomly select a genetic operator (crossover or mutation);
Select chromosome(s) from the local population and apply

the operator to produce the offspring chromosome;
Use LS to construct a schedule in order to evaluate the

offspring chromosome;
Select chromosome from the local population to be replaced

by the offspring chromosome;
}
Use the fittest chromosome to construct the solution schedule;

526

4.4 Fitness and Schedule Construction
Fitness of a chromosome is a function of the length of the
schedule produced by the chromosome. The authors of this paper
have adapted the schedule construction techniques developed by
Dandass [6, 7] for use with the new PosCT and PriNT
representation schemes. Because of space restrictions, a detailed
description of the schedule construction algorithm is not provided
here. Essentially, the algorithm looks for idle timeslots in the
current partial schedule in which the highest priority ready vertex,
vr, and its incident edges can be scheduled. The algorithm uses an
iterative procedure, temporarily scheduling vr on the first
processor in the parallel machine, M, recording the completion
time of vr, and then reversing this temporary scheduling operation
before scheduling vr on the next processor in M. After attempting
the scheduling operation on each processor in M, the algorithm
greedily selects the processor that allowed the earliest completion
of vr and permanently schedules vr on that processor. Before vr is
scheduled, its incident edges must be scheduled. Scheduling an
edge requires the algorithm to find overlapping time slots during
which the sending processor’s outgoing network link and the
receiving processor’s incoming link are simultaneously idle.
When tasks have fixed execution times, the starting and
completion times of scheduled tasks are specified as fixed values.
However, the starting and completion times of tasks with
stochastic execution time requirements need to be specified as
PDFs. Figure 3 depicts a schedule (in Gantt-chart form) for the
DAG in Figure 1. In this figure, the shaded rectangular regions
indicate the times when the vertices and edges may potentially be
executing. For example, v0 begins executing on processor p0 at
time instance 1, and completes at the end of time instances 4, 5, or
6 with a probability of 1/3 each. Similarly, edge (v0, v3) begins
execution immediately after v0 completes at time instances 5, 6, or
7 with a probability of 1/3 each. The edge completes execution at
time instances 5, 6, 7, 8, or 9 with probabilities 1/9, 2/9, 3/9, 2/9,
and 1/9, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p0
s0
p1

r1

p2
s2

pn: processor n
sn: outgoing communication link at processor n
rn: incoming communication link at processor n

v0

v1
v3

v4

v2

(v0, v3)

(v0, v3)
(v2, v4)

(v2, v4)

Time

Figure 3. Stochastic Schedule for the DAG in Figure 1

When scheduling vertices with fixed time requirements, the
completion time of a vertex is computed by summing its start time
and execution times. From fundamental probability theory, the
completion time PDF of a vertex with stochastic execution time

requirements is computed by the convolution of its start time and
execution time PDFs. Convolution of discrete PDFs s(x) and w(x)
is defined as follows:

∑
=

+−⋅=
s

s

u

lt
tXwtsXf)1()()(, (3)

where [ls, us] and [lw, uw] are the intervals over which s(x) and
w(x) are non-zero, respectively, and X ∈ [ls+lw−1, us+uw−1].
Often, a ready vertex vr is to be scheduled on a processor after a
previously scheduled vertex vp has completed and a previously
scheduled incident edge er on vr has also completed. For
example, in Figure 3, v3 can start executing only after vertex v1
and edge (v0, v3) complete. Note that edge (v1, v3) has an effective
weight of 0 because v1 and v3 are scheduled on the same
processor, and therefore, does not factor in v3’s start time
computation. In such situations, the start time PDF for the vertex
is determined from the maximum of the completion PDFs of the
two preceding tasks. The maximum of two independent PDFs π1
and π2 defined over intervals [l1, u1] and [l2, u2], respectively, is
computed as follows:

∀ x ∈ [max(l1,l2), max(u1, u2)],
πmax(π1, π2)(x) = π1(x)π2(x) + π1(x)П2(x − 1) + П1(x − 1)π2(x), (4)

where П1 and П2 are the cumulative distribution functions (CDFs)
corresponding to the PDFs π1 and π2, respectively.
An edge is scheduled in a common time slot in the processor-to-
network links at the source and destination processors that starts
after the source vertex has completed. Therefore, the start time of
the edge is computed from the maximum of the completion time
PDFs of the source vertex, the previously scheduled edge (if any)
in the source processor-to-network link, and the previously
scheduled edge (if any) in the destination processor-to-network
link. For example, suppose that edge e is to be scheduled after
vertex v completes and that the source processor-to-network link
has edge esrc scheduled to complete after e can begin executing.
Similarly, assume that the destination processor-to-network link
has edge edest scheduled to complete after e can begin executing.
In this case, the starting PDF of e can be computed from the
maximum of the completion time PDFs of v, esrc, and edest. The
maximum of three independent PDFs π1, π2 and π3 can be
computed as follows:

πmax(π1, π2, π3) = max[max(π1, π2), π3]. (5)
It is important to note that equations (3) and (4) only apply to
independent PDFs. Therefore, situations with dependent PDFs
must be handled separately. In the example above, if the
previously scheduled edges in the source and destination
processor-to-network links are the same edge (i.e., esrc = edest),
then the starting time PDF of e must be computed from the
maximum of the completion time PDFs of v and esrc only; taking
the maximum of v, esrc, and edest in this situation will be
erroneous.

4.5 Simplifying Heuristic
A key feature contributing to the effectiveness of GAs is the
ability to evaluate chromosomes quickly, thereby enabling the
GA to rapidly explore large portions of the search space.
However, the PDF manipulation operations described above can
be computationally costly, especially for PDFs defined over large
intervals. Furthermore, the convolution of PDFs π1 and π2 defined

527

over intervals [l1, u1] and [l2, u2], respectively, results in a PDF
defined over interval [l1+l2-1, u1+u2-1]. The resulting PDF is
nearly as wide as the sum of the widths of the original PDFs.
Therefore, the starting and completion PDFs for tasks towards the
end of the schedule are typically much wider than the tasks’
weight PDFs. The problem with the high computational cost of
PDF manipulations is further exacerbated because during each LS
iteration, a vertex and its incident edges are temporarily scheduled
on every processor in order to determine the best processor. This
implies that in each LS iteration, a majority of PDF computations
are discarded before the vertex and its associated edges are
permanently scheduled.
In order to reduce the number of PDF manipulations required to
evaluate a chromosome, the GLS used in this research employs a
two-phase scheduling approach. During the first phase, the
expected values of the vertex and edge weight PDFs are used as
fixed value estimates. These expected values are used to
construct a preliminary fixed execution time schedule from the
chromosome using the standard LS procedure. This preliminary
schedule specifies the processor assignment and the ordering of
vertices and edges to be used in the second phase. In the second
phase, the PDF operations are used to convert the preliminary
schedule into a stochastic schedule. Because the scheduling
decisions have already been made previously, only those PDF
operations required for computing the stochastic starting and
ending time values of the vertices and edges in the schedule are
performed.

4.6 Thresholds and PosCT
Every processor and communication link has a list of idle time-
slots in which vertices can be scheduled. A ready task is assigned
to a sub-interval within an idle slot, resulting in the fragmentation
of the idle slot into smaller idle slots. There are occasions when a
ready task’s, TR, ready time is less than or equal to the idle slot’s
start time, however, the idle slot, SI, is not sufficiently large in
order to allow TR to complete (i.e., TR can be assigned to begin
within SI but the previously scheduled task, TS, that appears at the
end of SI is scheduled to begin before TR will complete). In the
PosNT approach (i.e., the no threshold approach used by Dandass
[7]), TR is inserted into SI only if TR does not overlap TS. If there
is overlap then TR is scheduled in another interval that occurs after
SI. However, inspection of the schedules produced by PosNT
revealed several instances in which delaying TS by a small amount
of time would have reduced overall schedule lengths. This is
because allocating TR in a later time slot resulted in a significant
delay of tasks dependent on the completion of TR, as compared
with the delay incurred by TS and its dependent tasks if TR was
allowed to complete before TS began.
Figure 4 depicts the schedule for the DAG in figure 1 in which
edge (v2, v4) is allowed to execute before (v0, v3). This results in a
schedule that is shorter than the schedule shown in figure 3 by
one time unit (the schedule in figure 3 was constructed using the
PosNT approach).
However, arbitrarily delaying tasks do not always produce
shorted schedules and can also perturb the scheduling power of
the GLS algorithm. Therefore, previously allocated tasks should
only be delayed by relatively small amounts as determined by the
GA. In order to compute when TS should be delayed, TR is
tentatively assigned to begin in SI and the completion time of TR is

computed. Next the amount of overlap, δ, between tasks TS and
TR is computed as follows:

δ(TS, TR) = F(TR) – S(TS), (6)
where F(TR) is the completion time of TR and S(TS) is the start
time of TS. If δ ≤ 0 the two tasks do not overlap and task TR can
be scheduled in SI without further consideration. If an overlap
exists the overlap ratio, ω, is computed as follows:

)(
),(),(

S

RS
RS

Tt
TTTT δω = , (7)

where t(TS) is the expected value of the weight of task TS. (see
section 4.5).

Insert edge (v2, v4) into the schedule
before edge (v0, v3) because it is allowed by the
threshold values determined by the GA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p0
s0

p1

r1

p2
s2

Time

v0

v1
v3

v4

v2

(v0, v3)

(v0, v3)
(v2, v4)

(v2, v4)

(v2, v4)

Figure 4: Shorter Schedule Produced by PosCT

If ω(TS, TR) is less than or equal to the PosCT overlap threshold
gene value for TS, then TR is scheduled in SI and TS is delayed; if
ω(TS, TR) is greater than the threshold value, then TR is not
scheduled in SI and algorithm looks for the next available slot.
The delay in the start time of TS also delays the start times of any
previously scheduled tasks that depend on the completion of TS.
Therefore, a delay in the start time of TS causes a “ripple” effect
of delays in the partial schedule.

5. EXPERIMENTAL RESULTS
A number of DAGs were constructed in order to evaluate the
three different GLS representation schemes. The structure of
each DAG was one of Simple Fork-Join (SFJ), Out Tree (OUT),
Hierarchical Fork-Join (HFJ), Mean Value Analysis (MVA), and
Random (RND) as depicted in figure 5. The DAGs with RND
structure have no predetermined branching pattern. All of the
vertex and edge weights of the DAGs were also assigned PDFs
derived from beta, exponential, and randomized distributions.
The randomized PDFs have an irregular landscape of probability
values as opposed to the relatively smooth curves of the beta and
exponential distributions.
The DAGs were also given one of five different computation-to-
communication ratio (CCR) values of 0.5, 0.6, 1.0, 1.5, and 2.0.
CCR is the ratio of the average vertex weight and the average
edge weight in the DAG. The various combinations of structure,
probability distributions, and CCRs resulted in 225 different
DAGs. Each DAG had approximately 500 vertices and edges,
combined.

528

The results reported below were obtained by executing parallel
island-model [12] implementations of the GLSs using 8 processes.
Each process maintained an independent population of 1,000
chromosomes and computed 24,000 iterations. The processes
exchanged the fittest chromosomes with each other at every
1,000th iteration beginning with the 12,000th iteration and at every
100th iteration after the 23,000th iteration.

(a) Simple Fork-Join (SFJ) (b) Out Tree (OUT)

(c) Hierarchical Fork-Join (HFJ) (d) Mean Value Analysis (MVA)
Figure 5: Example DAG Shapes (adapted from [7])

Table II shows the relative performance of the three
representation schemes versus each other, broken out by DAG
shapes. For example, the topmost row indicates that of the 45
HFJ DAGs:
• PosNT produced shorter schedules for 27 DAGs as

compared with PriNT, and conversely, PriNT produced
shorter schedules for 18 of the 45 DAGs.

• PosNT produced shorter schedules for 18 DAGs while
PosCT produced shorter schedules for the remaining 27
DAGs.

• PriNT produced shorter schedules for 15 DAGs while PosCT
produced shorter schedules for the remaining 30 DAGs.

The aggregate results over all DAGs summarized in the bottom
row of the table clearly show that PosNT and PriNT have similar
performance, whereas PosCT outperformed PosNT and PriNT by
a ratio of 2:1. Also, all three representation techniques produced
shorter schedules than the HLFET LS technique.

Table II. Pairwise Comparison of PosNT, PriNT, and PosCT

Shape PosNT PriNT PosNT PosCT PriNT PosCT
HFJ 27 18 18 27 15 30
MVA 23 22 17 28 18 27
RND 20 25 10 35 11 34
OUT 22 23 20 25 22 23
SFJ 21 24 10 35 6 39
All 113 112 75 150 72 153

Table III shows the collective performance of the three
representation schemes and reinforces the superiority of the
PosCT approach as compared with PosNT and PriNT. PosCT
produced shorter schedules for 128 of the 255 DAGs (slightly
over 50%) whereas the remaining 97 DAGs were split nearly
evenly between PosNT and PriNT. These results imply that when
restricted time and computational resources mandate the use of a
single GLS implementation, then PosCT is a clear choice for the

genetic representation scheme. However, when computational
resources are unrestricted, then it is better to use GLS
implementations with all three representation schemes and to pick
the shortest resulting schedule.
Once a schedule for a DAG is constructed, the completion PDF,
πc for the terminal vertex (i.e., the vertex with no outgoing edges)
in the DAG (e.g., v4 in figure 1) also represents the PDF of the
execution time for the entire DAG. Recall that πc is essentially
computed by summing the weight PDFs of many of the vertices
and edges in the DAG. Therefore, according to the Central Limit
theorem, for large DAGS, πc has the shape of a Gaussian curve
even if the individual weight PDFs that were summed to compute
πc are themselves not normal. Furthermore, πc has non-zero
probability values within the time interval [lc, uc], where lc and uc
represent the best-case and worst case execution time for the PDF
(e.g., [9, 15] in figure 4). Given πc, the CDF, Πc(x) where lc ≤ x ≤
uc, provides the probability that the schedule will complete at or
before time x. This can used to predictably tradeoff the
probability of meeting completion deadline against the time for
which resources are reserved for DAG execution.

Table III. Comparison of PosNT, PriNT, and PosCT

Shape PosNT PriNT PosCT Total
HFJ 16 7 22 45
MVA 10 16 19 45
RND 5 9 31 45
OUT 11 12 22 45
SFJ 9 2 34 45
All 51 46 128 225

6. CONCLUSIONS AND FUTURE WORK
This paper presents an effective genetic list scheduling technique
for constructing non-preemptive schedules for soft real-time
parallel applications. It is assumed that the applications are
expressed in the form of fine-grained DAGs and that the variable
weights of the computation and communication tasks in the
DAGs are expressed in the form of probability distribution
functions.
Three different genetic representation schemes were investigated.
In order to study the efficacy of the genetic representation
schemes, schedules were created for 225 different DAGs with a
variety of structural characteristics. Of these, the PosCT scheme
enabled the GA to determine when to delay the execution of
certain previously scheduled tasks in order to allow other ready
tasks to execute. This ability resulted in shorter schedules for a
majority of DAGs as compared with the schedules produced using
the other representation schemes.
Ongoing research is focused on improving and extending the
PosCT-based GLS approach. Currently, PosCT overlap
thresholds are compared with the ratio of overlap versus task
weights. It may be more appropriate to compare overlap
thresholds to the probability that a ready task to be inserted into a
slot delays (because of overlap) a previously scheduled task. In
this case, insertion of the ready task into the slot will be permitted
only if this probability is less than the GA-determined threshold.
This extension will not allow the use of the simplifying heuristic
and the two phased approach. Therefore, a central idea to be
explored in this future research is to determine whether the
detailed start and completion time PDFs of the vertices and edges

529

in the partial schedules can be exploited to construct even better
schedules than possible using the current two-phase approach. It
is expected that larger-scale parallelism will also need to be
explored in order to account for the significant increases in
computation time required to evaluate chromosomes using the
single-phase approach.

7. REFERENCES
[1] Abeni, L., and Buttazzo, G. QoS Guarantee Using

Probabilistic Deadlines. In Proceedings of the IEEE
Euromicro Conference on Real-Time Systems. 1999, 242-
249.

[2] Adam, T. L., Chandy, K. M., and Dickson, J. R. A
Comparison of List Schedules for Parallel Processing
Systems. Communications of the ACM, Vol. 17. 1974, 685-
690.

[3] Ahmad, I., Kwok, Y., and Wu, M. Analysis, Evaluation, and
Comparison of Algorithms for Scheduling Task Graphs on
Parallel Processors. In Proceedings of the International
Symposium on Parallel Architectures, Algorithms, and
Networks. 1996, 207-213.

[4] Atlas, A., and Bestavros, A. Statistical Rate Monotonic
Scheduling. In Proceedings of the 19th IEEE Real-Time
Systems Symposium. 1998, 123-132.

[5] Coffman, E. G. Computer and Job-Shop Scheduling Theory,
John Wiley and Sons, New York, 1976.

[6] Dandass, Y. S. A Genetic Algorithm for Scheduling Acyclic
Digraph in the presence of Communication Contention. In
Proceedings of the 17th Annual International Symposium on
High Performance Computing Systems and Applications.
2003, 223-230.

[7] Dandass, Y. S. Genetic List Scheduling for Soft Real-Time
Parallel Applications. IEEE Congress on Evolutionary
Computation. June 2004, 1164-1171.

[8] Davis, L. Applying Adaptive Algorithms to Epistatic
Domains. In Proceedings of the 9th International Joint
Conference on Artificial Intelligence. 1985, 162-164.

[9] Dogan, A., and Ozguner, F. Stochastic Scheduling of a Meta-
task in Heterogeneous Distributed Computing. IEEE
International Conference on Parallel Processing Workshops.
2001, 369–374.

[10] Gardner, M. K. Probabilistic Analysis and Scheduling of
Critical Soft Real-Time Systems, Ph.D. Thesis, Department
of Computer Science, University of Illinois Urbana-
Champaign, 1999.

[11] Gerasoulis, A., and Yang, T. A Comparison of Clustering
Heuristics for Scheduling DAGs on Multiprocessors. Journal
of Parallel and Distributed Computing, Vol. 16, No. 4. 1992,
276-291.

[12] Gordon, V. S., and Whitley, D. Serial and Parallel Genetic
Algorithms as Function Optimizers. Technical Report CS-
93-114, Colorado State University, 1993.

[13] Grajcar, M. Strengths and Weaknesses of Genetic List
Scheduling for Heterogeneous Systems. In Proceedings of
the 2nd International Conference on Application of
Concurrency to System Design, IACSD, 2001.

[14] Hwang, J. J., Chow, Y. C., Anger, F. D., and Lee, C. Y.
Scheduling Precedence Graphs in Systems with
Interprocessor Communication Times. SIAM Journal of
Computing, Vol. 18, No. 2. 1989, 244–257.

[15] Kwok Y., and Ahmad, I. Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs to
Multiprocessors. IEEE Transactions on Parallel and
Distributed Systems, Vol. 7, No. 5. 1996, 506-521.

[16] Kwok, Y., and Ahmad, I. Efficient Scheduling of Arbitrary
Task Graphs to Multiprocessors using a Parallel Genetic
Algorithm. Journal of Parallel and Distributed Computing,
Vol. 47, No. 1. 1997, 58-77.

[17] Liu, J. W. S. Real-Time Systems, Prentice Hall, Upper Saddle
River, New Jersey, 2000.

[18] Tia, T. S., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu,
L. C., and Liu, J. W. S. Probabilistic Performance Guarantee
for Real-Time Tasks with Varying Computation Times. In
Proceedings of the IEEE Real-Time Technology and
Applications Symposium. May 1995, 164-173.

[19] Wu, M-Y., and Gajski, D. D. Hypertool: A Programming
Aid for Message Passing Systems. IEEE Transactions on
Parallel and Distributed Systems, Vol. 1, No. 3. 1990, 330–
343.

530

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

