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ABSTRACT 
This paper presents a hybrid technique that combines List 
Scheduling (LS) with Genetic Algorithms (GA) for constructing 
non-preemptive schedules for soft real-time parallel applications 
represented as directed acyclic graphs (DAGs).  The execution 
time requirements of the applications’ tasks are assumed to be 
stochastic and are represented as probability distribution 
functions.  The performance in terms of schedule lengths for three 
different genetic representation schemes are evaluated and 
compared for a number of different DAGs. 
The approaches presented here produce shorter schedules than 
HLFET, a popular LS approach for all of the sample problems. Of 
the three genetic representation schemes investigated, PosCT, the 
technique that allows the GA to learn which tasks to delay in 
order to allow other tasks to complete produced the shortest 
schedules for a majority of the sample DAGs. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search---Scheduling; C.3 [Special-purpose and application-
based systems]: Real-time and embedded systems. 

General Terms: Algorithms, Performance, Design. 

Keywords: Soft real-time scheduling, genetic algorithms, 
genetic list scheduling. 

1. INTRODUCTION 
Advanced architecture processors provide features such as caches 
and branch prediction that result in improved, but variable, 
execution time of software.  Hard real-time systems require tasks 
to complete within timing constraints.  Consequently, hard real-
time systems are typically designed conservatively through the 
use of tasks’ worst-case execution times (WCET) in order to 
compute deterministic schedules that guarantee the tasks’ 
execution within given time constraints.  This use of pessimistic 
execution time assumptions provides real-time guarantees at the 
cost of decreased application performance and resource 
utilization. 

Soft real-time systems, conversely, can tolerate applications 
missing occasional deadlines.  This affords considerable 
flexibility in scheduling policies and allows the need for meeting 
time constraints to be balanced with the need for improved 
performance. Such systems can improve resource utilization and 
performance by making scheduling decisions based on the 
premise that, in a given interval of time, it is unlikely that all 
successively activated tasks in an application will require their 
full WCET to complete.  However, reserving less than the 
absolute maximum required time means that the deadlines will be 
missed occasionally when successive tasks require more time than 
was collectively reserved for them in the schedule. 

There are a variety of systems in practice that tolerate occasional 
deadline misses. For example, in multimedia systems, video 
frames are decoded and displayed at a fixed rate.  If the system 
misses a frame-decoding deadline, then either a partial frame is 
displayed or the frame is skipped entirely.  Therefore, viewers 
will tolerate the slight degradation in video quality resulting from 
an occasional deadline miss.  In another example, the over-
sampling of environmental parameters allows computer-driven 
automatic control systems to function correctly as long as several 
back-to-back deadlines are not missed. 

This paper focuses on constructing schedules for parallel soft real-
time applications where the ability to tradeoff the probability of 
missing deadlines for reduced schedule lengths is required.  The 
authors extend and improve on the previous work of a number of 
researchers in using genetic list scheduling (GLS) algorithms for 
scheduling real-time and non-real-time parallel applications that 
are represented as directed acyclic graphs (DAGs).  While the 
schedules produced by the previous GLS-based techniques were 
of higher quality than those produced using non GLS approaches, 
further analysis of those schedules revealed several opportunities 
for further optimization.  The techniques reported in this paper 
improve on the GLS algorithm from the previous research 
resulting in further reductions in schedule lengths. 

The remainder of this paper is organized as follows: Section 2 
provides a detailed problem definition, describes the parallel 
processing environment, and identifies the assumptions made 
regarding the communication infrastructure.  Section 3 provides a 
brief overview of existing List Scheduling (LS) and GLS 
techniques.  Section 4 describes the GLS approach used in this 
research.  Section 5 presents experimental results and analysis.  
Key contributions and avenues for further research are 
highlighted in Section 6. 
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2. PROBLEM STATEMENT 
The problem under study is as follows: given a directed acyclic 
graph (DAG) representing a parallel soft real-time application, 
devise a scheduling algorithm that minimizes schedule lengths 
while simultaneously enabling the predictable tradeoff of quality-
of-service for improved resource utilization.  A DAG G = {V, E} 
consists of a set V = {v1, v2, …, vn} of n vertices and a set E = {e1, 
e2, …, ek} of k directed edges connecting the vertices.  The 
vertices represent computational tasks in a parallel application 
and the edges represent communication and precedence relations 
between the tasks.  The ordered pair ei = (vsrc, vdest) indicates that 
the direction of edge ei is from vertex vsrc to vdest.  
Figure 1 depicts a hypothetical DAG.  Edges e1, e2, e3, and e4 are 
designated as (v0, v3), (v1, v3), (v2, v3), and (v3, v4), respectively. 
Task execution time probabilities are depicted at the right of each 
vertex and edge.  For example, when vertex v0 is executed, it can 
take 4, 5, or 6 time units to complete with equal probability.  The 
weight of vertices and edges, determined through analytical or 
empirical analysis, are assumed to be independent random 
variables and are represented as discrete probability distribution 
functions.  These probability distribution functions (PDFs) can 
essentially be viewed as histograms representing the relative 
frequency with which different execution times are observed. 
Independence between PDFs implies that the variations in vertex 
and edge weights are unrelated (i.e., the variations in execution 
times are caused by architectural features such as caches and 
speculative execution and not because of variations in the size of 
the data being processed).  Therefore, the problems being 
addressed here are primarily in the domain of real-time signal and 
image processing applications where successive “frames” of data 
gathered by sensors are processed repeatedly by a dedicated 
system.   
It is assumed, without loss of generality, that the vertex and edge 
weights are specified as integer values (i.e., by selecting an 
appropriate scale for the time units).  Furthermore, it is assumed 
that the weight probabilities are non-zero only over a finite range 
of weight values.   This is a valid assumption because real-time 
systems are designed to have as little variance in execution time 
as possible.  These assumptions imply that vertices and edges 
have weight values only within a well-defined range of integers. 
The scheduling technique developed in this research prevents the 
real-time tasks from being preempted at arbitrary instances of 
time.  Instead, tasks are preempted only at vertex or edge 
boundaries.  Therefore, in applications where rapid task switching 
is required, large tasks must be partitioned into strings of vertices 
or edges.  For example, a loop in a task can be unrolled such that 
individual loop iterations are represented by distinct vertices.  
This restriction on preemption enables a more accurate 
determination of individual tasks’ execution times because the 
disruptive effects of interrupt handling and task switching on 
instruction pipelines and caches are isolated to task boundaries. 
A homogeneous parallel machine is assumed for executing the 
parallel application.  The use of identical processors implies that 
the time taken to execute a computational task is the same on any 
processor. Also, a uniform point-to-point network capacity is 
assumed over the entire parallel system.  This implies that the 
time needed to complete a particular communication operation is 
the same over any combination of distinct source and destination 
processors. 

 
v0 v1 v2

v3 

v4 

e1
e2 

e3

e4 

 
Figure 1. A hypothetical DAG (adapted from [7]) 

Table I. PDFs for the DAG in Fig 1 (adapted from [7]) 

Task     
Weight: 4 5 6 v0 

Probability: ⅓ ⅓ ⅓ 
Weight: 7 8 9 v1 

Probability: ⅓ ⅓ ⅓ 
Weight: 1 2 3 v2 

Probability: ⅓ ⅓ ⅓ 
Weight: 1 2  v3 

Probability: ½ ½  
Weight: 2 3 4 v4 

Probability: ⅓ ⅓ ⅓ 
Weight: 1 2 3 (v0, v3) 

Probability: ⅓ ⅓ ⅓ 
Weight: 7 8 9 (v1, v3) 

Probability: ⅓ ⅓ ⅓ 
Weight: 1 2 3 (v2, v4) 

Probability: ½ 9/20 1/20 
Weight: 7 8 9 (v3, v4) 

Probability: ⅓ ⅓ ⅓ 

The time required to complete the execution of vertex v is a 
function of v’s weight and the processor, p, on which it is to be 
executed.  In homogeneous systems, the choice of processor to 
execute a task is assumed to have no impact on execution time.  
Therefore, the vertex weight directly represents execution time. 
The time required to complete a communication operation 
between two vertices depends on the weight of the corresponding 
edge, w(e), and the processors on which the source and 
destination vertices are scheduled. In particular, the cost of 
communication operations between vertices scheduled on the 
same processor is assumed to be negligible.  Therefore, the time 
required to complete the communication operation corresponding 
to edge e is computed as follows: 

⎩
⎨
⎧ =

=
otherwise )(

  when0
),,(

ew
pp

ppet ds
ds , (1) 

where ps and pd are the source and destination processors, for e, 
respectively. 
Each processor is assumed to have a pair of simplex interfaces to 
the homogeneous virtual point-to-point network (one for 
incoming and one for outgoing data).  Therefore, while full 
duplex operations are permitted, only a single incoming operation 

524



and a single outgoing communication operation can occur at each 
processor-network interface at a time.  However, the switched 
network fabric is assumed to be contention free (i.e., there is 
sufficient network capacity available or packets can be sent along 
alternate routes in order to prevent congestion). 
Non-preemptively scheduling DAGs with the goal of minimizing 
schedule lengths is known to be NP-hard in general [5]. 
Therefore, a number of heuristic approaches have been proposed 
that can produce near-optimal schedules in polynomial time [3, 
11, and 16].  This paper presents a GLS-based offline scheduling 
approach for parallel soft real-time applications with precedence 
constraints.  Following are the two main objectives of the 
scheduling algorithm investigated in this research: 
1. Assign tasks in the DAG onto a parallel machine so as to 

minimize schedule length while utilizing as few processors 
as possible. Of two schedules with identical lengths, the 
schedule requiring fewer processors is preferred. 

2. Compute the completion time PDF of the application.  This 
PDF provides a means for precisely determining how to 
trade off the probability of meeting deadlines for reduced 
application execution time. 

3. RELATED WORK 
Ahmad and Kwok [16], Grajcar [13], and Dandass [6,  7] have 
shown GLS to be an effective technique for constructing non-
preemptive schedules for DAGs with fixed execution times. 
Fundamentally, GLS is a combination of LS and a Genetic 
Algorithm (GA). LS is an iterative algorithm for schedule 
construction. During each iteration, a list of ready vertices is 
constructed and prioritized.  A ready vertex is an unscheduled 
vertex whose precedence constraints have been met (i.e., a ready 
vertex either has no preceding vertices in the DAG or all of its 
predecessor vertices have been previously scheduled and have 
completed execution). Prioritization essentially consists of 
ordering the ready vertices according to some criteria. The highest 
priority ready vertex is then scheduled on the processor that 
allows the earliest execution of the selected vertex. Note that 
scheduling a vertex, v, implies that all edges incident on v must 
also be scheduled and have to complete before v can begin 
execution. 
The ready vertex prioritization scheme is the heuristic aspect of 
LS and a number of different prioritization criteria for LS have 
been proposed in the literature.   
The Dynamic Critical Path (DCP) heuristic [15] computes the 
critical path (CP) of the partial schedule and selects the ready 
vertex with the least mobility for scheduling first.  The CP of a 
DAG is the longest path in the DAG from an entry vertex to a 
terminal vertex.  DCP outperforms the other LS heuristics for a 
majority of the DAGs tested.  However, because of its 
complexity, DCP also requires long execution times.  The 
Mobility Directed (MD) heuristic [19] does not fix the starting 
times of scheduled vertices until all nodes have been scheduled. 
In MD, vertices are scheduled in increasing order of their relative 
mobility.  The relative mobility attribute of a vertex provides an 
indication of the amount by which the vertex can be delayed and 
still meet precedence constraints.   
Highest Level First with Estimated Times (HLFET) [2] is a simple 
(and consequently fast) LS heuristic in which ready vertices are 
scheduled according to non-decreasing order of the longest path 

between the ready vertex and a terminal vertex in the DAG. A 
terminal vertex is one that has no outgoing edges.  The Earliest 
Time First (ETF) LS [14] uses a greedy heuristic that prioritizes 
vertices according to their earliest start times.  The algorithm 
exhaustively examines all ready vertex and processor pairs and 
schedules the ready vertex that can start the earliest on the 
processor that allows the earliest start time. 
In GLS, a GA is used for prioritizing the vertices and edges.  
Kwok and Ahmad’s GLS algorithm produces better schedules 
than the DCP algorithm for several test case DAGs and takes less 
time than the DCP algorithm [16].  Grajcar’s GLS algorithm [13] 
produces schedules for a heterogeneous machine.  Grajcar also 
points out certain DAG structures for which LS and GLS 
algorithms cannot find optimal schedules.  Dandass [6] has 
reported the results of applying GLS towards scheduling DAGs 
with multicast communication in resource limited point-to-point 
network environments.  Dandass has also applied GLS towards 
constructing soft real-time schedules using DAGs [7].   
A variety of techniques relying on preemption have been 
developed for scheduling hard and soft real-time systems with 
fixed execution time requirements.  A survey of these techniques 
can be found in [17].  Recently, research in scheduling tasks with 
stochastic execution times has gained attention.  Proposed 
techniques include Statistical Rate Monotonic Scheduling 
(SRMS) [4], Probabilistic Time-Demand Analysis (PTDA) [18], 
Stochastic Time Demand Analysis (STDA) [10] and Bandwidth 
Reservation [1].  These techniques typically assume that tasks can 
be preempted and that the cost of switching tasks is negligible.  
Dogan and Ozguner [9] have developed techniques for stochastic 
scheduling of tasks in heterogeneous distributed computing 
systems. Their simulation studies showed that using stochastic 
scheduling provided better results in heterogeneous environments 
as compared to deterministic scheduling. 
However, the stochastic scheduling algorithms described above 
cannot be used for scheduling DAGs in parallel environments 
because these algorithms are either intended for fully preemptive 
systems, or for uniprocessor environments, or do not account for 
interprocess communication and precedence constraints. 

4. APPROACH 
Figure 2 provides an overview of the GLS algorithm used in this 
paper.  This is a steady-state algorithm in that new chromosomes 
derived from genetic operators immediately replace members of 
the current population. 

4.1 Genetic Representation 
Most existing LS and GLS algorithms focus on prioritizing 
vertices in the ready list and can schedule the incoming edges of a 
vertex in arbitrary order because communication contention is 
ignored.  However, when communication contention is allowed, 
the order in which edges are scheduled also impacts schedule 
length.  Therefore, the genetic representation in this research is 
used for prioritizing the DAG’s vertices and, equally importantly, 
its edges.  For this paper, two new priority-encoding schemes, 
PosCT, and PriNT were implemented and compared to the PosNT 
scheme previously used by Dandass [6, 7].  The three schemes are 
described in detail below. 
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4.1.1 Positional with No Thresholds 
In the Positional with No Thresholds (PosNT) encoding scheme, 
each chromosome in the GLS has two vectors of genes.  The 
vertex gene vector contains a gene for each vertex in the DAG 
and the edge gene vector contains a gene for each edge in the 
DAG (i.e., there are |V| + |E| genes in each chromosome).  Each 
gene is a 32-bit value identifying the corresponding task (vertex 
or edge) in the DAG.  The position of the vertex and edge genes 
in their respective vectors determines the priority of the 
corresponding vertices and edges used by the list scheduler.  For 
example, consider two ready vertices vx and vy appearing at 
indices ix and iy, respectively in the vertex gene vector.  If ix < iy, 
the pointer for vx appears before the pointer for vy in the vertex 
gene vector, and therefore, vx is given higher priority.  Edge 
priorities are similarly determined by ordering of edge genes in 
the edge gene vector.  The PosNT-based GA searches for an 
optimal ordering of vertices and edges in the chromosomes. 

4.1.2 Positional with Customized Thresholds 
In the Positional with Customized Thresholds (PosCT) encoding 
scheme, each chromosome has three vectors of genes and there 
are a total of 2 * (|V| + |E|) genes in a chromosome.  The vertex 
gene vector and the edge gene vector are identical in structure and 
function as in the PosNT representation described previously.  In 
addition to the positional genes, PosCT also contains genes in an 
overlap threshold gene vector.  This vector contains one threshold 
gene for every vertex and edge in the DAG.  The threshold gene 
specifies the overlap threshold value for the corresponding task 
represented as an 8-bit unsigned integer.  It is a fractional value in 
the interval [0, 1] computed by dividing the gene value by 255.  
The overlap threshold is used to determine if a task (vertex or 
edge), Tc, to be scheduled on processor Ps such that another task, 
Ts, already in the schedule for Ps, is delayed in order to allow task 
Tc to execute first (see section 4.6 for additional details). 
Unlike the positional genes, the threshold genes occur at fixed 
locations in the gene vector (i.e., the threshold for vertex vx is 
located at position x in the overlap threshold gene vector and the 
overlap threshold for edge ey is located at position |V|+y).  In 
addition to searching for optimal vertex and edge positions, the 
PosCT-based GA also searches for optimal threshold assignments 
for tasks. 

4.1.3 Priority with No Thresholds 
In the Priority with Fixed Thresholds (PriNT) encoding scheme, 
each chromosome in the GLS has one vector of genes that directly 
represent the relative priorities of the vertices and edges.  There 
are |V| + |E| genes in each chromosome.  Each priority gene is a 
32-bit integer that encodes the priority of the corresponding edge 
or vertex.  Unlike the positional genes in PosNT, priority genes 
for specific vertices and edges occur at fixed locations in the gene 
vector (i.e., the priority gene for vertex vx is located at position x 
in the priority gene vector and the priority gene for edge ey is 
located at position |V|+y).  The PriNT-based GA searches for an 
optimal prioritization of vertices and edges in the chromosomes. 

4.2 The Selection Operator 
In order to reduce the occurrence of premature convergence, the 
ability of high quality chromosomes to dominate the population is 
reduced by using the following fitness function proposed by 
Grajcar [13]: 

1|)(|
)()(

+
=

coffspring
crankcϕ , (2) 

Where, the rank of chromosome c is the number of chromosomes 
in population Ω that produce poorer schedules than c.  The 
chromosome with the largest fitness value in a random subset 
from Ω is selected for reproduction.  Similarly, the chromosome 
with the least fitness value from another random subset from Ω is 
selected for replacement.  In the experiments reported here, 
selection subset sizes ranging from 2% to 10% of |Ω| worked well 
for populations ranging from 200 to 1000 chromosomes. 

 
Figure 2. Overview of the GLS Algorithm 

4.3 Recombination Operators 
Three different crossover operators, standard crossover (SX), 
ordered crossover (OX) [8] and vector crossover (VX) are used in 
this GLS algorithm.  SX is used for recombining the genes in the 
priority vectors in PriNT and the overlap threshold vectors in the 
PosCT representation schemes.  In SX, the chromosome is treated 
as a sequence of bit positions and a crossover bit position in the 
vector is randomly selected.  The offspring chromosome’s genes 
are composed from a copy of the first parent’s gene sequence 
prior to the crossover point appended to the copy of the second 
parent’s gene sequence beginning at the crossover point. 
OX is used for recombining the genes in the positional vertex and 
edge vectors in the PosNT and PosCT representation schemes.  In 
OX, a single crossover point is randomly selected in the vertex 
vector.  The sequence of genes prior to the crossover point is 
copied from the first parent to the front of the vertex vector in the 
offspring chromosome.  The remaining genes in the first parent 
(i.e., following the crossover point) are copied into the offspring 
gene in the order they appear in the second parent.  The same 
operation is also performed on the edge and threshold vectors to 
construct the offspring chromosome. 
In VX, the first parent contributes a complete copy of its vertex 
vector and the second parent contributes a complete copy of its 
edge vector to construct the offspring chromosome. 
A mutation operator is also used in this research.  The mutation 
operator swaps the location of a pair of genes within the vertex 
position, edge position, priority, and threshold vectors (where 
applicable). 

Generate the initial population of chromosomes; 

Use LS to construct schedules for each chromosome in order to 
assign fitness values; 

While the termination criteria are not satisfied, loop 
{ 

Randomly select a genetic operator (crossover or mutation); 
Select chromosome(s) from the local population and apply 

the operator to produce the offspring chromosome; 
Use LS to construct a schedule in order to evaluate the 

offspring chromosome; 
Select chromosome from the local population to be replaced 

by the offspring chromosome; 
} 
Use the fittest chromosome to construct the solution schedule; 
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4.4 Fitness and Schedule Construction 
Fitness of a chromosome is a function of the length of the 
schedule produced by the chromosome.  The authors of this paper 
have adapted the schedule construction techniques developed by 
Dandass [6, 7] for use with the new PosCT and PriNT 
representation schemes.  Because of space restrictions, a detailed 
description of the schedule construction algorithm is not provided 
here.  Essentially, the algorithm looks for idle timeslots in the 
current partial schedule in which the highest priority ready vertex, 
vr, and its incident edges can be scheduled.  The algorithm uses an 
iterative procedure, temporarily scheduling vr on the first 
processor in the parallel machine, M, recording the completion 
time of vr, and then reversing this temporary scheduling operation 
before scheduling vr on the next processor in M.  After attempting 
the scheduling operation on each processor in M, the algorithm 
greedily selects the processor that allowed the earliest completion 
of vr and permanently schedules vr on that processor.   Before vr is 
scheduled, its incident edges must be scheduled.  Scheduling an 
edge requires the algorithm to find overlapping time slots during 
which the sending processor’s outgoing network link and the 
receiving processor’s incoming link are simultaneously idle. 
When tasks have fixed execution times, the starting and 
completion times of scheduled tasks are specified as fixed values.  
However, the starting and completion times of tasks with 
stochastic execution time requirements need to be specified as 
PDFs.  Figure 3 depicts a schedule (in Gantt-chart form) for the 
DAG in Figure 1.  In this figure, the shaded rectangular regions 
indicate the times when the vertices and edges may potentially be 
executing.  For example, v0 begins executing on processor p0 at 
time instance 1, and completes at the end of time instances 4, 5, or 
6 with a probability of 1/3 each.  Similarly, edge (v0, v3) begins 
execution immediately after v0 completes at time instances 5, 6, or 
7 with a probability of 1/3 each.  The edge completes execution at 
time instances 5, 6, 7, 8, or 9 with probabilities 1/9, 2/9, 3/9, 2/9, 
and 1/9, respectively. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p0 
s0 
p1 

r1 

p2 
s2 

pn: processor n 
sn: outgoing communication link at processor n 
rn: incoming communication link at processor n 

v0 

v1 
v3 

v4 

v2 

(v0, v3) 

(v0, v3) 
(v2, v4) 

(v2, v4) 

Time 

 
Figure 3. Stochastic Schedule for the DAG in Figure 1 

When scheduling vertices with fixed time requirements, the 
completion time of a vertex is computed by summing its start time 
and execution times.  From fundamental probability theory, the 
completion time PDF of a vertex with stochastic execution time 

requirements is computed by the convolution of its start time and 
execution time PDFs.  Convolution of discrete PDFs s(x) and w(x) 
is defined as follows: 

∑
=

+−⋅=
s

s

u

lt
tXwtsXf )1()()( , (3)  

where [ls, us] and [lw, uw] are the intervals over which s(x) and 
w(x) are non-zero, respectively, and X ∈ [ls+lw−1, us+uw−1]. 
Often, a ready vertex vr is to be scheduled on a processor after a 
previously scheduled vertex vp has completed and a previously 
scheduled incident edge er on vr has also completed.  For 
example, in Figure 3, v3 can start executing only after vertex v1 
and edge (v0, v3) complete. Note that edge (v1, v3) has an effective 
weight of 0 because v1 and v3 are scheduled on the same 
processor, and therefore, does not factor in v3’s start time 
computation.  In such situations, the start time PDF for the vertex 
is determined from the maximum of the completion PDFs of the 
two preceding tasks.  The maximum of two independent PDFs π1 
and π2 defined over intervals [l1, u1] and [l2, u2], respectively, is 
computed as follows: 

∀ x ∈ [max(l1,l2), max(u1, u2)], 
πmax(π1, π2)(x) = π1(x)π2(x) + π1(x)П2(x − 1) + П1(x − 1)π2(x), (4)  

where П1 and П2 are the cumulative distribution functions (CDFs) 
corresponding to the PDFs π1 and π2, respectively. 
An edge is scheduled in a common time slot in the processor-to-
network links at the source and destination processors that starts 
after the source vertex has completed.  Therefore, the start time of 
the edge is computed from the maximum of the completion time 
PDFs of the source vertex, the previously scheduled edge (if any) 
in the source processor-to-network link, and the previously 
scheduled edge (if any) in the destination processor-to-network 
link.  For example, suppose that edge e is to be scheduled after 
vertex v completes and that the source processor-to-network link 
has edge esrc scheduled to complete after e can begin executing.  
Similarly, assume that the destination processor-to-network link 
has edge edest scheduled to complete after e can begin executing.  
In this case, the starting PDF of e can be computed from the 
maximum of the completion time PDFs of v, esrc, and edest.  The 
maximum of three independent PDFs π1, π2 and π3 can be 
computed as follows: 

πmax(π1, π2, π3) = max[max(π1, π2), π3]. (5)  
It is important to note that equations (3) and (4) only apply to 
independent PDFs.  Therefore, situations with dependent PDFs 
must be handled separately.  In the example above, if the 
previously scheduled edges in the source and destination 
processor-to-network links are the same edge (i.e., esrc = edest), 
then the starting time PDF of e must be computed from the 
maximum of the completion time PDFs of v and esrc only; taking 
the maximum of v, esrc, and edest in this situation will be 
erroneous. 

4.5 Simplifying Heuristic 
A key feature contributing to the effectiveness of GAs is the 
ability to evaluate chromosomes quickly, thereby enabling the 
GA to rapidly explore large portions of the search space.  
However, the PDF manipulation operations described above can 
be computationally costly, especially for PDFs defined over large 
intervals.  Furthermore, the convolution of PDFs π1 and π2 defined 
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over intervals [l1, u1] and [l2, u2], respectively, results in a PDF 
defined over interval [l1+l2-1, u1+u2-1].  The resulting PDF is 
nearly as wide as the sum of the widths of the original PDFs.  
Therefore, the starting and completion PDFs for tasks towards the 
end of the schedule are typically much wider than the tasks’ 
weight PDFs.  The problem with the high computational cost of 
PDF manipulations is further exacerbated because during each LS 
iteration, a vertex and its incident edges are temporarily scheduled 
on every processor in order to determine the best processor.  This 
implies that in each LS iteration, a majority of PDF computations 
are discarded before the vertex and its associated edges are 
permanently scheduled. 
In order to reduce the number of PDF manipulations required to 
evaluate a chromosome, the GLS used in this research employs a 
two-phase scheduling approach.  During the first phase, the 
expected values of the vertex and edge weight PDFs are used as 
fixed value estimates.  These expected values are used to 
construct a preliminary fixed execution time schedule from the 
chromosome using the standard LS procedure.  This preliminary 
schedule specifies the processor assignment and the ordering of 
vertices and edges to be used in the second phase.  In the second 
phase, the PDF operations are used to convert the preliminary 
schedule into a stochastic schedule.  Because the scheduling 
decisions have already been made previously, only those PDF 
operations required for computing the stochastic starting and 
ending time values of the vertices and edges in the schedule are 
performed. 

4.6 Thresholds and PosCT 
Every processor and communication link has a list of idle time-
slots in which vertices can be scheduled.  A ready task is assigned 
to a sub-interval within an idle slot, resulting in the fragmentation 
of the idle slot into smaller idle slots.  There are occasions when a 
ready task’s, TR, ready time is less than or equal to the idle slot’s 
start time, however, the idle slot, SI, is not sufficiently large in 
order to allow TR to complete (i.e., TR can be assigned to begin 
within SI but the previously scheduled task, TS, that appears at the 
end of SI is scheduled to begin before TR will complete).  In the 
PosNT approach (i.e., the no threshold approach used by Dandass 
[7]), TR is inserted into SI only if TR does not overlap TS.  If there 
is overlap then TR is scheduled in another interval that occurs after 
SI.  However, inspection of the schedules produced by PosNT 
revealed several instances in which delaying TS by a small amount 
of time would have reduced overall schedule lengths.  This is 
because allocating TR in a later time slot resulted in a significant 
delay of tasks dependent on the completion of TR, as compared 
with the delay incurred by TS and its dependent tasks if TR was 
allowed to complete before TS began. 
Figure 4 depicts the schedule for the DAG in figure 1 in which 
edge (v2, v4) is allowed to execute before (v0, v3).  This results in a 
schedule that is shorter than the schedule shown in figure 3 by 
one time unit (the schedule in figure 3 was constructed using the 
PosNT approach). 
However, arbitrarily delaying tasks do not always produce 
shorted schedules and can also perturb the scheduling power of 
the GLS algorithm.  Therefore, previously allocated tasks should 
only be delayed by relatively small amounts as determined by the 
GA.  In order to compute when TS should be delayed, TR is 
tentatively assigned to begin in SI and the completion time of TR is 

computed.  Next the amount of overlap, δ, between tasks TS and 
TR is computed as follows: 

δ(TS, TR) = F(TR) – S(TS), (6)  
where F(TR) is the completion time of TR and S(TS) is the start 
time of TS.  If δ ≤ 0 the two tasks do not overlap and task TR can 
be scheduled in SI without further consideration.  If an overlap 
exists the overlap ratio, ω, is computed as follows: 

)(
),(),(

S

RS
RS

Tt
TTTT δω = , (7)  

where t(TS) is the expected value of the weight of task TS. (see 
section 4.5). 
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Figure 4: Shorter Schedule Produced by PosCT 

If ω(TS, TR) is less than or equal to the PosCT overlap threshold 
gene value for TS, then TR is scheduled in SI and TS is delayed; if 
ω(TS, TR) is greater than the threshold value, then TR is not 
scheduled in SI and algorithm looks for the next available slot.   
The delay in the start time of TS also delays the start times of any 
previously scheduled tasks that depend on the completion of TS.  
Therefore, a delay in the start time of TS causes a “ripple” effect 
of delays in the partial schedule. 

5. EXPERIMENTAL RESULTS 
A number of DAGs were constructed in order to evaluate the 
three different GLS representation schemes.  The structure of 
each DAG was one of Simple Fork-Join (SFJ), Out Tree (OUT), 
Hierarchical Fork-Join (HFJ), Mean Value Analysis (MVA), and 
Random (RND) as depicted in figure 5. The DAGs with RND 
structure have no predetermined branching pattern.  All of the 
vertex and edge weights of the DAGs were also assigned PDFs 
derived from beta, exponential, and randomized distributions.  
The randomized PDFs have an irregular landscape of probability 
values as opposed to the relatively smooth curves of the beta and 
exponential distributions. 
The DAGs were also given one of five different computation-to-
communication ratio (CCR) values of 0.5, 0.6, 1.0, 1.5, and 2.0.  
CCR is the ratio of the average vertex weight and the average 
edge weight in the DAG.  The various combinations of structure, 
probability distributions, and CCRs resulted in 225 different 
DAGs.  Each DAG had approximately 500 vertices and edges, 
combined. 
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The results reported below were obtained by executing parallel 
island-model [12] implementations of the GLSs using 8 processes.  
Each process maintained an independent population of 1,000 
chromosomes and computed 24,000 iterations. The processes 
exchanged the fittest chromosomes with each other at every 
1,000th iteration beginning with the 12,000th iteration and at every 
100th iteration after the 23,000th iteration. 

(a) Simple Fork-Join (SFJ) (b) Out Tree (OUT) 

(c) Hierarchical Fork-Join (HFJ) (d) Mean Value Analysis (MVA)  
Figure 5: Example DAG Shapes (adapted from [7]) 

Table II shows the relative performance of the three 
representation schemes versus each other, broken out by DAG 
shapes.  For example, the topmost row indicates that of the 45 
HFJ DAGs: 
• PosNT produced shorter schedules for 27 DAGs as 

compared with PriNT, and conversely, PriNT produced 
shorter schedules for 18 of the 45 DAGs. 

• PosNT produced shorter schedules for 18 DAGs while 
PosCT produced shorter schedules for the remaining 27 
DAGs. 

• PriNT produced shorter schedules for 15 DAGs while PosCT 
produced shorter schedules for the remaining 30 DAGs. 

The aggregate results over all DAGs summarized in the bottom 
row of the table clearly show that PosNT and PriNT have similar 
performance, whereas PosCT outperformed PosNT and PriNT by 
a ratio of 2:1.  Also, all three representation techniques produced 
shorter schedules than the HLFET LS technique. 

Table II.  Pairwise Comparison of PosNT, PriNT, and PosCT 

Shape PosNT PriNT PosNT PosCT PriNT PosCT
HFJ 27 18 18 27 15 30 
MVA 23 22 17 28 18 27 
RND 20 25 10 35 11 34 
OUT 22 23 20 25 22 23 
SFJ 21 24 10 35 6 39 
All 113 112 75 150 72 153 

Table III shows the collective performance of the three 
representation schemes and reinforces the superiority of the 
PosCT approach as compared with PosNT and PriNT.  PosCT 
produced shorter schedules for 128 of the 255 DAGs (slightly 
over 50%) whereas the remaining 97 DAGs were split nearly 
evenly between PosNT and PriNT.  These results imply that when 
restricted time and computational resources mandate the use of a 
single GLS implementation, then PosCT is a clear choice for the 

genetic representation scheme.  However, when computational 
resources are unrestricted, then it is better to use GLS 
implementations with all three representation schemes and to pick 
the shortest resulting schedule. 
Once a schedule for a DAG is constructed, the completion PDF, 
πc for the terminal vertex (i.e., the vertex with no outgoing edges) 
in the DAG (e.g., v4 in figure 1) also represents the PDF of the 
execution time for the entire DAG.  Recall that πc is essentially 
computed by summing the weight PDFs of many of the vertices 
and edges in the DAG.  Therefore, according to the Central Limit 
theorem, for large DAGS, πc has the shape of a Gaussian curve 
even if the individual weight PDFs that were summed to compute 
πc are themselves not normal.  Furthermore, πc has non-zero 
probability values within the time interval [lc, uc], where lc and uc 
represent the best-case and worst case execution time for the PDF 
(e.g., [9, 15] in figure 4).  Given πc, the CDF, Πc(x) where lc ≤ x ≤ 
uc, provides the probability that the schedule will complete at or 
before time x.  This can used to predictably tradeoff the 
probability of meeting completion deadline against the time for 
which resources are reserved for DAG execution. 

Table III. Comparison of PosNT, PriNT, and PosCT 

Shape PosNT PriNT PosCT Total 
HFJ 16 7 22 45 
MVA 10 16 19 45 
RND 5 9 31 45 
OUT 11 12 22 45 
SFJ 9 2 34 45 
All 51 46 128 225 

6. CONCLUSIONS AND FUTURE WORK 
This paper presents an effective genetic list scheduling technique 
for constructing non-preemptive schedules for soft real-time 
parallel applications.  It is assumed that the applications are 
expressed in the form of fine-grained DAGs and that the variable 
weights of the computation and communication tasks in the 
DAGs are expressed in the form of probability distribution 
functions. 
Three different genetic representation schemes were investigated.  
In order to study the efficacy of the genetic representation 
schemes, schedules were created for 225 different DAGs with a 
variety of structural characteristics.  Of these, the PosCT scheme 
enabled the GA to determine when to delay the execution of 
certain previously scheduled tasks in order to allow other ready 
tasks to execute.  This ability resulted in shorter schedules for a 
majority of DAGs as compared with the schedules produced using 
the other representation schemes. 
Ongoing research is focused on improving and extending the 
PosCT-based GLS approach.  Currently, PosCT overlap 
thresholds are compared with the ratio of overlap versus task 
weights.  It may be more appropriate to compare overlap 
thresholds to the probability that a ready task to be inserted into a 
slot delays (because of overlap) a previously scheduled task.  In 
this case, insertion of the ready task into the slot will be permitted 
only if this probability is less than the GA-determined threshold.  
This extension will not allow the use of the simplifying heuristic 
and the two phased approach.  Therefore, a central idea to be 
explored in this future research is to determine whether the 
detailed start and completion time PDFs of the vertices and edges 
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in the partial schedules can be exploited to construct even better 
schedules than possible using the current two-phase approach.  It 
is expected that larger-scale parallelism will also need to be 
explored in order to account for the significant increases in 
computation time required to evaluate chromosomes using the 
single-phase approach. 
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