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Escuela Politécnica Superior
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ABSTRACT
There are several evolutionary approaches for solving ran-
dom binary Constraint Satisfaction Problems (CSPs). In
most of these strategies we find a complex use of informa-
tion regarding the problem at hand. Here we present a hy-
brid Evolutionary Algorithm that outperforms previous ap-
proaches in terms of effectiveness and compares well in terms
of efficiency. Our algorithm is conceptual and simple, fea-
turing a GRASP-like (GRASP stands for Greedy Random-
ized Adaptive Search Procedure) mechanism for genotype-
to-phenotype mapping, and without considering any specific
knowledge of the problem. Therefore, we provide a simple
algorithm that harnesses generality while boosting perfor-
mance.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; G.2.1 [Combinatorics]: Combinatorial
algorithms

General Terms
Algorithms, Performance, Experimentation

Keywords
Evolutionary Combinatorial Optimization, Random Binary
CSPs, Constraint Handling, Heuristics, Hybridization

1. INTRODUCTION
Random binary CSPs is a widely used benchmark within

the constraint programming community as an efficiency test
for several algorithms and solvers. However, we can also
find a wide spectrum of evolutionary approaches for solving
random binary CSPs. In [1] we find a comprehensive com-
parison of those methods, such as SAW [2], Glass-box [3],
MID, CCS, among others.
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This paper presents the hybrid evolutionary algorithm
GA-GRASPV o for solving random binary CSPs. The algo-
rithm is conceptual, simple and uses a key modeling based
on the ideas in [4]. GA-GRASPV o specifically applies the
idea of a GRASP-like mechanism to perform genotype-to-
phenotype mapping for solving random binary CSPs.

The main difference between our algorithm and that of [4],
in terms of introducing a GRASP-like genotype-to-phenotype
mapping, is that the genotypes represent two completely
different aspects. In [4], the genotype represents values to
assign to variables, while in our algorithm the genotype rep-
resents the order in which the variables will be tentatively
assigned. This is a novel approach to solve CSPs, and it will
be explained in more detail in the next sections.

We provide a comparison with two of the most successful
state-of-the-art evolutionary algorithms as shown in [1]. Our
simple algorithm outperforms the best approach in terms of
effectiveness (measured by success rate, mean error at ter-
mination and average champion error) while outdoing it also
in terms of efficiency (measured by the average number of
evaluations to find a solution). Furthermore, it compares
with the best approach in terms of efficiency, while outper-
forming it in terms of effectiveness.

The main contributions of this research are:

• A novel representation which focuses on finding an op-
timal variable ordering, and that borrows ideas from
[4] for a GRASP-like genotype-to-phenotype mapping.

• A general evolutionary algorithm which can be eas-
ily suited to solve any kind of CSP problem without
considerable implementation effort.

• Outstanding results that outperform and compare with
the best evolutionary algorithms which usually involve
complex heuristics and fitness adjustment functions.

• Showing that a simple algorithm can yield outstanding
results if an appropriate modeling is chosen; therefore,
stating the importance of representation in evolution-
ary strategies.

The rest of the paper is organized as follows: first we
briefly introduce constraint satisfaction problems for Evolu-
tionary Algorithms (EAs). We then introduce the GRASP
framework and present our hybrid algorithm. The following
sections are devoted to the experimental comparison with
other methods: in section 5 we define our test-suite problem
(random binary CSPs), in section 6 we introduce the meth-
ods against which our algorithm will be compared, section
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procedure GRASP(maxIt,seed)
1. Read Input()
2. for k=1,. . . , maxIt do
3. Solution ← Greedy Randomized Construction(seed);
4. Solution ← Local Search(Solution);
5. Update Solution(Solution);
6. end;
7. return Best Solution;
end GRASP

Figure 1: The GRASP pseudocode

7 describes the measures we use for the comparison, and
section 8 shows the experimental results and the compari-
son itself. The paper ends with some conclusions and future
work.

2. CONSTRAINT SATISFACTION PROBLEMS
AND EAS

In a constraint satisfaction problem (CSP) we are given a
set of variables, where each variable has a domain of values,
and a set of constraints acting between variables. The prob-
lem consists of finding an assignment of values to variables in
such a way that the restrictions imposed by the constraints
are satisfied.

We can also define a CSP as a triplet < X, D, C >, where
X = {x1, . . . , xn} is the set of variables, D = {D1, . . . , Dn}
is the set of nonempty domains for each variable xi, and
C = {C1, . . . , Cm} is the set of constraints. Each constraint
is defined over some subset of the original set of variables
{x1, . . . , xn} and specifies the allowed combinations of these
variable values. Thus, solving the CSP is equivalent to find-
ing a complete assignment for the variables in X with values
from their respective domain set D, such that no constraint
Ci ∈ C is violated.

The evolutionary framework presents the issue of con-
straint handling: constraints can either be handled directly
or indirectly [5].

• Indirect handling involves transforming the constraint
into an optimization objective which the EA will pur-
sue; while,

• Direct handling leaves the constraint as it is, and
enforces it somehow during the execution of the algo-
rithm.

Direct handling is not oriented for EA due to the lack
of an optimization function in the CSP, which would result
in no guidance towards the objective. Thus, indirect han-
dling is the best suited approach for EA, although a mixed
strategy where some constraints are enforced and some are
transformed into an optimization criteria is suited as well.

3. GREEDY RANDOMIZED ADAPTIVE PRO-
CEDURES

The GRASP (Greedy Randomized Adaptive Search Pro-
cedure) metaheuristic can be viewed as an iterative process,
each iteration consisting of two phases: construction and
local search [6]. The construction phase builds a solution

procedure Greedy Randomized Construction(seed)
1. Solution ← ∅
2. Evaluate the incremental costs of candidate elements
3. While Solution is not complete do
4. Build the restricted candidate list RCL
5. Select element s from RCL at random
6. Solution ← Solution ∪ {s};
7. Reevaluate the incremental costs;
8. end;
9. return Solution;
end Greedy Randomized Construction

Figure 2: The Greedy Randomized Construction
pseudocode

whose neighborhood is investigated by the local search pro-
cedure. During the whole process, the best solution is up-
dated and returned at the end of a certain number of itera-
tions. Figure 1 illustrates the basic GRASP procedure.

Any local search algorithm can be incorporated to im-
prove a solution: tabu search and simulated annealing [7,
8], large neighborhoods [9] or variable neighborhood search
[10]. However, we are interested in the greedy construction
phase, where a tentative solution is built in a greedy fashion.

Randomly generated solutions are usually of a poor qual-
ity, while greedy generated solutions tend to be attracted by
local optima, due to the less amount of variability. A greedy
randomized heuristic [11] adds variability to the greedy algo-
rithm. A certain greedy function yields a ranked candidate
list, which is called restricted candidate list (RCL). An ele-
ment from that list is randomly selected and added to the
solution.

The procedure to construct the greedy randomized solu-
tion is depicted in Figure 2. A key step in this pseudocode
is the selection of an attribute from the RCL. This can be
performed using a qualitative or quantitative criterion. In
the former, the element is selected among the k best ele-
ments; while in the latter, the element is selected among the
elements with a quality α% of the greedy value. Note that
k = 1 or α = 100 yields a pure greedy selection.

Reactive GRASP
As can be seen in the procedure described below, the selec-
tion of the k parameter is problematic. The use of a fixed
value for this parameter could hinder high quality solutions
[12]. A learning-based strategy named reactive GRASP was
introduced in [13], selecting a different value in each itera-
tion from a finite set of values. The selection of a certain
value in a given iteration can be chosen on the basis of the
goodness of the best solution generated by this parameter.
A possibility is to maintain a vector of parameter values to
use in each iteration, where a position pi denotes the value
of the parameter that serves to choose the i− th candidate.
From now on we will refer to this vector as GRASP param-
eters vector.

For example, a certain position of the GRASP parameters
vector pi = 3 makes us choose a random candidate among
the four best candidates, for the i− th decision, in the RCL
list (rrom now on we will consider that the first value in the
RCL is in position 0 and the last one n− 1, where n would
be the length of the RCL).

532



4. THE HYBRID EVOLUTIONARY ALGO-
RITHM

We now turn to the hybrid evolutionary algorithm for
solving CSP problems. The algorithm maintains a popula-
tion of GRASP parameters and performs a number of iter-
ations until a solution is found. In each iteration it selects
two individuals of the population and, with some probabili-
ties, crosses and/or mutates them. The next population will
be obtained in an elitist fashion.

Following the framework presented in [1], our algorithm
consists of a generational evolutionary model with an eli-
tist selection of the new generations, a one-point crossover
recombination operator, and a mutation operator which se-
lects, for each si (each single GRASP parameter in the vec-
tor), a uniformly random new value (subject to a given prob-
ability); the parent selection is performed in a binary tourna-
ment fashion and the constraint handling is purely indirect
by using GRASP parameters. It presents neither fitness ad-
justments nor use of heuristics. Each of these characteristics
is now reviewed in more detail.

Evolutionary model
The algorithm consists of a generational strategy where new
populations are selected in an elitist fashion, which means
that in each new generation, the population is calculated by
maintaining the best individuals among the previous popu-
lation and the offspring.

Fitness function
In order to calculate the fitness of a certain individual, we
will take into account how many variables are in conflict with
the rest. Thus, the fitness function would be as follows:

f(s) =
nX

j=1

υ(s,Cj), where,

υ(s,Cj) =

j
1, if s violates at least one c ∈ Cj ;
0, otherwise.

Where s is a complete assignment of values to variables ,
Cj is the set of constraints containing variable vj and n is
the number of variables.

Note that, even though we name it fitness function, we
want to minimize its value, since this is equivalent to reduc-
ing the number of violated variables in the problem. Indeed,
if f(s) = 0 then the assignment s produces no violations,
and, therefore, it is a solution.

Crossover
The hybrid EA uses a one-point crossover for crossing two
individuals σ1 and σ2. It selects a random number r in 1..n
and the child is obtained by selecting the first r genes from
σ1 and the remaining n− r genes from σ2.

Mutation
The mutation here is achieved by, with a given probabil-
ity, randomly selecting a new value for each single GRASP
parameter in the vector that defines the individual.

Parent selection
In each iteration the algorithm selects two individuals in
the population (the parents). This is performed in a bi-

nary tournament fashion: randomly selecting two individu-
als from the population and choosing the best of them; the
same is carried out for the second parent.

Representation
This is the most important feature in our algorithm, in fact,
the rest of the characteristics are common in simple evolu-
tionary schemes. However, the representation of the CSP is
a key factor in the algorithm efficiency. In order to define
our implementation, we must introduce some basic concepts.

GRASP parameters vector
Our population is then, a set of GRASP parameter vectors.
In [4] a Hybrid GRASP - Evolutionary algorithm for finding
Golomb rulers is introduced. Our representation makes the
same use of the GRASP features as in the mentioned algo-
rithm. In the same manner, the value of each parameter
defines the exact candidate to select, instead of a range for
a random selection as defined in the GRASP section.

The value of each parameter reflects the decision to take
in this step, forcing us to make the decision ranked in the
position indicated by the value. Decisions are ranked ac-
cording to some quality criteria, thus, a parameter value 0
will involve making the “best” decision. A vector with all
parameters set to 0 corresponds to a plain greedy strategy.

Parameters concordance
Solving a CSP usually implies assigning values to variables
iteratively until either a consistent solution has been reached,
or the problem has been proved to be unsolvable. Every time
a variable is instantiated with a value, a consistency test is
performed to ensure that the rest of the variables will have
consistent values to be assigned to. If this test fails, the pro-
cedure will backtrack to the previous decision (to the last
consistent variable instantiation) and try to assign a differ-
ent value to the current variable. If the test is positive the
procedure will choose a new variable to instantiate.

However, there is a crucial element on the efficiency of
this solving procedure: the order in which the variables are
chosen for instantiation. This is called the variable ordering
heuristic. According to [14], the ordering heuristic for as-
signing variables is a key factor in quickly finding a feasible
solution. Based on that, we will assume that it is possible to
assign the variables in a certain order such that we will be
able to find a solution assigning values that do not generate
conflicts. This can seem a fuzzy assumption, and perhaps
an optimistic statement; however, it is true. If you could
know beforehand the search tree of a solution, you could
reproduce it by assigning a value that yields no violations
(the value that appears in the solution) to every variable in
the order that the search tree indicates. This will produce
a valid solution.

Let us exemplify this with a toy CSP. Imagine we have
three variables x, y and z. The common domain of the vari-
ables is D = 0, 1, 2. The variables are subject to two con-
straints:

c0 :: x + y = 2
c1 :: z + y = 1

Now we are going to try to solve the problem (finding a
consistent assignment of values to variables) by instantiating
the variables in lexicographic order. Very briefly, we will
assign x = 0, then y = 2 to be consistent with c0 and we
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Figure 3: Assigning the first variable using the GRASP parameters vector in 6 steps: Step 1 shows the
variables available to select. Step 2 applies the dom/degree heuristic to these variables. Step 3 shows the
resultant RCL list. Step 4 selects the candidate variable that the GRASP parameters vector indicates. In
Step 5 this variable is instantiated with the best value possible and the last step reflects this selection and
instantiation in the first position of a vector that represents an actual tentative solution of the problem.

would not be able to assign a value to z that satisfies c1.
However, if we would have ordered the variables y, x, z, we
would have assigned y = 0, then x = 2 to satisfy c0, and
finally z = 1 satisfying c1. Note that the order in which
we assign the values is also important. In our approach we
assume a static lexicographic ordering, and we will always
assign the first value that yields no violations.

Therefore, we are going to transform the problem of find-
ing values for the variables (approach followed in [4]) into
finding an optimal ordering for the variables that will yield
a feasible solution. Our vector of GRASP parameters will
allow us to choose, among the ranked variables, which one
we want to instantiate next. The variables will be dynam-
ically ranked using the dom/degree ordering heuristic [14]
(quality criteria), which gives more weight to variables with
few available values in its domain, and that take place in a
greater amount of constraints (Note that this heuristic will
yield the ordering introduced in the example above where
we were able to immediately find a solution). The values
that the parameters can take, will fall within the range
[0, n − posi], where posi ∈ 1..n is the position of the given
parameter within the vector. In this case, the last parame-
ter will always be 0, since there is just one variable left to
assign. Once we have selected a variable we will instantiate
it with the best value possible (the value that yields the least
amount of constraint violations). In Figure 3 this process is
explained in 6 steps.

It is worth mentioning that, opposite to [4], we allow non
feasible instantiations. This follows immediately from the
fact that we are considering a feasibility problem, instead of
an optimization problem. In the latter we are searching for
the best feasible solution, hence, we can restrict the search
to feasible solutions; while in the former we are searching for
the best unfeasible solution, which corresponds to a feasible
solution (the one with less constraint violations).

4.1 The Hybrid Algorithm
We are now ready to present the hybrid EA GA-GRASPV o

which is depicted in Figure 4. Lines 2-4 perform the initial-
izations. In particular, the population is randomly gener-
ated in lines 2-3 and the generation counter g is initialized

1. GA-GRASPV o(csp)
2. forall i ∈ 1..populationSize
3. Σ← Σ ∪ {randomConfiguration(csp.n)};
4. g ← 0;
5. while g ≤ maxGen & v(Σ) > 0 do
6. i← 0;
7. Σ+ ← ∅;
8. while i ≤ populationSize do
9. select (σ1, σ2) ∈ Σ;
10. with probability Pc

11. σ∗ ← crossover(σ1, σ2);
12. if υ(σ∗) == 0
13. return σ∗;
14. with probability Pm

15. σ∗ ← mutate(σ∗);
16. if υ(σ∗) == 0
17. return σ∗;
18. Σ+ ← Σ+ ∪ {σ∗};
19. i← i + +;
20. Σ← select(Σ+, Σ);
21. g ← g + 1;

Figure 4: Algorithm GA-GRASPV o for CSP prob-
lems.

in line 4.
The core of the algorithm is in lines 5-21. They generate

new generations of individuals for a number of iterations or
until a solution is found. The new generation is initialized in
line 7, while lines 8-19 create the new generation. The new
individuals are generated by selecting the parents in line 9,
applying a crossover with probability Pc (lines 10-11), and
applying a mutation with probability Pm (lines 14-15). The
new individuals are added to the new population in line 18.
The current population is selected among the previous and
the new population in line 20. Note that after crossover and
mutation we need to calculate the cost of the individual in
order to detect solutions and/or keep track of the cost in
order to properly select parents and next population.
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p E(solutions)
0.24 1707299.07
0.25 258652.614
0.26 38984.6092
0.27 5600.99655
0.28 838.870129
0.29 125.400589
0.30 19.6420135
0.31 2.79148238
0.32 0.42173145
0.33 0.06618763

Table 1: The Smith’s conjecture prediction of the
number of solutions as a function of p.

5. OUR BENCHMARK: RANDOM BINARY
CSPS

In this paper we consider random binary constraint satis-
faction problems, since their properties in terms of difficulty
to be solved are well-understood and hence such problems
have been used for testing the performance of algorithms for
solving binary CSPs. In [15] it was shown that any CSP can
be equivalently transformed to a binary CSP, thus without
a loss of generality.

Various problem instance generators have been developed
for the class of binary CSPs, based on several theoretical
models. All of these models are parameterized by n, m, D,
and k, where n is the number of variables, m is the number
of constraints, D is the number of values in each domain
and k is the arity of each constraint. In a binary constraint
network, the value of k is fixed to 2.

There are four traditional models, called A, B, C and D
developed from a general framework presented in [16] and
[17], all of which are unsolvable with high probability. In
our work we use the E model proposed by Achioptlas et
al. [18], which has the advantage that it generates solvable
benchmarks. This model is usually specified as E(n, p,D, k)
with p defined as p = m[

`
n
k

´
Dk]−1 and works by choosing

uniformly, independently and with repetitions, conflicts be-
tween two values of two different variables. We are aware
of the existence of another good random binary CSPs gen-
erator, Model F [19], and we plan to use it as a benchmark
generator in future experiments.

Our test suit consists of 250 solvable problem instances
available on the Web [20] and used also as a benchmark in
[1]; they are generated using the model E(20, p, 20, 2) with
25 solvable instances for each value of p in {0.24, 0.25, 0.26,
0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33}. By using the conjec-
ture of Smith [17] we show that the range for p in model E
actually runs through the mushy region. The term mushy
region is used to indicate the region where the probability
that a problem is soluble changes from almost zero to almost
one. Within the mushy region, problems are in general dif-
ficult to solve or to prove unsolvable. In Table 1 it can be
seen that the predicted number of solutions drops bellow
one when moving from p = 0.31 to p = 0.32, precisely what
defines the mushy region.

6. RELATED WORK
There are several evolutionary algorithms focused on solv-

ing random binary CSPs [1]. Most of them use knowledge

of the problem, either to develop heuristics or to implement
a fitness adjustment technique. The nice feature of our al-
gorithm is that no knowledge about the problem is taken
advantage of, hence, harnessing generality without a loss in
efficiency or effectiveness.

In this section we are going to briefly introduce the two
most successful approaches according to [1], which will be
later used to compare against our algorithm.

SAW
The basic idea behind the SAW (Stepwise Adaptation of
Weights) algorithm lies in the way that the fitness function
is evaluated. Each k evaluations1 the variables causing the
constraint violations in the best individual of the current
population are given a high weight (penalty), because they
are considered to be harder than the others. These weighted-
up variables will have a greater impact in the fitness of the
following evaluations. A comprehensive study of different
parameters and genetic operators of SAW can be found in
[2].

Glass-box
Glass-box works by decomposing complex constraints in two
steps: elimination of functional constraints and decomposi-
tion of the CSP into primitive constraints, usually of the
form α· pi−β· pj �= γ where pi and pj are the values of vari-
ables vi and vj . A common repair rule used is the following

if α· pi − β· pj = γ then change vi or vj (1)

Repairing a violated constraint can result in the production
of new violated constraints, thus at the end of the repairing
process, the chromosome will not in general be a solution.
An extensive work on this constraint processing technique
is presented in [3] and [21].

7. MEASURES OF EFFECTIVENESS AND
EFFICIENCY

Genetic algorithms are random algorithms, therefore the
behavior of the optimization in a problem instance varies
from execution to execution. In order to obtain a more ac-
curate idea of the performance of an algorithm in a concrete
binary CSP instance, we are going to run it 10 times for
each problem instance, thus having 250 executions for each
p value (10 executions for each 25 problem instances belong-
ing to a concrete p value). The set of executions for each p
value is denoted by Sp.

An execution is finished when the genetic algorithm finds
the solution or when a given number of evaluations is reached.
An evaluation is the calculation of the fitness of an individ-
ual (in this case the number of variables violating a con-
straint).Thus, we define θ as the maximum number of eval-
uations for each execution. Now, we are ready to define
some effectiveness and efficiency measures as a function of
p.

Effectiveness
Effectiveness is measured by the success rate (SR), the mean
error at termination (ME) and the average champion error
(ACE).

1In [1] the period k is set to 25 evaluations.
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Figure 5: SR and AES measures from the GA-GRASPV o and SAW algorithms.

We define S+
p as the executions of Sp that found a solution

before θ evaluations, and S−
p = Sp − S+

p . The SR over p is
the percentage of runs that find a solution in no more than
θ evaluations.

SR(p) = 100
|S+

p |
|Sp|

The error at termination (ET ) is defined for a single run
as the number of constraints violated by the best candidate
solution in the population when the execution reaches θ eval-
uations. If an execution finishes before θ evaluations, then
its ET is considered 0, thus the mean error at termination
(ME) is defined as

ME(p) =
1

|Sp|
X

s∈S−
p

EAT (s)

We use another effectiveness measure that focuses on the
convergence speed of the algorithm. We define the cham-
pion error (CE) as the number of constraints violated by
the best individual found up to a given time (measured in
evaluations) during a run, thus the average champion error
is defined as

ACE(p, t) =
1

|Sp|
X
s∈Sp

CE(s, t)

If s has finished before t evaluations, then CE(s, t) = 0.

Efficiency
In our experiments, we use the average number of evalua-
tions to find a solution (AES) in order to measure efficiency.
The AES is the average number of evaluations to find a so-
lution (ES) over the successful runs S+

p .

AES(p) =
1

|S+
p |

X
s∈S+

p

ES(s)

It is important to note that if S+
p � S−

p then AES is sta-
tistically unreliable.

Another interesting efficiency measurement is the average
conflict checks needed to find a solution, used in [1]. Unfor-
tunately, it is not possible to find a correspondence between
the typical conflict check and the way in which our algorithm
computes constraint violations.

8. EXPERIMENTAL RESULTS
We have chosen the SR, ME, ACE and AES measures

in order to compare the measures obtained from our algo-
rithm GA-GRASPV o with same measures of the best ones
of the algorithms analyzed in [1]. The test suite (the 250 in-
stances generated from model E available in [20]),the limit
of evaluations (θ = 100000)2 and our mutation probability
parameter (set to 0.3 in all the experiments) are also the
same.

In the following two subsections we compare our algo-
rithm with the winners of effectiveness and efficiency of the
analysis performed in [1].

8.1 Comparing against the most effective al-
gorithm: SAW

The most important measure in evaluating effectiveness
is the success rate, because the main goal of an algorithm
for solving CSPs is to obtain a solution. In [1] it is shown
that the overall winner regarding success rates is the SAW
algorithm.

In Figure 5 we give a comparison of the SR measures
between the GA-GRASPV o and SAW algorithms. SAW is
outperformed by GA-GRASPV o in all p values. Moreover,
if we consider the global success rate for all p’s, we obtain
an overall SR of 55% for GA-GRASPV o and 44% for SAW,
which implies more than a 10% of successful executions.

Unfortunately, due to the way in which the fitness function
is computed in SAW, its ME and ACE measures cannot be
compared to those from GA-GRASPV o. This is explained
because the fitness of the SAW algorithm is not the number
of constraint violations, but a weights-scaled function.

We include an efficiency comparison in Figure 5, the av-
erage number of evaluations to a solution. In all but two
values of p the GA-GRASPV o requires less evaluations than
SAW. Curiously, from p = 0.24 to p = 0.30 the two algo-
rithms seem to converge, but from that point onwards the

2This limit is achieved by a population size of 1000 indi-
viduals, a maximum generations limit of 50 and two eval-
uations for each individual and generation: after crossover
and after mutation. Similar results can be achieved with a
smaller population size and with a larger amount of genera-
tions by means of a simple restarting policy. Thus, diversity
is very important for the performance of the algorithm in
this benchmark.
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Figure 6: Efficacy and efficiency measures from the GA-GRASPV o and Glass-Box algorithms.

AES for SAW growths exponentially while having only a
slight increase for GA-GRASPV o.

8.2 Comparing against the most efficient algo-
rithm: Glass-box

In [1] it is shown that the winner regarding Efficiency,
measured by the number of fitness evaluations, is the Glass-
box genetic algorithm.

In Figure 6 we give a comparison of the efficiency mea-
sure (AES) between the GA-GRASPV o and Glass-box al-
gorithm. In the easy region (0.24 to 0.27) GA-GRASPV o

needs a comparable number of evaluations, but is surpassed
in terms of efficiency by Glass-Box in the mushy region. The
average number of solutions over all p’s is 24077 for GA-
GRASPV o and 7889 for Glass-box, being the last a 32%
more efficient.

In efficacy terms, the two algorithms are more balanced.
GA-GRASPV o outdoes Glass-box in the whole easy region
and in the beginning of the mushy region (0.24 to 0.31), with
an equilibrium in the rest of the values. In overall terms the
Glass-Box successfully finishes a 40% of the executions, a
15% less than GA-GRASPV o.

Observing the ME and ACE of Figure 6 it can be see that
the quality of the partial solutions during the execution is
slightly better for Glass-box, specially in the mushy region,
where it has 1 less violated constraint on average at the end
of the run.

In all efficiency measures we have used the evaluation as

the unit of computational effort. In order to obtain a more
realistic picture about the efficiency of the algorithms, we
have computed an average of the CPU time consumed by
an evaluation: 0.0062 ± 0.0028 seconds on a Pentium IV at
2.8 GHz with 512 MBytes of RAM.

9. CONCLUSION AND FUTURE WORK
In this paper we have presented a hybrid evolutionary al-

gorithm for solving random binary CSPs, which yields out-
standing results, as it outperforms the best previous ap-
proach in terms of effectiveness, and compares with the best
strategy in terms of efficiency.

Our hybrid algorithm incorporates features of GRASP, in
a similar way as in [4], where a GRASP-like mechanism is ap-
plied to genotype-to-phenotype mapping. However, our ap-
proach features a novel representation which focus on finding
a variable ordering instead of a value to variable assignment.

The rest of the algorithm is conceptual and simple, mak-
ing no use of information regarding the problem, which har-
nesses generality. It also demonstrates that modeling (or
representation) is a key factor in evolutionary strategies.

Moreover, we believe there is a large space for improve-
ment. Learning techniques and restart policies should be
introduced and tested. We are also studying hybridizations
with local search techniques that are already yielding very
promising results.

Finally, we are interested in using real life CSP bench-
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Figure 7: Average time to solution of the GA-
GRASPV o for several values of p.

marks in order to compare results with constraint program-
ming techniques and other evolutionary approaches avail-
able. Binary CSPs are not very common in real life appli-
cations and even though any CSP can be transformed into
a binary CSP in polynomial time [15], we plan to generalize
our solver to deal with n-ary CSPs.
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