
Maximum Cardinality Matchings on Trees
by Randomized Local Search

Oliver Giel
∗

Fachbereich Informatik, Lehrstuhl 2
Universität Dortmund

44221 Dortmund, Germany

oliver.giel@cs.uni-dortmund.de

Ingo Wegener
∗

Fachbereich Informatik, Lehrstuhl 2
Universität Dortmund

44221 Dortmund, Germany

ingo.wegener@cs.uni-dortmund.de

ABSTRACT
To understand the working principles of randomized search
heuristics like evolutionary algorithms they are analyzed
on optimization problems whose structure is well-studied.
The idea is to investigate when it is possible to simulate
clever optimization techniques for combinatorial optimiza-
tion problems by random search. The maximum match-
ing problem is well suited for this approach since long aug-
menting paths do not allow immediate improvements by lo-
cal changes. It is known that randomized search heuris-
tics like simulated annealing, the Metropolis algorithm, the
(1+1) EA and randomized local search efficiently approx-
imate maximum matchings for any graph; however, there
are graphs where they fail to find maximum matchings in
polynomial time. In this paper, we examine randomized lo-
cal search (RLS) for graphs whose structure is simple. We
show that RLS finds maximum matchings on trees in ex-
pected polynomial time.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; G.3 [Probability and Statis-
tics]: Probabilistic Algorithms

General Terms
Algorithms, Theory

Keywords
Evolutionary algorithms, randomized local search, maximum
cardinality matchings, runtime analysis

∗supported by the German Research Foundation (DFG) as
a part of the collaborative research center “Computational
Intelligence” (SFB 531)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
To understand how randomized search heuristics (RSHs)

work we analyze their runtime. In general, we are interested
in the question for what problems simple RSHs including the
Metropolis algorithm (MA), simulated annealing (SA), the
(1+1) EA, and randomized local search (RLS) are suitable.
One approach is to analyze RSHs for optimization problems
whose structure is well-known. When a certain problem
turns out to be too difficult for a specific RSH, we ask for
what instances of the problem the RSH is successful.

This approach to understand the working principles of
RSHs was started for MA and SA for the problems graph
bisection [8], clique [7], and also maximum matching [12,
11]. The question whether the right cooling schedule for SA
is superior to all choices of a constant temperature in MA
for a quite natural problem was answered in the affirmative
[15]. The proof uses an instance of the combinatorial op-
timization problem minimum spanning tree. A number of
combinatorial optimization problems have already been in-
vestigated in the field of evolutionary algorithms. Among
them are sorting and single source shortest path [13], max-
imum matching [4], minimum spanning tree [10], and also
the NP-hard problem partition [16].

The maximum matching problem is well-suited for our
purpose. The problem is not trivial. Only theoretical in-
sight has led to polynomial time combinatorial algorithms.
Exact optimization is difficult for simple RSHs because small
changes of a good solution do not produce better solutions
in typical situations. However, even very simple RSHs find
approximate solutions efficiently. But there are instances
which require an exponential runtime for an optimal solu-
tion. Section 2 briefly summarizes known results regarding
the maximum matching problem and RSHs. For a better
understanding, we first introduce the matching problem and
the heuristic RLS.

A matching M is a subset of the edges of an undirected
graph G such that no edges of M share a node. The max-
imum matching problem is to find a matching of maximal
cardinality for a given graph G. Edges not belonging to M
are called free and nodes not belonging to an edge in M
are also called free. If M is a matching, an M-augmenting
path is a simple path in G connecting two free nodes such
that matching edges and free edges alternate along the path.
Exchanging the state of matching edges and free edges on
an augmenting path improves the matching by 1 edge. By
Berge’s theorem [1], every non-maximum matching has an
augmenting path. Consequently, maximum matchings can

539

u v� � � � � � � � � � � �� �
u′ v� � � � � � � � � � � �� �
u′ v′

� � � � � � � � � � � �� �

Figure 1: Flipping two bits may shorten or lengthen
an augmenting path by two edges.

be constructed by iterated improvements using augmenting
paths. However, searching for augmenting paths efficiently
is not trivial. Efficient algorithms like the blossom algorithm
[3] are clever and their correctness proofs are difficult. The
best known algorithms [9, 14] are quite complicated.

We work with a fitness function f : {0, 1}m → Z for graphs
with m edges. A search point s ∈ {0, 1}m is interpreted as
the characteristic vector of the set of chosen edges. The idea
is that the fitness equals the matching size so that the aim is
to maximize f . Hence, f equals the number of chosen edges
s1 + · · · + sm if s describes a matching.

There are two options to handle non-matchings. One is
to start the search with the empty set and never accept
non-matchings. This approach is usually chosen for SA and
MA. The option we choose here is to start the search with
an arbitrary search point and to define a penalty for non-
matchings. The penalty directs the search towards match-
ings. Let d(v, s) be the degree of a vertex v with respect
to the edges chosen by s. The penalty p(v, s) assigned to
each vertex v equals r · max{0, d(v, s) − 1} for some fixed
number r ≥ m + 1. Thus, all vertex penalties are 0 for
matchings. Now, f(s) equals the number of chosen edges
minus the sum of all vertex penalties, i. e.,

f(s) := s1 + · · · + sm −
X

v

p(v, s). (∗)

The scaling factor r ≥ m+1 ensures that the fitness of non-
matchings is strictly worse than the fitness of all matchings.

The optima of f are maximum matchings and the local
optima are maximal matchings. A maximal matching is a
matching without augmenting paths of length 1. Here, we
call such an augmenting path, consisting of only one free
edge, a selectable edge. If s represents a matching without
selectable edges, flipping only one bit of s either produces
a new search point representing a smaller matching or a
search point representing a non-matching. Hence, random-
ized search heuristics with an elitist selection strategy need
to flip at least two bits to overcome local optima. Indeed, it
suffices to flip one or two bits in each step to reach a glob-
ally optimal solution. To see this, consider an augmenting
path P between free nodes u and v (Figure 1 top, dashed
lines indicate free edges). If the first two edges or the last
two edges of P flip, P shrinks by two edges. If this happens
over and over again, P finally consists of only one selectable
edge {u′, v′} (Figure 1 bottom). Now, flipping only the bit
of {u′, v′} improves the matching.

Motivated by these observations, we consider the following
randomized local search strategy RLS.

1. Choose s ∈ {0, 1}m according to some probability dis-
tribution.

2. Repeat:

Decide by a coin flip whether s′ is to be produced by a
1-bit flip or 2-bit flip from s. Flip a uniformly chosen
bit of s or a uniformly chosen pair of bits accordingly.

If f(s′) ≥ f(st−1), set s := s′.

The aim is to analyze the number of fitness evaluations until
RLS produces a search point s such that f(s) is maximal.
This random number is called optimization time and we are
interested in its expected value, the expected optimization
time. We assume that the coin flip in the mutation step
is fair; however, this is not essential. It is only required
that the probabilities of both outcomes of the coin flip are
Ω(1). Then, RLS is essentially the (1+1) EA restricted to 1-
and 2-bit flips. Indeed, the probability that a certain bit or a
certain pair of bits flip is Θ(1/m) resp. Θ(1/m2) for both the
(1+1) EA and RLS. We believe that the results presented in
this paper also apply to the (1+1) EA but it is not obvious
that the proofs can be adapted. For an experimental study
see [2].

Next we summarize related results regarding the maxi-
mum matching problem and RSHs. Then we study the effect
of 1- and 2-bit flips in Section 3, which provides some basic
lemmas. In Section 4, we consider complete trees and ob-
tain a time bound of O(m7/2) for RLS. For arbitrary trees,
our bound of O(D2m4) in Section 5 depends also on the
diameter D of the tree.

2. RELATED WORK
Sasaki and Hajek [12] show that simulated annealing (SA)

and the Metropolis algorithm (MA) efficiently find approxi-
mations for maximum matchings. These randomized search
heuristics find a (1 + ε)-optimal solution (i. e., a matching
such that maximum matchings are at most by a factor of
(1+ε) larger) in expected polynomial time where the degree
of the polynomial depends on ε > 0. We prove the same for
the (1+1) EA and RLS in [4]. The idea is that matchings
which are at most (1 + ε)-optimal include an augmenting
path whose length is bounded by 2�1/ε� − 1 (compare [6]).
The probability to flip the path’s edges in the desired order
is then large enough.

Remarkably, SA, MA, and the (1+1) EA utilize no knowl-
edge about the maximum matching problem; RLS utilizes no
knowledge except that 1- and 2-bit flips are sufficient. They
are general search heuristics, i. e., they are not designed to
optimize a particular class of fitness functions, and work in
the black box scenario. This includes that access to the
graph instance is limited to the fitness function, i. e., the
graph is assumed to be hidden to the heuristics. He and
Yao [5] come up with a similar approximation result for a
population based EA; however, their EA needs to access
the graph instance and the variation operators seem to be
tailored to the maximum matching problem to some extent.

Although all mentioned heuristics can be viewed as poly-
nomial time approximation schemes for the maximum match-
ing problem, they may fail when it comes to exact opti-
mization. Sasaki and Hajek [12] prove an exponential ex-
pected optimization time for MA and SA and a particular
graph class when the search starts with the empty match-
ing. Sasaki [11] proves with another technique that there
exist starting points with an exponential expected optimiza-
tion time for these graphs. In [4], we prove an exponential
expected optimization time for RLS and the (1+1) EA for
any starting point (except the optimum). In fact, it can

540

be shown that many starting points (including the empty
matching) lead to an exponential optimization time even
with an overwhelming probability. For these starting points,
multi-start strategies of RLS and the (1+1) EA will also be
unsuccessful.

In spite of carefully chosen worst-case examples, we be-
lieve that simple randomized search heuristics including the
(1+1) EA and RLS are able to find maximum matchings for
simple graphs efficiently. In [4], we present the first positive
results on the optimization time of evolutionary algorithms
for a class of graphs, namely path graphs. Path graphs are
trees consisting of m edges laid end to end such that the
edges form a path of length m. For every starting point,
the expected optimization time of the (1+1) EA and RLS is
O(m4). One can also prove that some second-best match-
ings, i. e., matchings which are by one edge smaller than
maximum matchings, are starting points with an expected
optimization time of Ω(m4). Hence, the final optimization
step from second-best to maximum matchings is essential.

Our intuition is that simple randomized search heuris-
tics are successful if the number of potential augmenting
paths is polynomially bounded in most situations during
the optimization process. In a tree with n nodes and m =
n−1 edges, there is one and only one (simple) path between
any two nodes. Hence, there are at most

`
n
2

´
= O(m2) po-

tential augmenting paths at any time.

3. PRELIMINARIES
First we show that RLS finds some matching quickly.

Lemma 1. For any initial search point and any graph,
RLS finds a matching in an expected time of O(m log m).

Proof. Let p = r · k be the sum of the vertex penalties
for the search point s (see equation (∗) in Section 1). As
r ≥ m+1, the fitness function rewards any decrease of p and
penalizes any increase of p. The sum of all vertex degrees is
2m. Hence, k is less than 2m and there are at least �k/2� ≤
m edges chosen by s whose elimination decreases k. The
probability of a specific 1-bit flip equals Θ(1/m). Hence, the
expected waiting time to decrease k is bounded by O(m/k).
Summing up for 1 ≤ k < 2m yields the claim.

In the analyses, we distinguish situations with and with-
out selectable edges. The next lemma considers a situation
with a selectable edge and states that the next step changing
the situation will likely improve the matching.

Lemma 2. Given an arbitrary tree and a matching with
at least one selectable edge. In expected time O(m), RLS
has improved the matching or there is no selectable edge but
an augmenting path of length 3. The matching is improved
with a probability of at least 1/2.

Proof. We prove the lemma by proving the following
two claims for all search points describing matchings with a
selectable edge: In the next step,

– the probability of improving the matching is at least
1/(2m), and

– the probability of destroying all selectable edges with-
out improving the matching is at most 1/(2m).

The first claim is obvious since 1/(2m) is the probabil-
ity of flipping exactly a specified selectable edge. Now we

� � � � � ��
u v w

e e′

(a)

� � � � � � � � � �
� � � � � � � �

� � � � � � � �
� �

x0 x1 x2 x�

Pz }| {
(b)

Figure 2: (a) In an accepted step, a free edge e inci-
dent upon a free node u and a matching edge e′ ad-
jacent to e flip. (b) The augmenting path P and its
neighborhood. The figure only shows P and nodes
and edges adjacent to P .

prove the second claim. A step flipping only matching edges
is not accepted. A step flipping only free edges is not ac-
cepted or it improves the matching. Hence, we only have
to consider mixed 2-bit flips choosing a free edge e and
a matching edge e′. Since e′ must not become selectable,
e has to be adjacent to e′ implying that e is not selectable.
To destroy a given selectable edge e∗, e must also be ad-
jacent to e∗. In summary, the free edge e is adjacent to
the selectable edge e∗ at its free endpoint, and at the other
endpoint, e is adjacent to the matching edge e′. This shows
that an augmenting path of length 3 is created if e and
e′ flip. By the matching property, the choice of e deter-
mines e′, and, in a tree, e′ determines e between e′ and the
given edge e∗. Hence, the possible pairs {e, e′} are pairwise
disjoint implying that their number is bounded above by
(m − 1)/2. The probability to flip any of these pairs is at

most ((m − 1)/2) · (1/2) · `m
2

´−1
= 1/(2m).

Hence, on average, we have to create a selectable edge
at most twice before the matching is improved. To bound
the expected time to improve the matching it now suffices
to bound the expected time to create a selectable edge. To
this end, we study a situation without selectable edges and
pick an augmenting path. The aim is to bound the time
until the selected path finally consists of only one selectable
edge. First, we consider only one step, i. e., one iteration of
the loop of RLS. Obviously, 1-bit flips will not be accepted.
The next lemma describes the effect of 2-bit flips on an aug-
menting path and claims that it is not too unlikely that the
path gets shorter.

Lemma 3. Let P = (x0, x1, . . . , x�) be an augmenting path
in a tree with respect to a matching without a selectable
edge. An accepted mutation step of RLS preserves the cur-
rent matching size and either

– leaves P unchanged,

– lengthens P by two edges at one end, or

– shortens P by a multiple of two edges at one end.

If P is changed, the probability that P shrinks is at least
2/(deg(x0) + deg(x�)).

Proof. Because no edge is selectable, augmenting paths
have at least three edges. Hence, only steps preserving the
matching size are accepted. This implies that only 2-bit flips
choosing a free edge e and a matching edge e′ are accepted.
Since e is free but not selectable, we obtain a new matching
only if e′ is adjacent to e, i. e., e = {u, v} and e′ = {v, w},
and u is free (see Figure 2(a)).

We investigate accepted steps changing P . There are four
possibilities for the free edge e = {u, v} (see Figure 2(b)):

541

– e is an “outer” edge of P , namely, e = {x0, x1} or
e = {x�−1, x�},

– e is an “inner” edge of P ,

– e does not belong to P but its free endpoint u does,

– neither e nor its free endpoint u belong to P .

In the first case, e′ is adjacent to e and lies on P . Flipping
e and e′ shortens P by two edges. The second case is impos-
sible because no endpoint of e would be free. In the third
case, either u = x0 or u = x�. Flipping e and e′ length-
ens P . Since w becomes a free node, the length increases by
exactly 2. In the last case, P is only changed if the matching
edge e′ connects two inner nodes of P . (To see this, observe
that each edge incident upon a node of P is either free or it is
a matching edge belonging to P .) The node w is then an in-
ner node of P and becomes a free node. Either (x0, . . . , w) or
(w, . . . , x�) becomes an augmenting path. Since every aug-
menting path has odd length, the new path is by an even
number of edges shorter than the old path P .

We have seen that the length of P can only increase if
u = x0 or u = x�. In such a step, the flipping free edge e
incident upon x0 or x� determines which matching edge can
flip. Therefore, there are at most deg(x0) + deg(x�) − 2
2-bit flips increasing the length of P and at least 2 2-bit
flips decreasing the length of P . This proves the claimed
probability.

In many situations, we will consider the number R of rel-
evant steps rather than the total number of steps T . The
definition of a relevant step will depend on the situation.
If an expected number of E (R) relevant steps is necessary
to reach some target and in any situation the next step is
relevant with a probability of at least p then the expected
total number of steps E (T) is at most p−1 · E (R).

4. COMPLETE k-ARY TREES
We investigate complete k-ary trees, i. e., rooted trees

where inner nodes have k successors and all leaves have the
same distance to the root. (Paths graphs can be consid-
ered as complete unary trees where k = 1.) For k ≥ 2, the
diameter D of path graphs is Θ(logk m) and at most logk m.

Considering path graphs and 2-bit flip again, there is one
possibility to shorten an augmenting path at each end point
and one possibility to lengthen it at each end point in a typ-
ical situation (see Figure 1 top). Thus, the probabilities of
lengthening and shortening the path are the same; they de-
scribe a fair game. The game gets unfair for k-ary trees and
k ≥ 2. There are k possibilities to lengthen an augmenting
path if the end point is an inner node. Still there is only
one possibility to shorten it. On the one hand, 2-bit flips
relevant to a specific augmenting path now tend to lengthen
the path. One might expect that this leads to a larger op-
timization time. On the other hand, the length of all paths
is now bounded logarithmically. The next lemma bounds
the length of the shortest augmenting path with respect to
a matching M . This gives rise to an upper bound which is
in fact smaller than the lower bound for path graphs.

Lemma 4. Given a complete k-ary tree with m edges and
k ≥ 2. If M∗ is a maximum matching and M a matching
with m∗ ≥ 1 edges less than M∗, there is an M-augmenting
path whose length is strictly less than L := 2 logk(2m/m∗).

��
��

��
��

��
��

��
��

��
��

��
��� � � �

� � �
��

	�

� 0 1 2 3 �–1 �. . .

r p p p

s q q

q1

Figure 3: The Markov chain M in Lemma 5.

Proof. The nodes of the tree in distance h from the root
belong to level h. Let d denote the depth of the tree implying
d ≤ logk m. Considering the symmetric difference M∗ ⊕M ,
we obtain a set of m∗ node-disjoint M -augmenting paths
(see Theorem 1 in [6]). Let us assume that the length of a
shortest augmenting path in the set is �. A simple path in
a tree can contain at most two nodes from each level. This
implies that each augmenting path in the set has an odd
length of at least � < 2d and contains at least one node on
a level d′ ≤ d − ��/2�. Hence, m∗ is bounded above by the
number of nodes on the levels 0, . . . , d−��/2� implying that

m∗ ≤ k0 + · · · + kd−��/2� =
kd−��/2�+1 − 1

k − 1

<
k

k − 1
kd−��/2� ≤ 2mk−��/2�.

Solving for � yields the proposed bound � < L.

The next lemma gives the hitting time of a random walk
that is essential in all our analyses. The random walk is
similar to the random walk describing the gambler’s ruin
problem but has a reflecting barrier.

Lemma 5. Given the homogeneous Markov chain M with
state space S = {0, . . . , �}, initial state � ≥ 2, and positive
transition probabilities p(0, 0) = 1, p(1, 0) = r, p(1, 2) = s,
p(i, i − 1) = p for i ∈ {2, . . . , �}, p(i, i + 1) = q for i ∈
{2, . . . , �−1}, p(�, �) = q, where 0 < p, r < 1, q = 1−p, and
s = 1− r (see Figure 3). The expected time to reach state 0
for the first time starting in state � is

h�,0 =

8>>>><
>>>>:

�2 +
“2

r
− 3
”
� − 1

r
+ 2 if p = q = 1/2,

1

q − p

 `
q
p

´� − 1
q
p
− 1

+
s

r

“ q

p

”�−1

− � − s

r

!
+

1

r
else.

In particular, for p = q = r = s = 1/2, h�,0 = �2 + �.

Proof. We claim that

h1,0 =
1

p
+

q

p
h2,1

and, for j ≥ 2,

hj,j−1 =

8><
>:

2(� − j + 1) if p = q = 1/2,`
q
p

´�−j+1 − 1

q − p
if p
= q.

Summing up the terms hj,j−1 for j ∈ {1, . . . , �} yields the
lemma. By the law of total probability, h1,0 = 1 + p · 0 +
q · (h2,1 + h1,0). This implies the first part of the claim.
We prove the second part by induction on j. In accordance
with the claim (for p = q = 1/2 and for p
= q), h�,�−1 = 1/p
since the transition (�, � − 1) is the only transition leaving
state � with positive probability p. For � − 1 ≥ j ≥ 2,
hj,j−1 = 1 + p · 0 + q(hj+1,j + hj,j−1) implying that

hj,j−1 =
1

p
(1 + q · hj+1,j).

542

We apply the induction hypothesis and consider the cases
p = q = 1/2 and p
= q separately. In the first case, we
obtain

hj,j−1 =
1

p

“
1 + q

`
2(� − (j + 1) + 1)

´”
= 2(� − j + 1),

and in the second case,

hj,j−1 =
1

p

1 + q

`
q
p

´�−j − 1

q − p

!

=

q
p
− 1

p(q
p
− 1)

+

`
q
p

´�−j+1 − q
p

q − p
=

`
q
p

´�−j+1 − 1

q − p
.

This proves the claim and finishes the proof.

Now we are prepared to analyze RLS on totally balanced
trees.

Theorem 1. For any choice of the first search point, the
expected time until RLS finds a maximum matching on a
complete k-ary tree, k ≥ 2, is bounded by O(m7/2).

Proof. By Lemma 1, the expected time to find a match-
ing is small enough. Afterwards, we estimate the expected
number of relevant steps to improve the matching. In each
step, we choose some shortest augmenting path P . Now, in a
situation without selectable edges, a step is called relevant if
it is accepted and changes P . In a situation with at least one
selectable edge, any step improving the matching or destroy-
ing all selectable edges is relevant. The expected number of
all steps is then only by a factor of O(m2) larger than the
expected number of relevant steps because the probability
of a relevant step is Ω(1/m2) in either situation.

Assume we can guarantee that there is always some aug-
menting path of length at most �. In situations with a se-
lectable edge, we apply Lemma 2. In a step changing the
situation, the probability to improve the matching is at least
r = 1/2, and the probability to create a path of length three
is at most 1/2. In situations without a selectable edge, we
pessimistically replace shortenings of the considered path P
with shortenings by only two edges. By Lemma 3, this leads
to a probability of at least p = 1/(k + 1) of shortening this
path in relevant steps. We can now represent the current
length j of the path by the state �j/2� of the Markov chain
in Lemma 5 with state space {0, . . . , ��/2�}. If we pessimisti-
cally start with a path of length �, the expected number of
relevant steps until the matching is improved (state 0 is
reached) is at most

k + 1

k − 1

“k��/2� − 1

k − 1
+ k��/2�−1 − (��/2� + 1)

”
+ 2 = O(k�/2).

Until m∗ ≤ 2m1/2, Lemma 4 guarantees that there is some
augmenting path P of length at most � < logk m. This

leads to an expected number of O(m1/2) relevant steps for
an improvement. Since |M∗| ≤ m, we apply this bound only
O(m) times implying that the expected number of relevant

steps until m∗ ≤ 2m1/2 is O(m3/2). Afterwards, we use the
bound � ≤ 2 logk m which is a trivial bound on the diame-
ter D of the tree. Then we obtain an upper bound of O(m)
on the number of relevant steps to improve the matching.
Since we apply the last bound only �2m1/2� times, this leads

to an additional expected number of O(m3/2) relevant steps.
This proves the theorem as argued at the beginning of this
proof.

5. GENERAL TREES
Path graphs have turned out to be the hardest k-ary trees

for RLS. The upper bound of O(m4) for path graphs in [4]
cannot be improved if the search starts with an arbitrary
search point (see Section 2). Indeed, we conjecture that path
graphs are the hardest trees and the best possible bound
for RLS on trees is O(m4). Here, we prove a weaker upper
bound of O(D2m4) on the expected optimization time where
D denotes the diameter of the tree.

We investigate an arbitrary search point s describing a
non-maximum matching. We are interested in the expected
time to obtain a search point describing a matching of the
same size with a selectable edge. We choose an arbitrary
augmenting path P connecting u and v. The endpoints u
and v of P move around. A step is called u-relevant, if the
endpoint u moves.

Lemma 6. Given a tree and a non-maximum matching
without selectable edges. Let u denote an endpoint of an
arbitrary augmenting path. RLS creates a selectable edge in
an expected number of O(D2m) u-relevant steps.

The proposed bound on the expected optimization time
for trees follows from Lemma 6 and our results in Section 3.

Theorem 2. For any choice of the first search point, the
expected time until RLS finds a maximum matching in a tree
is bounded by O(D2m4).

Proof. The expected time to create a matching is small
enough (Lemma 1). Once we have a matching, it takes an
expected number of O(D2m) u-relevant steps to produce a
selectable edge (Lemma 6) and each step is u-relevant with
a probability of Ω(1/m2). Hence, the expected number of
steps to produce a selectable edge is O(D2m3). When a se-
lectable edge exists, a decision is made within an expected
number of O(m) steps: With a probability of at least 1/2 the
matching is improved (Lemma 2). Using Markov’s inequal-
ity we obtain that some O(D2m3) steps improve the match-
ing with a probability of Ω(1); otherwise, we start over and
wait for a new selectable edge. Hence, an expected number
of O(D2m3) steps improve the matching. For a maximum
matching, O(m) improvements are sufficient. This leads to
the claimed O(D2m4) bound.

It remains to prove Lemma 6. We focus on the distance
between the endpoints u and v. If this distance is only 1, the
edge {u, v} is selectable but we may be lucky and produce
a selectable edge somewhere else earlier. To obtain precise
statements we fix some node w as the root of the tree. For
a fixed root w, T (r) is the subtree rooted at node r and
|T (r)| = O(m) is its number of nodes.

Claim 1. Assume there is no selectable edge, r
= w is
the initial position of u, and v /∈ T (r). The expected number
of u-relevant steps until one of the following three events
happens is bounded by |T (r)|: u leaves T (r), v enters T (r),
a selectable edge is created.

Proof. It suffices to bound the number of u-relevant
steps until the first event “u leaves T (r)” happens assum-
ing that the other two events do not happen. The proof
investigates the random walk of u influenced by steps where
an edge adjacent to u flips. Other steps moving u are only
advantageous to us since u moves closer to r or leaves T (r)

543

��
��
��
���������� ��

��
��
���������� ��

��
��
���������� ��

��
��
���������� ��

��
��
���������� ��

��
��
����������

� � � � � �
� � �

�

�����
��

�

.

r
u

r1 rs−1

T1 Tt

Figure 4: The subtree T (r). Initially, the endpoint u
is at the root of T (r).

(see Lemma 3). The proof implicitly uses the argument
that a large degree of u implies that not many subtrees of
T (u) can be large. In the considered situation, the condi-
tions of Lemma 3 hold and we may pessimistically assume
that the path is never shortened by more than two edges in
u-relevant steps. It is important to observe that u can only
visit nodes in T (r) with an even distance to its initial posi-
tion, the root r of T (r). The proof is by induction on |T (r)|.
If |T (r)| = 1, then T (r) is a leaf and the expected number of
u-relevant steps is at most 1. Now, let |T (r)| > 1 and let s
denote the degree of the root r. Let T1, . . . , Tt denote those
subtrees of T (r) such that there are two edges between r
and the root of each Ti (Figure 4). Whenever u is at r, r is
connected to s− 1 nodes r1, . . . , rs−1 in T (r) and to its par-
ent by free edges. Each node rj may be adjacent to several
roots of the subtrees T1, . . . , Tt, but each rj is connected to
at most one of these roots by a matching edge. Hence, at
most s − 1 roots of subtrees Ti are reachable for u. When
u leaves a subtree Ti, it can only return to r or some node
on the path outside T (r). W. l. o.g. let T1, . . . , Ts−1 be s− 1
largest subtrees in {T1, . . . , Tt}. For a subtree T of T (r) and
u starting at the root of T , let E(T) denote the expected
number of u-relevant steps until u leaves T (or a selectable
edge is created). By the law of total probability,

E (T (r)) ≤ 1

s
· 1 +

1

s

`
1 + E(T1) + E(T (r))

´
+ . . .

+
1

s

`
1 + E (Ts−1) + E(T (r))

´
.

Solving for E (T (r)) and using the induction hypothesis yields
E (T (r)) ≤ s + |T1|+ · · · + |Ts−1|. Because T (r) includes all
subtrees Ti, the nodes r1, . . . , rs−1, and r, the right-hand
side of the last inequality is at most |T (r)|.

Claim 2. Assume there is no selectable edge, r is the ini-
tial position of u, and v ∈ T (r). The expected number of
u-relevant steps until one of the following three events oc-
curs is bounded by O(|T (r)|): u leaves T (r) and v remains
in T (r), u and v are in the same proper subtree of T (r), a
selectable edge is created.

Proof. It is essential that the distance between u and r
remains even. (Then the distance between v and r is odd.)
In the following, Tu and Tv denote subtrees of T (r) rooted
by a node on the level below r. If u is in a proper subtree of
T (r), Tu denotes the subtree of T (r) currently containing u;
analogously for v (see Figure 5). First, we show that v can-
not leave T (r) in the time we consider. If u is at r, then v
cannot leave T (r). If u leaves T (r), the second stopping cri-
terion is fulfilled. If u moves to a node in Tv (Figure 5(a)),

�
�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	

�
� � �

�
�. . .

r

u
�

v
�

Tv

(a)

�
�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	

�
� � �
�
�
�

�
�

. . .

u
� v

�

Tu Tv

(b)

Figure 5: The subtree T (r). (a) A special situa-
tion and (b) the situation when u has moved into a
subtree of T (r).

the second stopping criterion is fulfilled. The endpoint v
might only leave T (r) if u first moves to a subtree Tu
= Tv

(Figure 5(b)). If this is the case, the path P between u and
v visits r. By Lemma 3, relevant steps can increase and
decrease the length of P only by a multiple of two edges
at either end. Since u initially had an even distance to r,
namely 0, u keeps an even distance and v keeps an odd dis-
tance to r. Now, if v leaves its subtree Tv in a shortening
step, then v moves to some node on the path P . Since v can-
not visit r (odd distance), the new location of v could only
be in Tu and the last stopping criterion would be fulfilled
first. Hence, v cannot leave T (r) before one of the stopping
criteria is fulfilled.

Now it is clear that we can upper bound the expected
number of u-relevant steps until one of the stopping criteria
is fulfilled by the expected number of u-relevant steps until
one of the following events happens: Given that v stays in
its subtree Tv either u leaves T (r) or u moves into Tv . This
can be done in the same way as in the proof of Claim 1.
The only difference is that the terms for subtrees contained
in Tv can now be bounded by 0. This can only decrease the
upper bound O(|T (r)|) on the expected number of u-relevant
steps. Note that the case r = w where u cannot leave T (r)
is included.

In the following let r be the node where the path from u
to the root w of the tree and the path from v to w meet,
i. e., r is the root of the smallest subtree containing both u
and v. Let d(r) be the depth of r, i. e., the distance between
r and the root w. We consider the random variable d(r) with
respect to time. A selectable edge is created if the distance
between u and v equals 1. This is certainly the case if r is
the root of a subtree with only two levels. This happens if
d(r) ≥ D − 1. The idea is to prove that d(r) tends to grow.

The situation depicted in Figure 5(a) is of particular inter-
est in our analysis. There is no selectable edge, one endpoint
of P is located at the root r of T (r), and the other endpoint is
contained in T (r). We call this a special situation. W. l. o.g.
the endpoint at r is named u and the other v.

Claim 3. In a special situation it is possible to define dis-
joint events E1, . . . , E4 such that

– E1 is the event that d(r) decreases (and it can decrease
by at most 2).

– E2 implies that d(r) increases by at least 2,

544

– E3 implies that d(r) increases by at least 1, and

– E4 is the event that a selectable edge is created.

The expected number of u-relevant steps for one of these
events to happen is O(m). The probability that E1 happens
first is less than or equal to the probability that E2 happens
first. When one of the events E1, . . . , E3 has happened, the
expected number of u-relevant steps until a special situation
is reached again (or E4 happens) is O(m). In this time, d(r)
cannot decrease.

Proof. The initial situation is assumed to be a special
situation. Hence, the path P connecting u and v has a
minium length of 3 edges and T (r) includes at least 4 levels.
We consider only situations without selectable edges. Oth-
erwise, E4 has happened and we can stop. Furthermore, u
(initially located at r) keeps an even distance to r until a
new special situation is reached.

By Claim 2, after an expected number of O(m) u-relevant
steps, both endpoints are in the same proper subtree of T (r),
or u has left T (r). First assume that v finishes such a phase,
i. e., v leaves Tv (see Figure 5(b) and the proof of Claim 2
for the definition of Tu and Tv). From the proof of Claim 2,
we also know that v cannot reach r (odd distance) but a
node in Tu on the path P . If this happens (event E3), the
depth d(r) increases by at least 1 and the new situation is a
special situation.

Now assume that u finishes the phase and consider the
last step. If the length of P decreases by more than 2 in the
last step then u enters Tv and reaches a node on the path P
(event E′

2). The depth d(r) increases by at least 2 and a
special situation is reached. Otherwise, u visits r before the
last move. Given that u finishes the phase in the next step,
it either moves to Tv with a probability of at least 1/2 or
leaves T (r) with a probability of at most 1/2 (Figure 5(a)).
(If r = w, event E1 is not possible.) In the first case (event
E′′

2), d(r) increases by 2 and a special situation is reached.
In the second case (event E1), d(r) decreases by at most 2:
The endpoint u may move to its pre-predecessor in the tree
(Figure 6(a)). Then a special situation is reached. Another
option is that u moves to some sibling of r, say r′ (Fig-
ure 6(b)). Then the new situation is not a special situation.
In the following, we again assume that no selectable edge
is created. By Claim 1, after an additional waiting time of
an expected number of O(|T (r′)|) = O(m) u-relevant steps,
u has left T (r′) and is back at r (or at some node on the
path inside T (r)) such that a special situation is reached, or
v is also in T (r′). In the last case, v must have visited the
parent of r and r′ (or a node on the path inside T (r′)) first
such that a special situation has been reached. Hence, there
is no additional decrease of the depth d(r) in the additional
waiting time for a new special situation.

The events E′′
2 and E1 can only occur in the same situation

(where u finishes the phase and u visits r before the last
move). Now, given that one of these two events happens
in the next step, Prob(E′′

2) ≥ 1/2. Hence, the probability
that the event E2 := E′

2 ∪ E′′
2 finishes the phase is only

larger than the probability that event E1 finishes the phase.
Moreover, we have shown that after an event E1, E2, or
E3 has happened, a special situation is reached within an
expected number of O(m) u-relevant steps where d(r) is not
decreased.

Now we can combine our results and prove Lemma 6.

�
�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	

�
�
�
�

�
�

�
�����

v
�

r

T (r)

u�

→

�
�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	

�
�
�
�

�
�

�

��

v
�

r

u�

(a)

�
�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	

�
�
�
�

�
�

�

��

v
�

r r′

T (r)

u�

→

�
�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	 �

�
�
�
�
�
�
�
�
�
�	
	
	
	
	
	
	
	
	
	
	

�
�
�
�

�
�

�

��

v
�

r r′

u�

(b)

Figure 6: If d(r) decreases, u moves to the pre-
predecessor of r (a) or to a sibling r′ of r (b).

Proof of Lemma 6. Initially, we choose w := u to be
the root of the tree. Then d(r) = 0 and we start in a special
situation. This implies that T (r) includes at least 4 levels.
When a situation is reached where T (r) includes only two
levels, the considered path P is a selectable edge since its
length must be odd. In a situation where T (r) includes only
three levels, the augmenting path is a selectable edge or the
the next P -relevant step creates a selectable edge. To see
this, observe that the length of P is then 1 or 3. There
is nothing to show if the length is 1. If the length is 3,
neither u nor v can be at the root of T (r) and the path
could be lengthened by at most one edge at u or v. Hence,
by Lemma 3, the next P -relevant step can only shorten P .
This implies that the expected number of u-relevant steps
to create a selectable edge is by at most 1 larger than the
expected number of u-relevant steps for the event d(w) ≥
D − 2. By the O(m) bounds in Claim 3, it is sufficient to
prove an upper bound of O(D2) on the expected number of
the events E1, E2, and E3 until the event d(w) ≥ D − 2
occurs.

We slow down this stochastic process by assuming that E1

decreases d(r) by exactly 2, E2 increases d(r) by exactly 2,
and Prob(E1 happens first) = Prob(E2 happens first). We
prove that the probability of the event d(r) ≥ D − 2 in a
phase including �D2/2� + 2D of the events E1, . . . , E4 is at
least 1/2. The claim then follows since we may start over
and choose a new root w if the phase were unsuccessful. If
the number of E3-events in the phase is at least D − 2, the
result follows since, with probability 1/2, event E2 happens
at least as often as event E1. Otherwise, there are at least
D2/2 + D events E1 and E2, and we disregard the help of
E3-events. Now the events E1 and E2 describe a symmetric
random walk as analyzed in Lemma 5 for p = q = r = s =
1/2. Starting there in state � = �(D − 2)/2� (standing for
d(r) = 0), the expected number of steps to reach the state 0

545

is less than D2/4+D/2. By Markov’s inequality, D2/2+D
steps are successful with a probability of at least 1/2.

6. CONCLUSIONS
Randomized search heuristics can be fooled by carefully

constructed graphs but RLS finds maximum matchings for
simple graphs (trees) in expected polynomial time. The re-
sults indicate that randomized search heuristics can use al-
gorithmic ideas not known to the designer of the algorithm.
Our results contribute to the understanding of how simple
randomized heuristics work. It would be interesting to see
how efficient related heuristics like SA and MA perform on
trees.

7. REFERENCES
[1] C. Berge. Two theorems in graph theory. Proceedings

of the National Academy of Sciences of the United
States of America, 43:842–844, 1957.

[2] P. Briest, D. Brockhoff, B. Degener, M. Englert,
C. Gunia, O. Heering, T. Jansen, M. Leifhelm,
K. Plociennik, H. Röglin, A. Schweer, D. Sudholt,
S. Tannenbaum, and I. Wegener. Experimental
supplements to the theoretical analysis of EAs on
problems from combinatorial optimization. In
Proceedings of the 8th Conference on Parallel Problem
Solving from Nature (PPSN ’04), volume 3242 of
Lecture Notes in Computer Science, pages 21–30.
Springer, 2004.

[3] J. Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17:449–467, 1965.

[4] O. Giel and I. Wegener. Evolutionary algorithms and
the maximum matching problem. In Proceedings of the
20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS ’03), volume 2607 of
LNCS, pages 415–426. Springer, 2003.

[5] J. He and X. Yao. Time complexity analysis of an
evolutionary algorithm for finding nearly maximum
cardinality matching. Journal of Computer Science
and Technology, 19(4):450–458, 2004.

[6] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4):225–231, 1973.

[7] M. Jerrum. Large cliques elude the Metropolis
process. Random Structures and Algorithms,
3(4):347–359, 1992.

[8] M. Jerrum and G. B. Sorkin. The Metropolis
algorithm for graph bisection. Discrete Applied
Mathematics, 82:155–175, 1998.

[9] S. Micali and V. V. Vazirani. An O(
p|V | · |E|)

algorithm for finding maximum matching in general
graphs. In Proceedings of the 21st Annual Symposium
on Foundations of Computer Science (FOCS ’80),
pages 17–27. IEEE, 1980.

[10] F. Neumann and I. Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning
tree problem. In Proceedings of the 6th Genetic and
Evolutionary Computation Conference (GECCO ’04),
volume 3102 of LNCS, pages 713–724. Springer, 2004.

[11] G. Sasaki. The effect of the density of states on the
Metropolis algorithm. Information Processing Letters,
37(3):159–163, 1991.

[12] G. H. Sasaki and B. Hajek. The time complexity of
maximum matching by simulated annealing. Journal
of the ACM, 35:387–403, 1988.

[13] J. Scharnow, K. Tinnefeld, and I. Wegener. Fitness
landscapes based on sorting and shortest paths
problems. In Proceedings of the 7th Conference on
Parallel Problem Solving from Nature (PPSN ’02),
volume 2439 of LNCS, pages 54–63. Springer, 2002.

[14] V. V. Vazirani. A theory of alternating paths and

blossoms for proving correctness of the O(
√

V E)
maximum matching algorithm. Combinatorica,
14:71–109, 1994.

[15] I. Wegener. Simulated annealing beats Metropolis in
combinatorial optimization. In Proceedings of the 32nd
International Colloquium on Automata, Languages
and Programming (ICALP ’05), volume 3580 of
LNCS, pages 589–601, 2005.

[16] C. Witt. Worst-case and average-case approximations
by simple randomized search heuristics. In Proceedings
of the 22nd Annual Symposium on Theoretical Aspects
of Computer Science (STACS ’05), volume 3404 of
LNCS, pages 44–56. Springer, 2005.

546

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

