
Combining Simplex with Niche-based Evolutionary
Computation for Job-Shop Scheduling

Syhlin Kuah and Joc Cing Tay*
Evolutionary and Complex Systems Programme, Nanyang Technological University

 Blk N4, #2a-32 Nanyang Avenue Singapore 639798
 *Email: asjctay@ntu.edu.sg

ABSTRACT
We propose a hybrid algorithm (called ALPINE) between Genetic
Algorithm and Dantzig’s Simplex method to approximate optimal
solutions for the Flexible Job-Shop Problem. Locally, Simplex is
extended for the JSP linear program to reduce the number of
infeasible solutions while solution quality is improved with an
operation order search. Globally, a niche-based evolutionary
strategy is employed to gain parallelization while solution
diversity is maintained in two ways; composite dispatching rule-
based population initialization and memory-based machine
assignment. Performance results on benchmark problems show
that ALPINE outperforms existing hybrid techniques with a new
global optima found for the 10x7 Flexible Job Shop Problem.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods and Search]:
Scheduling

General Terms: Algorithms, Design, Performance.

Keywords: Flexible Job-Shop Scheduling, Linear
Programming, Niche-based Strategy, Hybrid Evolutionary
Computation

1. INTRODUCTION
In modern manufacturing environments, proper production
scheduling and planning is imperative to maximize efficiency
given the limited resources that are available. The classical Job-
Shop scheduling Problem (JSP) is a well-known machine
scheduling model which features the essential objectives of
manufacturing. As such there is abundant research on the JSP,
particulary from the field of Operations Research [4]. The JSP
may be described as follows: given n jobs, each consists of
several operations that must be processed on m machines. Each
operation uses one of m machines for a fixed duration. Each
machine can process at most one operation at a time to
completion without interruption. The operations of a given job
have to be processed in a predetermined order, where no two or

more operations from the same job can be processed
simultaneously. The Flexible Job-Shop Problem (FJSP) extends
this problem definition by removing the constraint of an one-to-
one mapping of operations to machines and allowing an operation
to be processed on more than one machine. The problem consists
of finding a schedule of the operations on the machines, which
yields the minimum makespan; the minimal completion time of
all of the last job. Compared to the JSP, the decisions on machine
assignment and operation precedence makes the FJSP strongly
NP-hard [13]. In this paper, we propose a hybrid algorithm
between Genetic Algorithm and a classical optimization method -
Dantzig’s Simplex method, to approximate optimal solutions to
the FJSP.

The JSP can be modeled as a linear program to be solved by
traditional Hopfield network applications [3]. However, Jain and
Meeran [6] pointed out some setbacks of the Hopfield approach.
Firstly, the network produces many infeasible solutions or
schedules which violates the JSP constraints. Secondly, it easily
gets trapped in local optima; hence optimal solutions even for
small problems cannot be guaranteed. Dantzig (1947) designed
the Simplex method to effectively solve Linear Programming
problems (LP). We tackle the first setback by implementing an
extension of Simplex for the same JSP linear program model to
reduce the number of infeasible solutions, while the quality of
solution is then further improved with an additional operation-
order search. The combination of the extended Simplex and the
operation-order search will serve as our local optimization
mechanism. The second setback shows that using local
optimization alone will produce inferior solutions in the target
neighborhood. A common solution to this is the hybridization of a
local search technique with a global search which is capable of
spanning the search across different neighborhoods. As such, we
apply the Genetic Algorithm (GA) (by Holland, Bremermann and
Fraser) as it has been shown [9] to produce good results due to its
ability to explore the search space of candidate solutions in
parallel. However using a GA alone typically gives slow
convergence to the best possible solution as it lacks local
information to determine the most promising search direction.
Hence, in this paper, we propose a GA-guided global search
technique to speed up the rate of convergence while having the
ability to escape from the local optimum through an extended
Simplex with operation-order search. We are also aware that
although a hybrid algorithm results in faster convergence, it is
possible that this can interfere with the search for a global
optimum by leading it to a premature convergence too quickly
[10][16]. This will reduce the quality of solutions found. We
address this issue with a niche-based GA architecture for
maintaining candidate solution diversity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

583

This paper is organized as follows. Section 2 gives the
formulation of the FJSP. Previous works on hybrid GA-search are
reviewed in Section 3. Section 4 gives the design and motivation
for the niche-based GA architecture. Section 5 describes the
implementation details of our Hybrid model. Section 6 describes
the technique to solve integer programs and its integration with
our niche-based GA. Section 7 presents and analyzes
experimental results. Finally we make some conclusions and
discuss future work in Section 8.

2. PROBLEM FORMULATION
The FJSP with recirculation is formulated [13] as follows:
• There are n jobs J=1, 2,..., n, indexed i.

• There are m machines M=1, 2,... m, indexed k.

• Each operation, indexed j, can be processed on a set of
machines Mij. Therefore, Oijk denotes that operation j of job i
is to be processed on machine k.

• Tijk defines the processing time of operation j of job i on
machine k.

• Recirculation occurs when a job can visit a machine more
than once.

• The objective is to find a schedule that has minimum
makespan, that is, to minimize the completion time of the
last job.

The following assumptions are made.
• All machines are available at time 0.

• All jobs are released at time 0.

• The order of operations in each job is predefined and cannot
be modified.

The conditions above define a deterministic scheduling problem;
where all parameters are known at the time of scheduling. A
solution to a FJSP problem is a schedule where all of the above
conditions are met. The decision variables of a solution is the start
time of every operations, where:
• The start time of any operation of job i, processed on

machine k, is defined as Sik.

The constraints which relate the above variables will be discussed
in detail under Section 5.1. The FJSP can be further divided into
two subsets, namely Total FJSP (T-FJSP) and Partial FJSP (P-
FJSP) [5]. T-FJSP allows each operation to be processed on any
machine. In P-FJSP, only a proper subset of machines M is
allowed to process at least one operation Oijk. We are able to solve
the two kinds of FJSP using our proposed algorithm.

3. REVIEW OF HYBRID DESIGNS
Hybrid GAs have been applied extensively to yield better results
[10][16][4] because of good complementary effects; that is,
improving convergence in a promising area while maintaining a
broad search for a global optimal in others. Nevertheless it has
been found that too much local optimization can result in
premature convergence [10]. This section will review different
hybrid architectures and discuss the choice of an appropriate
hybrid structure most appropriate for integrating Dantzig’s
Simplex and Holland’s GA.

Four categories of hybrid architectures have been reviewed by
Yen et al. [16]; namely, those that use Additional Operators,
Asynchronous, Hierarchical, and Pipelining. Our choice of
architecture depends on two factors; (a) the facility of integrating
the Simplex with GA, and (b) the discrete nature of the FJSP.

The Additional Operators approach utilizes local search as an
additional genetic reproduction operator. This operator works
alongside with the conventional GA operator to generate the next
population. This architecture is generally favored by researchers
employing the probabilistic [16] or Nelder-Mead’s Simplex
[2][12] method into their hybrid model as the computational
overhead introduced is very low. However, this approach is more
appropriate for continuous functions, where a single Simplex
search can be done on two or more individuals in the population.
The same cannot be easily applied to a discrete optimization for
the FJSP.

The Asynchronous Hybrid approach allows a GA and another
optimization method to work on the same shared population
separately. In this hybrid model, two or more search processes
work independently on the same problem, updating the population
if improvement is made by either one. Before we evaluate the
feasibility of this second approach, allow us to briefly review the
respective roles of GA and Simplex in solving the FJSP as
separate entities. To solve the FJSP, GA requires at least two
strings for its chromosome representation, namely machine
assignment and operation order string [13]. The former will
determine which machine an operation is processed on, while the
latter determines the precedence of the operations. These two
strings comprise a chromosome that specifies a job-shop
schedule. On the other hand, only the machine assignment string
is required to formulate a linear program, since the role of
Simplex is simply to obtain the schedule with best minimized
makespan without violating any precedence constraints. This
therefore removes the need for an operation order string. In the
context of Asynchronous Hybrids, we see that GA alone requires
both sets while the Simplex only requires the machine assignment
string. Hence while this architecture is possible for our Hybrid
model, we do not consider this to be the best of choice.

Hierarchical Hybrids allows a GA and another optimization
technique to work on two separate levels. Unlike Asynchronous
Hybrids where both techniques work independently, here the
optimization technique on one level will base its search on the one
determined by GA on the previous level. This approach has some
similarities with the Pipeline model discussed below.

The Pipelining Hybrid approach applies local and global search
sequentially, where one creates data for the other [16]. We choose
this approach for our hybrid model as the optimal result produced
by Simplex will depend highly on the data, or machine
assignments that it is given. GA will serve as a global search for
the data, while the Simplex optimizes the given data efficiently.
Unlike the Asynchronous Hybrid, the two techniques work hand
in hand where the performance of local optimization will depend
on the search by GA. Furthermore, only one string will be needed
for our chromosome representation since they do not work
independently.

584

4. A PIPELINE HYBRID MODEL
We will explain the roles of the GA and Simplex in a Pipeline
Hybrid model for a single individual (chromosome) in a
population. The traditional pipeline approach is to apply Simplex
to every individual (generated by the GA) after each generation to
obtain the minimal makespan (see Figure 1). In this model,
Simplex is applied to improve the local convergence of
individuals in the population, followed by genetic recombination
to remove the local optima.

Figure 1. Traditional Model of Simplex-GA Pipelining

While this approach is straightforward, Mathias et al. [10] points
out that using local search to process every individual can be
computationally expensive. In our work, we tackle the issue of
computational cost using a niche-based GA architecture to avoid
processing every individual. This is discussed in Section 5.3.

5. SOLVING THE FJSP
This section will describe the implementation of our proposed
Pipeline Hybrid model. We present an overview of the algorithm,
followed by a discussion of features in our hybrid model; namely
CDR-based Population Generator, Niche-based strategy and the
Influenced Genetic Operator.

5.1 The ALPINE Algorithm
The ALPINE algorithm or Applied Linear Programs In Niche-
based Evolutionary computation, is illustrated in Figure 2, and
described as follows.

1. Initialization of population. A portion of the population is
encoded with machine assignments produced by the CDR-
based Population Generator [5]. The remainder is generated
randomly as discussed under Section 5.2.

2. Evaluate fitness for all individuals. Fitness evaluation is
done by PB-ILPIA with O2S. Initialize the makespan criteria

to be the best makespan obtained in the initial population.
This makespan criteria is updated when better makespans are
obtained in subsequent generations.

3. Sort the population according to their total processing time
given in (7).

1 1

n l

ijk
i j

T
= =
∑∑ (7)

This is to facilitate clustering during subsequence generation
of niches. Niche generation is executed by a K-means
algorithm to split the individuals into N number of niches.
Similarity is based on the individual’s processing time for
each operation. Similarity measure is the inverse of
Euclidean distance between the selected individual and the
mean of the niche. The Euclidean distance of an n –length
encoding X and the mean U of the niche is given below.

()2

1

1 n

k k
k

X U x u
n =

− = −∑

where xk and uk is the processing and mean processing times
respectively of the assignment at index k of the chromosome
representation.

4. For every niche, find the individual with a precomputed
makespan; that is, an individual with a makespan value from
previous generations that is unaltered by genetic operators. If
none are found, randomly pick one and compute its fitness.
If the makespan of the selected member (niche
representative) has the same or better makespan than the
makespan cateria, then evaluate the fitness of all members
within the same niche. This allows a diversified search on
one or more niches for a better makespan.

5. Rank all individuals based on the makespan, if available. If
not, non-evaluated individuals, or individuals with unknown
fitness, are sorted separately in the ranks of their estimated
makespan. When the belief space interval is reached,
updating of the operation belief space is carried out.

6. If stagnant count is reached, increase the makespan criteria
by one unit. The stagnant counter tracks the number of
iterations where no better solution has been obtained. By
increasing the makespan criteria for the next generation, the
algorithm is allowed to backtrack by evaluating less fitter
individuals.

Initial Population

Final Population

Termination
Criteria

Selection

Crossover

Mutation
Simplex

YES

NO

585

7. Apply recombination operators to generate the next
population. This includes the use of the Influenced Genetic
Operator which will be discussed under Section 5.4. Repeat
steps 3 to 8 for the predefined number of generations.

5.2 Initial Population: Bootstrapping with
CDR

The composite dispatching rules (CDR) bootstrap algorithm by
Ho and Tay [5] is an efficient and effective way of producing
good schedules. Results show that CDR alone produces better
schedules for 3 out of 4 cases than those found by Kacem et al.
[8]. The schedules produced by the bootstrap CDR are based on
the following three rules: First-In-First-Out (FIFO), Shortest
Processing Time (SPT), and Longest Processing Time (LPT). An
additional rule - Random Dispatch, is added in our algorithm to
further improve the diversity of a favorable encoding. This rule
randomly calls any of the three former rules above. In our hybrid

model, a portion of the machine assignments are produced by
CDR-based Population Generator [5], while the rest are randomly
assigned to maintain diversity desired for a global search.

5.3 Creating and Selecting Niches
Wei et al. [14] proposed a Niche Hybrid Genetic Algorithm
(NHGA) based on the objectives of exploration and exploitation.
NHGA boosts GA’s diversification capabilities, as well as
improve it’s exploitation performance by hybridizing with
Nelder-Mead’s Simplex method. We adopt a similar approach to
evaluate only those individuals that are grouped together in the
same niche.

Our design is also inspired by the Continuous Hybrid Algorithm
(CHA) by Chelouah et al. [2]; which emphasizes on solution
diversification and intensification. In our algorithm, solution
diversification is achieved through genetic operators to produce
offsprings that are uniformly dispersed throughout the whole
search space. To ensure similar offsprings are not created again,
we use a memory enhancement technique; the Operation Belief
Space [5], to influence our mutation. This prevents the search
from being trapped in local optima. Separation of the population
into niches helps us to group similar individuals together. We
adopt the K-means algorithm to assign the individuals into their
respective niches. As there will be one or more of such niches,
selection of niches must be done through a criterion for the
representative individual. If the representative fitness is equal or
better than the best fitness currently found, the respective niche it
belongs to will be evaluated for all individuals contained within it.

5.4 Diversity Maintenance with Influenced
Genetic Operator

GENACE [5] implemented a belief space to store domain
knowledge for pruning redundant information in the search space
to guide it towards a global optimum. However, Branke [1] notes
the high risk of misguiding evolution and preventing the diverse
exploration of search space, so some form of diversity
maintenance should be used in conjunction with memory. As
such, we view the operation belief space (OB-Space) [5] as an
alternative means to improve chromosomal diversity. The OB-
Space is updated every k generations, where n elite individuals
are taken into consideration. While previously in [5], the purpose
of OB-Space was to create fitter individuals through mutation, we
apply this feature to influence machine assignments for a
particular operation that did not contribute to the elite individuals
in previous generations. This is to ensure that diversity will
always be maintained, and the algorithm does not easily get
trapped in local optima. Next, we will present the design of the
local optimization method and the integration with its GA
counterpart.

6. LOCAL OPTIMIZATION
Design of the local optimization (for just ordering of operations
on each machine - therefore a JSP) must consider the feasibility of
integration with the GA counterpart. We divide this discussion
into different sections. First we review the JSP formulation in a
LP model. Second, we show how an additional search on the
candidate solution of the LP can improve its quality. Third, we
present our chromosome representation and how it is used to
construct the FJSP-LP model.

Selection
Crossover
Mutation

In Belief

Space?

Update Belief
Space

Figure 2. The ALPINE Algorithm

Yes

No

… Niche n

Evaluate Fitness for
Selected Member

Initialization of Population

Evaluate Fitness for CDR
produced individuals

Niche Generation with
K-Means Algorithm

End

Determine Niches that meet
the Makespan Criteria

Process All Members in
Selected Niches

Rank Population

Terminate?

Yes

Intensification

…

Niche 2

Evaluate Fitness for
Selected Member

Niche 2

Evaluate Fitness for
Selected Member

No

Diversification

586

6.1 A Linear Program for the FJSP
We begin by presenting a LP model for the JSP [3], which will be
extended solve the FJSP. The model is as follows:

Minimize: ,
1

i

n

i k
i

S
=
∑

Subject to:

Sik − Sih ≥ Ti,j-1,k if operation(i,j-1,h) precedes (i,j,k) (1)
Sik ≥ 0 1 ≤ i ≤ n (2)
Spk − Sik ≥ Ti,j,k (Oijk precedes Opqk) (3)
Sik − Spk ≥ Tp,q,k (Opqk precede Oijk) (4)
Spk − Sik + H×(1− yipk) ≥ Ti,j,k (5)
Sik − Spk + H×(yipk) ≥ Tp,q,k 1 ≤ i,p ≤ n , 1 ≤ k ≤ m (6)

where ki is the machine which the last operation of job i is
assigned to, Sik is the start time of an operation of job i on
machine k, Ti,j,k is processing time of operation j of job i on
machine k, yipk is binary variable defined the job precedence:

yipk = 1 if job i precedes job p
= 0 otherwise

H is an arbitrary positive number greater than the maximum value
among all the processing times, Tijk of the given problem.

Although the above formulation was discussed in the context of
JSPs, it can handle job recirculation without further changes.
Consider equation (1), which defines intra-job precedence.
Supposing two operations of the same job are processed by the
same machine, the precedence which they would have to adhere
to is already defined. Hence for modeling job recirculation (for
our FJSP), no further constraints are required.

The JSP formulation presented above is an integer linear program.
Most integer programming problems are solved by Branch &
Bound (B&B) since Simplex does not return solutions for yipk in
integral form for equations (5) and (6). The Iterative Linear
Programming with Integer Adjustments (ILPIA) technique [3]
resolves this by iteratively solving the LP twice, hence removing
the need to specifically apply integer linear programming
methods. In the first pass, the set of integer linear inequalities (5)
and (6) are solved by treating the binary variables (yipk) as real
variables. Discretization on the derived yipk real values is achieved
by using a binary threshold function for a step response as
follows. If yipk > 0, set yipk to 1 else set yipk to 0.

Although the ILPIA is more efficient than B&B, it does not
guarantee optimum solutions for all instances. Good quality
solutions are only found when it is applied to small problems (ie.
3 jobs 4 machine problem), and the proportion of infeasible
solutions is high. As such we propose to replace ILPIA’s
adjustment techniques with a set of precedence defining rules.
Our approach, the precedence-based ILPIA (or PB-ILPIA)
iteratively solves the LP twice and uses inter-job precedence rules
instead to adjust yipk. In the first pass, the LP formulation is the
same as ILPIA. For the second pass, we define our inter-job
precedence rules based on the solution of yipk obtained from the

first pass. Using the inter-job constraint pair from equations (5)
and (6) of the first LP, we derive the algorithm given in Figure 3.

Figure 3. Defining Inter-Job Precedence Rules

The second LP is solved by Simplex to obtain the final solution
which gives optimum values for the starting times of every
operation. From experiments, PB-ILPIA in general, is able to
produce less infeasible solutions from small (4x5) to medium-
sized problems (10x10) as compared to canonical ILPIA.
However this is not scalable as our infeasibility rate increases
with larger problems. To resolve this issue, we also enforce
solution feasibility as shown in Figure 4. A brief description
follows. H is the arbitrary constant seen in equations (5) and (6).
Varying the constant H affects the quality of solution produced by
PB-ILPIA. Initially, H is initialized to be 100 times of the longest
processing time for a given chromosome. For each iteration that
an infeasible solution is obtained, H increases by a multiple by
10. This approach greatly reduces the percentage of infeasibility.

Figure 4. Enforcing solution feasibility for PB-ILPIA

6.2 Adding an Operation Order Search
We use an Operation Order Search (O2S), to improve the solution
generated from PB-ILPIA. The Makespan Computation
Algorithm adopted by GENACE [5] calculates the fitness value of
each individual. While GENACE employs a pair of strings to
search for a good solution, our hybrid model only utilizes a single
machine assignment string; in which the operation order is
determined using Simplex. Using one string reduces the search
space required by the GA counterpart. We devise the following
method (described in Figure 5) to further enhance the local
convergence of PB-ILPIA. In Step 3, we perform random
switching of operation orders by a straightforward swapping of
job order within the string. A small switch in the order can
produce a different schedule, while maintaining the same machine
assignment.

count := 0;

limit := predefined maximum of iterations

H := get_max_processing_time(chromosome)* 100

Solution := generate_with_simplex(
 chromosome, H)

while (solution is infeasible and count <
 limit) do

 H *= 10;

 solution := generate_with_simplex(
 chromosome, H);

endwhile

 if (yipk == 0) then

 Define Spk precedes Sik

 else

 if (Tpqk – (H x yipk) > 0) then
 Define Spk precedes Sik

 else

 Define Sik precedes Spk

587

Figure 5. Adding Operation Ordered Search to PB-ILPIA

6.3 Integration with the Genetic Algorithm
We now describe how our local optimization method (PB-ILPIA
with O2S) is integrated with a GA. The main idea is to translate
an individual from the GA population into a LP formulation to be
solved by PB-ILPIA with O2S. We adopt the simple and
straightforward string C2 from [13] using real number encoding as
shown below.

O11 O12 ... Oij ... Onl
()

11Oidx Mf ()
12Oidx Mf ... ()

ijOidx Mf ... ()
nlOidx Mf

where

ijOM is the machine to perform operation Oij, ijO MM
ij
∈ ,

and ()
ijOidx Mf gives the set of index numbers of available

machines for Oij.

The translation process for the LP generator is as follows.
1. First Operation: For every Oijk , such that j =1, translate into

equation (2).
2. Intra Job Precedence: For L operations in the job i,

generate equation (1) such that Oij-1k precedes Oijh for 1 < j ≤
L, where tij-1k is processing time referenced from the machine
k encoded under Oij-1 in the string.

3. Inter Job Precedence: For every Oijk of job i, scan all
operations in subsequent jobs p where i < p ≤ N , if the same
machine k is assigned to Oij and Opq, then generate equations
(5) and (6), where Tijk and Tpqk are respective processing
times referenced from machine k in accordance with the
problem.

4. Objective Function: We consider the minimization of all start
times for the last operation of every job.

This process produces the initial LP instance to be solved by PB-
ILPIA with O2S described previously.

7. EMPIRICAL RESULTS
This Section empirically evaluates some of the components
featured in the algorithm. The ALPINE algorithm was coded in
C++ on a 3-GHz Pentium IV. The experiments were conducted

using a population of 100 individuals, where each run consists of
200 generations unless otherwise specified. The following
parameters are used: crossover 0.75, mutation 0.2, replacement
0.1, number of generations to perform learning 5, number of
chromosomes used to influence operation belief space 10. Test
cases used are benchmarks problems by Kacem et al. [8].

7.1 Number of Niches
This experiment compares the efficiency of the ALPINE
algorithm with respect to a predefined number of niches. We run
the test using a 4x5 FJSP. The following parameters are used to
measure the niche performance: average total evaluations of
individuals to obtain its makespan during the whole process Cavg,
and number of predefined niches, N. The following results were
compiled after 20 runs.

Average Number of Evaluations vs Number of
Niches

0

500

1000

1500

2000

2500

3000

1 5 10 20 25 50

Niches

Ev
al

ua
tio

ns

Figure 6. Average Total Evaluations vs. Number of Niches

From Figure 6, we observe a general decrease in the average
number of evaluations (Cavg) from N = 1 to N = 20, and an
increase till N = 50. When N is small, the neighborhood radius is
larger. This accounts for more members in a niche. Hence during
the intensification phase, more evaluations are required. Likewise
for the case when N= 50, while there are less members per niche
for evaluation, approximately 50 niche representatives will have
to be evaluated for each generation. This value is high since it is
approximately half of the population, which defeats our objective
to reduce the number of evaluations in the first place. Hence we
must carefully account for the tradeoffs to achieve maximum
efficiency. For our experiment, we achieve efficient results when
N = 20 for a population of 100 individuals. For problem
conditions that require a larger initial population, we can use the
same ratio of niche to population size above, that is 0.2, to
maintain the same efficiency.

7.2 CDR-PopGen, PB-ILPIA with O2S
Performance

In this experiment, evaluation is done for 200 individuals using
the respective permutation in each FJSP, where Mmin is the
minimum makespan, Mavg is the average makespan and Sdev is the
standard deviation. As observed from Table 1, O2S effectively
reduces the average makespan and achieves better minimum
makespans for all cases. For the latter, the minimum makespans
for 4x5 and 10x10 instances with CDR-PopGen [5] remain
unchanged with the use of O2S. This is in line with our
observation that PB-ILPIA already produces near optimal
solutions. In the area where PB-ILPIA is deficient in producing

1. PB-ILPIA

2. Translate Solution to obtain Operation Order

3. Perform Random Switch on Operation Order

4. Input Machine Assignment and Operation
Order String. Compute Makespan.

Terminate ?

Improved Solution

Yes

No

588

good quality solutions, the addition of O2S helps to improve the
overall solution. This is illustrated in Table 2 which shows the
overall average decrease in makespan with the addition of O2S.
Further decrease in average makespan is observed with the use of
CDR-PopGen, which suggests that good machine assignments are
essential for producing good schedules. The large reduction in Sdev
(from 18.84 to 0.59 for the 4x5 instance) shows that CDR-
PopGen is very effective in pruning the search space. One point
worth noting is the figures from CDR-PopGen in two instances
(8x8 and 10x7) where approximately half the deviation is
achieved with O2S, along with better minimum makespan. A
smaller deviation with a reduced mean shows the potential of the
population to produce good quality solutions. Hence CDR-
PopGen is indeed very capable of producing near optimal, if not
optimal schedules. However this can be only achieved with a
good operation string. The optimal operation string search is
achieved by PB-ILPIA with O2S. In conclusion, the three methods
are complementary to form a robust local search method.

Table 3 compares the best makespan achieved with CDR-PopGen
between GENACE and ALPINE. The improvement in three test
instances suggests that a good operation order search may be
required to further enhance CDR-PopGen.

7.3 Success Rate Comparison
This experiment compares the efficiency of the ALPINE
algorithm to locate the known global optimum for 8x8 and 10x7
instance. We use GENACE as our basis for comparison. Our
results are obtained using PB-ILPIA with O2S. CDR-based
population initialization is done for 80 individuals. As seen in
Table 4, ALPINE has obtained the known global optima within
200 generations, and in the 10x7 instance; achieved a new global
optima undiscovered by GENACE. Two other points are worth
noting. Firstly, the low number of average generations required
for ALPINE can be explained by the fact that in some trials, such
as the one in 8x8 instance, global optima is already obtained by
CDR-PopGen alone. However, in comparison with GENACE,
CDR-PopGen produces inferior results. This shows that CDR-
PopGen cannot produce better results than when coupled with
PB-ILPIA and O2S. Hence, while CDR-PopGen is able to find

good machine assignments, a good operation order search is still
needed to produce optimal results. Secondly, a higher success rate
is observed for ALPINE. When CDR-PopGen fails to produce an
optimal solution, as in the case of the 10x7 instance, ALPINE is
able to complement this by locating the optimum’s basin through
a global genetic search. Unlike GENACE, it is less likely to be
trapped in a local optima, thus showing the efficiency of our
niched-based hybrid structure. Another reason being the search
space explored in our algorithm is much smaller since only one
machine assignment string is needed, leading to higher success
rate as well.

7.4 Comparisons with benchmark problems
Table 5 shows how ALPINE fares against other algorithms. The
following benchmarks are used. Temporal Decomposition,
Classical Genetic Algorithm, Approach by Localization,
Localization and Controlled Evolutionary Algorithm (AL + CGA)
referenced from Kacem et al.[7]. Hybridization of Fuzzy Logic
and Evolutionary Algorithm (FL+EA) by Kacem et al.[8]. Hybrid
Particle Swarm Optimization and Simulated Annealing
(PSO+SA) by Xia et al. [15] and GENACE [5], a cultural
evolution algorithm.

Overall, ALPINE compares well for all test cases. In particular, a
new global optima has been found by ALPINE for the 10x7
instance. However, only a sub-optimal solution can be obtained
for the 15x10 instance. This is due to the deficiency of PB-ILPIA
to produce good solutions with increasing problem size (discussed
in Section 5), hence O2S becomes less effective in finding the
global optima. Nevertheless a near optimal solution is obtained
with a small deviation. It is however worth noting that ALPINE is
highly efficient for medium-sized problems and below, where an
optimal solution can be obtained by simply applying CDR-
PopGen with PB-ILPIA and O2S, without the need for a global
genetic search.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented a hybrid evolutionary algorithm called
ALPINE for globalized niche-based evolution with localized
Simplex search. It combines favorable machine assignments by
CDR-PopGen [5], near-optimal operation order derived by PB-
ILPIA, improvement of the latter with randomized O2S and
removal of local optima through the parallelism of GA. While
each feature of ALPINE is insufficient alone to locate the global
optima, a hybrid of the above methods demonstrates synergism.
Experimental results on Kacem’s benchmarks problems using our
hybrid have shown that ALPINE outperforms many existing
hybrid techniques and is on par with GENACE, a cultural

Table 2. Proportional
Improvement with O2S

Table 3. Comparison of
best makespans

 Without
CDR CDR GENACE ALPINE

4x5 0.154 0.009 4x5 11 11

8x8 0.190 0.202 8x8 16 14

10x7 0.155 0.207 10x7 13 11

10x10 0.184 0.183 10x10 9 8

 Table 1. Performance of Combinatorial Search Methods
 4x5 8x8 10x7 10x10

 Mmin Mavg Sdev Mmin Mavg Sdev Mmin Mavg Sdev Mmin Mavg Sdev

PB-ILPIA 18 36.97 19.07 36 60.66 11.29 36 72.80 31.85 32 51.54 11.6
4PB-ILPIA+O2S 15 31.81 18.84 34 48.59 9.34 28 62.57 32.20 26 41.55 9.22

CDR,PB-ILPIA 11 12.02 0.86 17 23.34 4.09 13 18.94 3.46 8 10.59 1.02

CDR,PB-ILPIA+O2S 11 11.90 0.59 14 18.29 2.05 11 14.71 1.78 8 8.58 0.81

 CDR: Initialization by Composite Dispatch Rule, O2S: Operation Order Search

589

evolution algorithm. A new global optima for the 10x7 FJSP has
also been found.

The proposed O2S used in this paper consists of a blind random
search. Further investigation can be done to improve the operation
order by determining the bottleneck machines or jobs. Larger
problems can be tackled by dividing them into smaller problems,
where the start times of the subproblems can be easily added as a
constraint. Breaking the problem into suitable sizes allows our
hybrid method to operate efficiently. A clear bottleneck in the
algorithm to tackle large problems is the Simplex method. While
it provides good solutions for small problems, a more efficient
alternative may be needed for larger operational orders.

9. REFERENCES
[1] Branke, J., “Memory enhanced evolutionary algorithms for

changing optimization problems,” Proc. IEEE Congress on
Evolutionary Computation, pp. 1875-1882, 1999.

[2] Chelouah, R. and Siarry, P., “Genetic and Nelder–Mead
algorithms hybridized for a more accurate global
optimization of continuous multiminima functions,”
European Journal of Operational Research, vol. 148, pp.
335-348, 2003.

[3] Foo, Y. S. and Takefuji, T., “Integer linear programming
neural networks for job-shop scheduling,” IEEE
International Conference on Neural Networks, vol. 2, pp
341-348, 1988.

[4] Gonçalves, J. F., Mendes, J. J. M., Resende, M. G. C., “A
hybrid genetic algorithm for the job shop scheduling
problem,” European Journal of Operational Research, vol.
167(1), pp. 77-95, 2005.

[5] Ho, N. B. and Tay, J. C., "GENACE: An Efficient Cultural
Algorithm for solving the Flexible Job-Shop Problem,"
Proc. IEEE Congress on Evolutionary Computation, pp.
1759-1766, 2004.

[6] Jain, A. S. and Meeran, S., “Job Shop Scheduling using
Neural Networks,” International Journal of Production
Research, vol. 36(5), pp 1249-1272, 1998.

[7] Kacem, I., Hammadi, S., Borne, P., “Approach by
localization and multiobjective evolutionary optimization
for flexible job-shop scheduling problems,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 32(1),
pp. 1-13, 2002.

[8] Kacem, I., Hammadi, S., Borne, P., “Pareto-optimality
approach for flexible job-shop scheduling problems:
hybridization of evolutionary algorithms and fuzzy logic”
Mathematics and Computers in Simulation, vol. 60, pp.
245-276, 2002.

[9] Kacem, I., “Genetic algorithm for the flexible job-shop
scheduling problem,” Proc. IEEE International Conference
on Systems, Man and Cybernetics, vol. 4, pp. 3464-3469,
2003.

[10] Mathias, K. E., Whitley, L. D., Stork, C., Kusuma, T.,
“Staged hybrid genetic search for seismic data imaging,”
Proc. The First IEEE Conference on Evolutionary
Computation, vol.1, pp. 356-361, 1994.

[11] Mesghouni, K., Hammadi, S., Borne, P., “Evolution
programs for job-shop scheduling,” Proc. IEEE
International Conference on Computational Cybernetics
and Simulation, vol. 1, pp. 720-725, 1997.

[12] Panek, S., Stursberg, O., Engell, S., “Optimization of timed
automata models using mixed integer programming,”
Formal Modeling And Analysis of Timed Systems: First
International Workshop, vol. 2791, pp. 73-87, 2004.

[13] Tay, J. C. and Wibowo, D., "An Effective Chromosome
Representation for Evolving Flexible Job Shop Schedules,"
Genetic and Evolutionary Computation Conference, vol. 2,
pp 210-221, 2004.

[14] Wei, L. and Zhao, M., “A niche hybrid genetic algorithm
for global optimization of continuous multimodal
functions,” Applied Mathematics and Computation, vol.
160, pp. 649-661, 2005.

[15] Xia, W. and Wu, Z., “An effective hybrid optimization
approach for multi-objective flexible job-shop scheduling
problems” Computers & Industrial Engineering, vol. 48(2),
pp. 409-425, 2005.

[16] Yen, J., Liao, J. C., Bogju, L., Randolph, D., “A hybrid
approach to modeling metabolic systems using a genetic
algorithm and simplex method,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 28 , pp. 173-191,1998.

 Table 4. Results of comparison of efficiency in locating global optima
GENACE ALPINE

Mbest Mavg Rs Gavg Mbest Mavg Rs Gavg
8 x 8 14 14.50 60 45.17 14 14 100 0.10
10x7 12 13.80 0 0.00 11 11.3 70 6.71

 Gavg : Average generations to reach optimum Rs : Success rate of obtaining optimum(%)

 Mavg: Average makespan obtained Mbest: Best makespan obtained

 Table 5. Results of comparison with benchmark problems
 Type Temporal/D Classic GA By Localization AL+CGA FL+EA PSO+SA GENACE ALPINE

4x5 T - - - - 16 - 11 11
8x8 P 19 16 16 15 - 15 14 14
10x7 T - - - - 15 - 12 11
10x10 T 16 7 8 7 7 7 7 7
15x10 T - - - 23 23 12 12 13

 Type : Total (T) or Partial (P) flexibility.

590

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

