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ABSTRACT 
We propose a hybrid algorithm (called ALPINE) between Genetic 
Algorithm and Dantzig’s Simplex method to approximate optimal 
solutions for the Flexible Job-Shop Problem. Locally, Simplex is 
extended for the JSP linear program to reduce the number of 
infeasible solutions while solution quality is improved with an 
operation order search. Globally, a niche-based evolutionary 
strategy is employed to gain parallelization while solution 
diversity is maintained in two ways; composite dispatching rule-
based population initialization and memory-based machine 
assignment. Performance results on benchmark problems show 
that ALPINE outperforms existing hybrid techniques with a new 
global optima found for the 10x7 Flexible Job Shop Problem. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods and Search]: 
Scheduling 

General Terms: Algorithms, Design, Performance. 

Keywords: Flexible Job-Shop Scheduling, Linear 
Programming, Niche-based Strategy, Hybrid Evolutionary 
Computation 

1. INTRODUCTION 
In modern manufacturing environments, proper production 
scheduling and planning is imperative to maximize efficiency 
given the limited resources that are available. The classical Job-
Shop scheduling Problem (JSP) is a well-known machine 
scheduling model which features the essential objectives of 
manufacturing. As such there is abundant research on the JSP, 
particulary from the field of Operations Research [4]. The JSP 
may be described as follows: given n jobs, each consists of 
several operations that must be processed on m machines. Each 
operation uses one of m machines for a fixed duration. Each 
machine can process at most one operation at a time to 
completion without interruption. The operations of a given job 
have to be processed in a predetermined order, where no two or 

more operations from the same job can be processed 
simultaneously. The Flexible Job-Shop Problem (FJSP) extends 
this problem definition by removing the constraint of an one-to-
one mapping of operations to machines and allowing an operation 
to be processed on more than one machine. The problem consists 
of finding a schedule of the operations on the machines, which 
yields the minimum makespan; the minimal completion time of 
all of the last job. Compared to the JSP, the decisions on machine 
assignment and operation precedence makes the FJSP strongly 
NP-hard [13]. In this paper, we propose a hybrid algorithm 
between Genetic Algorithm and a classical optimization method - 
Dantzig’s Simplex method, to approximate optimal solutions to 
the FJSP. 
 
The JSP can be modeled as a linear program to be solved by 
traditional Hopfield network applications [3]. However, Jain and 
Meeran [6] pointed out some setbacks of the Hopfield approach. 
Firstly, the network produces many infeasible solutions or 
schedules which violates the JSP constraints. Secondly, it easily 
gets trapped in local optima; hence optimal solutions even for 
small problems cannot be guaranteed. Dantzig (1947) designed 
the Simplex method to effectively solve Linear Programming 
problems (LP). We tackle the first setback by implementing an 
extension of Simplex for the same JSP linear program model to 
reduce the number of infeasible solutions, while the quality of 
solution is then further improved with an additional operation-
order search. The combination of the extended Simplex and the 
operation-order search will serve as our local optimization 
mechanism. The second setback shows that using local 
optimization alone will produce inferior solutions in the target 
neighborhood. A common solution to this is the hybridization of a 
local search technique with a global search which is capable of 
spanning the search across different neighborhoods. As such, we 
apply the Genetic Algorithm (GA) (by Holland, Bremermann and 
Fraser) as it has been shown [9] to produce good results due to its 
ability to explore the search space of candidate solutions in 
parallel. However using a GA alone typically gives slow 
convergence to the best possible solution as it lacks local 
information to determine the most promising search direction. 
Hence, in this paper, we propose a GA-guided global search 
technique to speed up the rate of convergence while having the 
ability to escape from the local optimum through an extended 
Simplex with operation-order search. We are also aware that 
although a hybrid algorithm results in faster convergence, it is 
possible that this can interfere with the search for a global 
optimum by leading it to a premature convergence too quickly 
[10][16]. This will reduce the quality of solutions found. We 
address this issue with a niche-based GA architecture for 
maintaining candidate solution diversity. 
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This paper is organized as follows. Section 2 gives the 
formulation of the FJSP. Previous works on hybrid GA-search are 
reviewed in Section 3. Section 4 gives the design and motivation 
for the niche-based GA architecture. Section 5 describes the 
implementation details of our Hybrid model. Section 6 describes 
the technique to solve integer programs and its integration with 
our niche-based GA. Section 7 presents and analyzes 
experimental results. Finally we make some conclusions and 
discuss future work in Section 8. 

2. PROBLEM FORMULATION 
The FJSP with recirculation is formulated [13] as follows: 
• There are n jobs J=1, 2,..., n, indexed i.  

• There are m machines M=1, 2,... m, indexed k. 

• Each operation, indexed j, can be processed on a set of 
machines Mij. Therefore, Oijk denotes that operation j of job i 
is to be processed on machine k. 

• Tijk defines the processing time of operation j of job i on 
machine k. 

• Recirculation occurs when a job can visit a machine more 
than once. 

• The objective is to find a schedule that has minimum 
makespan, that is, to minimize the completion time of the 
last job. 

The following assumptions are made.  
• All machines are available at time 0. 

• All jobs are released at time 0. 

• The order of operations in each job is predefined and cannot 
be modified. 

The conditions above define a deterministic scheduling problem; 
where all parameters are known at the time of scheduling. A 
solution to a FJSP problem is a schedule where all of the above 
conditions are met. The decision variables of a solution is the start 
time of every operations, where:     
• The start time of any operation of job i, processed on 

machine k, is defined as Sik. 

The constraints which relate the above variables will be discussed 
in detail under Section 5.1. The FJSP can be further divided into 
two subsets, namely Total FJSP (T-FJSP) and Partial FJSP (P-
FJSP) [5]. T-FJSP allows each operation to be processed on any 
machine. In P-FJSP, only a proper subset of machines M is 
allowed to process at least one operation Oijk. We are able to solve 
the two kinds of FJSP using our proposed algorithm. 

3. REVIEW OF HYBRID DESIGNS 
Hybrid GAs have been applied extensively to yield better results 
[10][16][4] because of good complementary effects; that is, 
improving convergence in a promising area while maintaining a 
broad search for a global optimal in others. Nevertheless it has 
been found that too much local optimization can result in 
premature convergence [10]. This section will review different 
hybrid architectures and discuss the choice of an appropriate 
hybrid structure most appropriate for integrating Dantzig’s 
Simplex and Holland’s GA. 

 
Four categories of hybrid architectures have been reviewed by 
Yen et al. [16]; namely, those that use Additional Operators, 
Asynchronous, Hierarchical, and Pipelining. Our choice of 
architecture depends on two factors; (a) the facility of integrating 
the Simplex with GA, and (b) the discrete nature of the FJSP. 
 
The Additional Operators approach utilizes local search as an 
additional genetic reproduction operator. This operator works 
alongside with the conventional GA operator to generate the next 
population. This architecture is generally favored by researchers 
employing the probabilistic [16] or Nelder-Mead’s Simplex 
[2][12] method into their hybrid model as the computational 
overhead introduced is very low. However, this approach is more 
appropriate for continuous functions, where a single Simplex 
search can be done on two or more individuals in the population. 
The same cannot be easily applied to a discrete optimization for 
the FJSP. 
 
The Asynchronous Hybrid approach allows a GA and another 
optimization method to work on the same shared population 
separately. In this hybrid model, two or more search processes 
work independently on the same problem, updating the population 
if improvement is made by either one. Before we evaluate the 
feasibility of this second approach, allow us to briefly review the 
respective roles of GA and Simplex in solving the FJSP as 
separate entities. To solve the FJSP, GA requires at least two 
strings for its chromosome representation, namely machine 
assignment and operation order string [13]. The former will 
determine which machine an operation is processed on, while the 
latter determines the precedence of the operations. These two 
strings comprise a chromosome that specifies a job-shop 
schedule. On the other hand, only the machine assignment string 
is required to formulate a linear program, since the role of 
Simplex is simply to obtain the schedule with best minimized 
makespan without violating any precedence constraints. This 
therefore removes the need for an operation order string. In the 
context of Asynchronous Hybrids, we see that GA alone requires 
both sets while the Simplex only requires the machine assignment 
string. Hence while this architecture is possible for our Hybrid 
model, we do not consider this to be the best of choice. 
 
Hierarchical Hybrids allows a GA and another optimization 
technique to work on two separate levels. Unlike Asynchronous 
Hybrids where both techniques work independently, here the 
optimization technique on one level will base its search on the one 
determined by GA on the previous level. This approach has some 
similarities with the Pipeline model discussed below. 
 

The Pipelining Hybrid approach applies local and global search 
sequentially, where one creates data for the other [16]. We choose 
this approach for our hybrid model as the optimal result produced 
by Simplex will depend highly on the data, or machine 
assignments that it is given. GA will serve as a global search for 
the data, while the Simplex optimizes the given data efficiently. 
Unlike the Asynchronous Hybrid, the two techniques work hand 
in hand where the performance of local optimization will depend 
on the search by GA. Furthermore, only one string will be needed 
for our chromosome representation since they do not work 
independently. 
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4. A PIPELINE HYBRID MODEL 
We will explain the roles of the GA and Simplex in a Pipeline 
Hybrid model for a single individual (chromosome) in a 
population. The traditional pipeline approach is to apply Simplex 
to every individual (generated by the GA) after each generation to 
obtain the minimal makespan (see Figure 1). In this model, 
Simplex is applied to improve the local convergence of 
individuals in the population, followed by genetic recombination 
to remove the local optima. 
 

 
Figure 1. Traditional Model of Simplex-GA Pipelining 

While this approach is straightforward, Mathias et al. [10] points 
out that using local search to process every individual can be 
computationally expensive. In our work, we tackle the issue of 
computational cost using a niche-based GA architecture to avoid 
processing every individual. This is discussed in Section 5.3. 

5. SOLVING THE FJSP 
This section will describe the implementation of our proposed 
Pipeline Hybrid model. We present an overview of the algorithm, 
followed by a discussion of features in our hybrid model; namely 
CDR-based Population Generator, Niche-based strategy and the 
Influenced Genetic Operator.  

5.1 The ALPINE Algorithm 
The ALPINE algorithm or Applied Linear Programs In Niche-
based Evolutionary computation, is illustrated in Figure 2, and 
described as follows. 

1. Initialization of population. A portion of the population is 
encoded with machine assignments produced by the CDR-
based Population Generator [5]. The remainder is generated 
randomly as discussed under Section 5.2.  

2. Evaluate fitness for all individuals. Fitness evaluation is 
done by PB-ILPIA with O2S. Initialize the makespan criteria 

to be the best makespan obtained in the initial population. 
This makespan criteria is updated when better makespans are 
obtained in subsequent generations. 

3. Sort the population according to their total processing time 
given in (7). 

 
1 1

n l

ijk
i j

T
= =
∑∑  (7) 

This is to facilitate clustering during subsequence generation 
of niches. Niche generation is executed by a K-means 
algorithm to split the individuals into N number of niches. 
Similarity is based on the individual’s processing time for 
each operation. Similarity measure is the inverse of 
Euclidean distance between the selected individual and the 
mean of the niche. The Euclidean distance of an n –length 
encoding X and the mean U of the niche is given below. 

( )2

1

1 n

k k
k

X U x u
n =

− = −∑  

where xk and uk is the processing and mean processing times 
respectively of the assignment at index k of the chromosome 
representation.   

4. For every niche, find the individual with a precomputed 
makespan; that is, an individual with a makespan value from 
previous generations that is unaltered by genetic operators. If 
none are found, randomly pick one and compute its fitness. 
If the makespan of the selected member (niche 
representative) has the same or better makespan than the 
makespan cateria, then evaluate the fitness of all members 
within the same niche. This allows a diversified search on 
one or more niches for a better makespan. 

5. Rank all individuals based on the makespan, if available. If 
not, non-evaluated individuals, or individuals with unknown 
fitness, are sorted separately in the ranks of their estimated 
makespan. When the belief space interval is reached, 
updating of the operation belief space is carried out.  

6. If stagnant count is reached, increase the makespan criteria 
by one unit. The stagnant counter tracks the number of 
iterations where no better solution has been obtained. By 
increasing the makespan criteria for the next generation, the 
algorithm is allowed to backtrack by evaluating less fitter 
individuals. 

Initial Population 

Final Population 

Termination 
Criteria 

Selection 

Crossover 

Mutation 
Simplex 

YES 

NO 
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7. Apply recombination operators to generate the next 
population. This includes the use of the Influenced Genetic 
Operator which will be discussed under Section 5.4. Repeat 
steps 3 to 8 for the predefined number of generations. 

5.2 Initial Population: Bootstrapping with 
CDR 

The composite dispatching rules (CDR) bootstrap algorithm by 
Ho and Tay [5] is an efficient and effective way of producing 
good schedules. Results show that CDR alone produces better 
schedules for 3 out of 4 cases than those found by Kacem et al. 
[8]. The schedules produced by the bootstrap CDR are based on 
the following three rules: First-In-First-Out (FIFO), Shortest 
Processing Time (SPT), and Longest Processing Time (LPT). An 
additional rule - Random Dispatch, is added in our algorithm to 
further improve the diversity of a favorable encoding. This rule 
randomly calls any of the three former rules above. In our hybrid 

model, a portion of the machine assignments are produced by 
CDR-based Population Generator [5], while the rest are randomly 
assigned to maintain diversity desired for a global search. 
 

5.3 Creating and Selecting Niches 
Wei et al. [14] proposed a Niche Hybrid Genetic Algorithm 
(NHGA) based on the objectives of exploration and exploitation. 
NHGA boosts GA’s diversification capabilities, as well as 
improve it’s exploitation performance by hybridizing with 
Nelder-Mead’s Simplex method. We adopt a similar approach to 
evaluate only those individuals that are grouped together in the 
same niche. 
 
Our design is also inspired by the Continuous Hybrid Algorithm 
(CHA) by Chelouah et al. [2]; which emphasizes on solution 
diversification and intensification. In our algorithm, solution 
diversification is achieved through genetic operators to produce 
offsprings that are uniformly dispersed throughout the whole 
search space. To ensure similar offsprings are not created again, 
we use a memory enhancement technique; the Operation Belief 
Space [5], to influence our mutation. This prevents the search 
from being trapped in local optima. Separation of the population 
into niches helps us to group similar individuals together. We 
adopt the K-means algorithm to assign the individuals into their 
respective niches. As there will be one or more of such niches, 
selection of niches must be done through a criterion for the 
representative individual. If the representative fitness is equal or 
better than the best fitness currently found, the respective niche it 
belongs to will be evaluated for all individuals contained within it. 

5.4 Diversity Maintenance with Influenced 
Genetic Operator 

GENACE [5] implemented a belief space to store domain 
knowledge for pruning redundant information in the search space 
to guide it towards a global optimum. However, Branke [1] notes 
the high risk of misguiding evolution and preventing the diverse 
exploration of search space, so some form of diversity 
maintenance should be used in conjunction with memory. As 
such, we view the operation belief space (OB-Space) [5] as an 
alternative means to improve chromosomal diversity. The OB-
Space is updated every k generations, where n elite individuals 
are taken into consideration. While previously in [5], the purpose 
of OB-Space was to create fitter individuals through mutation, we 
apply this feature to influence machine assignments for a 
particular operation that did not contribute to the elite individuals 
in previous generations. This is to ensure that diversity will 
always be maintained, and the algorithm does not easily get 
trapped in local optima. Next, we will present the design of the 
local optimization method and the integration with its GA 
counterpart. 

6. LOCAL OPTIMIZATION 
Design of the local optimization (for just ordering of operations 
on each machine - therefore a JSP) must consider the feasibility of 
integration with the GA counterpart. We divide this discussion 
into different sections. First we review the JSP formulation in a 
LP model. Second, we show how an additional search on the 
candidate solution of the LP can improve its quality. Third, we 
present our chromosome representation and how it is used to 
construct the FJSP-LP model. 

Selection 
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Mutation 
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Update Belief 
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Figure 2. The ALPINE Algorithm 
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6.1 A Linear Program for the FJSP 
We begin by presenting a LP model for the JSP [3], which will be 
extended solve the FJSP. The model is as follows: 

Minimize: ,
1

i

n

i k
i

S
=
∑  

Subject to: 
 
Sik − Sih ≥ Ti,j-1,k   if operation(i,j-1,h) precedes (i,j,k) (1) 
Sik ≥ 0                1 ≤ i ≤ n                  (2) 
Spk − Sik  ≥ Ti,j,k (Oijk precedes Opqk)        (3) 
Sik − Spk  ≥ Tp,q,k (Opqk  precede Oijk)   (4) 
Spk − Sik  + H×(1− yipk) ≥  Ti,j,k             (5) 
Sik − Spk  + H×( yipk) ≥ Tp,q,k     1 ≤ i,p ≤ n , 1 ≤ k ≤ m     (6) 
 
where ki is the machine which the last operation of job i is 
assigned to, Sik is the start time of an operation of job i on 
machine k, Ti,j,k  is processing time of operation j of job i on 
machine k, yipk is binary variable defined the job precedence: 
 

yipk = 1   if job i precedes job p 
= 0  otherwise 
 

H is an arbitrary positive number greater than the maximum value 
among all the processing times, Tijk of the given problem. 
 
Although the above formulation was discussed in the context of 
JSPs, it can handle job recirculation without further changes. 
Consider equation (1), which defines intra-job precedence. 
Supposing two operations of the same job are processed by the 
same machine, the precedence which they would have to adhere 
to is already defined. Hence for modeling job recirculation (for 
our FJSP), no further constraints are required. 
 
The JSP formulation presented above is an integer linear program. 
Most integer programming problems are solved by Branch & 
Bound (B&B) since Simplex does not return solutions for yipk in 
integral form for equations (5) and (6). The Iterative Linear 
Programming with Integer Adjustments (ILPIA) technique [3] 
resolves this by iteratively solving the LP twice, hence removing 
the need to specifically apply integer linear programming 
methods. In the first pass, the set of integer linear inequalities (5) 
and (6) are solved by treating the binary variables (yipk) as real 
variables. Discretization on the derived yipk real values is achieved 
by using a binary threshold function for a step response as 
follows. If yipk > 0, set yipk to 1 else set yipk to 0. 
 
Although the ILPIA is more efficient than B&B, it does not 
guarantee optimum solutions for all instances. Good quality 
solutions are only found when it is applied to small problems (ie. 
3 jobs 4 machine problem), and the proportion of infeasible 
solutions is high. As such we propose to replace ILPIA’s 
adjustment techniques with a set of precedence defining rules. 
Our approach, the precedence-based ILPIA (or PB-ILPIA) 
iteratively solves the LP twice and uses inter-job precedence rules 
instead to adjust yipk. In the first pass, the LP formulation is the 
same as ILPIA. For the second pass, we define our inter-job 
precedence rules based on the solution of yipk obtained from the 

first pass. Using the inter-job constraint pair from equations (5) 
and (6) of the first LP, we derive the algorithm given in Figure 3. 

 

 
Figure 3. Defining Inter-Job Precedence Rules 

The second LP is solved by Simplex to obtain the final solution 
which gives optimum values for the starting times of every 
operation. From experiments, PB-ILPIA in general, is able to 
produce less infeasible solutions from small (4x5) to medium-
sized problems (10x10) as compared to canonical ILPIA. 
However this is not scalable as our infeasibility rate increases 
with larger problems. To resolve this issue, we also enforce 
solution feasibility as shown in Figure 4. A brief description 
follows. H is the arbitrary constant seen in equations (5) and (6). 
Varying the constant H affects the quality of solution produced by 
PB-ILPIA.  Initially, H is initialized to be 100 times of the longest 
processing time for a given chromosome. For each iteration that 
an infeasible solution is obtained, H increases by a multiple by 
10. This approach greatly reduces the percentage of infeasibility. 

 

 
Figure 4. Enforcing solution feasibility for PB-ILPIA 

6.2 Adding an Operation Order Search 
We use an Operation Order Search (O2S), to improve the solution 
generated from PB-ILPIA. The Makespan Computation 
Algorithm adopted by GENACE [5] calculates the fitness value of 
each individual. While GENACE employs a pair of strings to 
search for a good solution, our hybrid model only utilizes a single 
machine assignment string; in which the operation order is 
determined using Simplex.  Using one string reduces the search 
space required by the GA counterpart. We devise the following 
method (described in Figure 5) to further enhance the local 
convergence of PB-ILPIA. In Step 3, we perform random 
switching of operation orders by a straightforward swapping of 
job order within the string. A small switch in the order can 
produce a different schedule, while maintaining the same machine 
assignment. 
  

count := 0; 

limit := predefined maximum of iterations 

H := get_max_processing_time(chromosome)* 100 

Solution := generate_with_simplex( 
            chromosome, H) 

while ( solution is infeasible and count <  
        limit  ) do 

   H *= 10;  

   solution := generate_with_simplex(  
                  chromosome, H); 

endwhile

 if ( yipk == 0 ) then  

 Define Spk precedes Sik 

 else  

     if ( Tpqk – ( H x yipk ) > 0  ) then 
 Define Spk precedes Sik 

    else 

 Define Sik precedes Spk 
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Figure 5.  Adding Operation Ordered Search to PB-ILPIA 

6.3 Integration with the Genetic Algorithm 
We now describe how our local optimization method (PB-ILPIA 
with O2S ) is integrated with a GA. The main idea is to translate 
an individual from the GA population into a LP formulation to be 
solved by PB-ILPIA with O2S. We adopt the simple and 
straightforward string C2 from [13] using real number encoding as 
shown below. 
   

O11 O12 ... Oij ... Onl 
( )

11Oidx Mf ( )
12Oidx Mf ... ( )

ijOidx Mf  ... ( )
nlOidx Mf

 
where 

ijOM  is the machine to perform operation Oij, ijO MM
ij
∈ , 

and ( )
ijOidx Mf  gives the set of index numbers of available 

machines for Oij. 
 
The translation process for the LP generator is as follows. 
1. First Operation: For every Oijk , such that j =1, translate into 

equation (2). 
2. Intra Job Precedence: For L operations in the job i, 

generate equation (1) such that Oij-1k precedes Oijh   for 1 < j ≤ 
L, where tij-1k is processing time referenced from the machine 
k encoded under Oij-1 in the string.  

3. Inter Job Precedence: For every Oijk of job i, scan all 
operations in subsequent jobs p where i < p ≤ N , if the same 
machine k is assigned to Oij and Opq, then generate equations 
(5) and (6), where Tijk and Tpqk are respective processing 
times referenced from machine k in accordance with the 
problem. 

4. Objective Function: We consider the minimization of all start 
times for the last operation of every job. 

This process produces the initial LP instance to be solved by PB-
ILPIA with O2S described previously. 

7. EMPIRICAL RESULTS 
This Section empirically evaluates some of the components 
featured in the algorithm. The ALPINE algorithm was coded in 
C++ on a 3-GHz Pentium IV. The experiments were conducted 

using a population of 100 individuals, where each run consists of 
200 generations unless otherwise specified. The following 
parameters are used: crossover 0.75, mutation 0.2, replacement 
0.1, number of generations to perform learning 5, number of 
chromosomes used to influence operation belief space 10. Test 
cases used are benchmarks problems by Kacem et al. [8]. 

7.1 Number of Niches 
This experiment compares the efficiency of the ALPINE 
algorithm with respect to a predefined number of niches. We run 
the test using a 4x5 FJSP.  The following parameters are used to 
measure the niche performance: average total evaluations of 
individuals to obtain its makespan during the whole process Cavg, 
and number of predefined niches, N. The following results were 
compiled after 20 runs. 
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Figure 6. Average Total Evaluations vs. Number of Niches 

From Figure 6, we observe a general decrease in the average 
number of evaluations (Cavg ) from N = 1 to N = 20, and an 
increase till N = 50. When N is small, the neighborhood radius is 
larger. This accounts for more members in a niche. Hence during 
the intensification phase, more evaluations are required. Likewise 
for the case when N= 50, while there are less members per niche 
for evaluation, approximately 50 niche representatives will have 
to be evaluated for each generation. This value is high since it is 
approximately half of the population, which defeats our objective 
to reduce the number of evaluations in the first place. Hence we 
must carefully account for the tradeoffs to achieve maximum 
efficiency. For our experiment, we achieve efficient results when 
N = 20 for a population of 100 individuals. For problem 
conditions that require a larger initial population, we can use the 
same ratio of niche to population size above, that is 0.2, to 
maintain the same efficiency.      

7.2 CDR-PopGen, PB-ILPIA with O2S 
Performance 

In this experiment, evaluation is done for 200 individuals using 
the respective permutation in each FJSP, where Mmin is the 
minimum makespan, Mavg is the average makespan and Sdev is the 
standard deviation. As observed from Table 1, O2S effectively 
reduces the average makespan and achieves better minimum 
makespans for all cases. For the latter, the minimum makespans 
for 4x5 and 10x10 instances with CDR-PopGen [5] remain 
unchanged with the use of O2S. This is in line with our 
observation that PB-ILPIA already produces near optimal 
solutions. In the area where PB-ILPIA is deficient in producing 

1. PB-ILPIA 

2. Translate Solution to obtain Operation Order 

3. Perform Random Switch on Operation Order 

4. Input Machine Assignment and Operation 
Order String. Compute Makespan.  

Terminate ? 

Improved Solution 
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good quality solutions, the addition of O2S helps to improve the 
overall solution. This is illustrated in Table 2 which shows the  
overall average decrease in makespan with the addition of O2S. 
Further decrease in average makespan is observed with the use of 
CDR-PopGen, which suggests that good machine assignments are 
essential for producing good schedules. The large reduction in Sdev 
(from 18.84 to 0.59 for the 4x5 instance) shows that CDR-
PopGen is very effective in pruning the search space. One point 
worth noting is the figures from CDR-PopGen in two instances 
(8x8 and 10x7) where approximately half the deviation is 
achieved with O2S, along with better minimum makespan. A 
smaller deviation with a reduced mean shows the potential of the 
population to produce good quality solutions. Hence CDR-
PopGen is indeed very capable of producing near optimal, if not 
optimal schedules. However this can be only achieved with a 
good operation string. The optimal operation string search is 
achieved by PB-ILPIA with O2S. In conclusion, the three methods 
are complementary to form a robust local search method. 

 
Table 3 compares the best makespan achieved with CDR-PopGen 
between GENACE and ALPINE. The improvement in three test 
instances suggests that a good operation order search may be 
required to further enhance CDR-PopGen. 

7.3 Success Rate Comparison 
This experiment compares the efficiency of the ALPINE 
algorithm to locate the known global optimum for 8x8 and 10x7 
instance. We use GENACE as our basis for comparison. Our 
results are obtained using PB-ILPIA with O2S. CDR-based 
population initialization is done for 80 individuals. As seen in 
Table 4, ALPINE has obtained the known global optima within 
200 generations, and in the 10x7 instance; achieved a new global 
optima undiscovered by GENACE. Two other points are worth 
noting. Firstly, the low number of average generations required 
for ALPINE can be explained by the fact that in some trials, such 
as the one in 8x8 instance, global optima is already obtained by 
CDR-PopGen alone. However, in comparison with GENACE, 
CDR-PopGen produces inferior results. This shows that CDR-
PopGen cannot produce better results than when coupled with 
PB-ILPIA and O2S. Hence, while CDR-PopGen is able to find 

good machine assignments, a good operation order search is still 
needed to produce optimal results. Secondly, a higher success rate 
is observed for ALPINE. When CDR-PopGen fails to produce an 
optimal solution, as in the case of the 10x7 instance, ALPINE is 
able to complement this by locating the optimum’s basin through 
a global genetic search. Unlike GENACE, it is less likely to be 
trapped in a local optima, thus showing the efficiency of our 
niched-based hybrid structure. Another reason being the search 
space explored in our algorithm is much smaller since only one 
machine assignment string is needed, leading to higher success 
rate as well. 

7.4 Comparisons with benchmark problems 
Table 5 shows how ALPINE fares against other algorithms. The 
following benchmarks are used. Temporal Decomposition, 
Classical Genetic Algorithm, Approach by Localization, 
Localization and Controlled Evolutionary Algorithm (AL + CGA) 
referenced from Kacem et al.[7]. Hybridization of Fuzzy Logic 
and Evolutionary Algorithm (FL+EA) by Kacem et al.[8]. Hybrid 
Particle Swarm Optimization and Simulated Annealing 
(PSO+SA) by Xia et al. [15] and GENACE [5], a cultural 
evolution algorithm. 
 
Overall, ALPINE compares well for all test cases. In particular, a 
new global optima has been found by ALPINE for the 10x7 
instance. However, only a sub-optimal solution can be obtained 
for the 15x10 instance. This is due to the deficiency of PB-ILPIA 
to produce good solutions with increasing problem size (discussed 
in Section 5), hence O2S becomes less effective in finding the 
global optima. Nevertheless a near optimal solution is obtained 
with a small deviation. It is however worth noting that ALPINE is 
highly efficient for medium-sized problems and below, where an 
optimal solution can be obtained by simply applying CDR-
PopGen with PB-ILPIA and O2S, without the need for a global 
genetic search. 

8. CONCLUSION AND FUTURE WORK 
In this paper, we presented a hybrid evolutionary algorithm called 
ALPINE for globalized niche-based evolution with localized 
Simplex search. It combines favorable machine assignments by 
CDR-PopGen [5], near-optimal operation order derived by PB-
ILPIA, improvement of the latter with randomized O2S and 
removal of local optima through the parallelism of GA. While 
each feature of ALPINE is insufficient alone to locate the global 
optima, a hybrid of the above methods demonstrates synergism.  
Experimental results on Kacem’s benchmarks problems using our 
hybrid have shown that ALPINE outperforms many existing 
hybrid techniques and is on par with GENACE, a cultural 

Table 2. Proportional 
Improvement with O2S 

Table 3. Comparison of 
best makespans  

 Without 
CDR CDR   GENACE ALPINE 

4x5 0.154 0.009  4x5 11 11 

8x8 0.190 0.202  8x8 16 14 

10x7 0.155 0.207  10x7 13 11 

10x10 0.184 0.183  10x10 9 8 

 Table 1. Performance of Combinatorial Search Methods  
 4x5 8x8 10x7 10x10 

 Mmin Mavg Sdev Mmin Mavg Sdev Mmin Mavg Sdev Mmin Mavg Sdev 

PB-ILPIA 18 36.97 19.07 36 60.66 11.29 36 72.80 31.85 32 51.54 11.6
4PB-ILPIA+O2S 15 31.81 18.84 34 48.59 9.34 28 62.57 32.20 26 41.55 9.22 

CDR,PB-ILPIA 11 12.02 0.86 17 23.34 4.09 13 18.94 3.46 8 10.59 1.02 

CDR,PB-ILPIA+O2S 11 11.90 0.59 14 18.29 2.05 11 14.71 1.78 8 8.58 0.81 

 CDR: Initialization by Composite Dispatch Rule, O2S: Operation Order Search 
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evolution algorithm. A new global optima for the 10x7 FJSP has 
also been found. 
 
The proposed O2S used in this paper consists of a blind random 
search. Further investigation can be done to improve the operation 
order by determining the bottleneck machines or jobs. Larger 
problems can be tackled by dividing them into smaller problems, 
where the start times of the subproblems can be easily added as a 
constraint. Breaking the problem into suitable sizes allows our 
hybrid method to operate efficiently. A clear bottleneck in the 
algorithm to tackle large problems is the Simplex method. While 
it provides good solutions for small problems, a more efficient 
alternative may be needed for larger operational orders. 
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 Table 4. Results of comparison of efficiency in locating global optima 
GENACE  ALPINE  

Mbest Mavg Rs Gavg  Mbest Mavg Rs Gavg 
8 x 8 14 14.50 60 45.17  14 14 100 0.10 
10x7 12 13.80 0 0.00  11 11.3 70 6.71 

  Gavg :  Average generations to reach optimum    Rs  :  Success rate of obtaining optimum(%) 

  Mavg:  Average makespan obtained              Mbest:  Best makespan obtained 

 Table 5. Results of comparison with benchmark problems 
 Type Temporal/D Classic GA By Localization AL+CGA FL+EA PSO+SA GENACE ALPINE 

4x5 T - - - - 16 - 11 11 
8x8 P 19 16 16 15 - 15 14 14 
10x7 T - - - - 15 - 12 11 
10x10 T 16 7 8 7 7 7 7 7 
15x10 T - - - 23 23 12 12 13 

  Type : Total (T) or Partial (P) flexibility. 
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