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ABSTRACT
We describe a population-based search algorithm for cost
minimization of multicast routing. The algorithm utilizes
the partially mixed crossover operation (PMX) and a land-
scape analysis in a pre-processing step. The aim of the land-
scape analysis is to estimate the depth Γ of the deepest local
minima in the landscape generated by the routing tasks and
the objective function. The analysis employs simulated an-
nealing with a logarithmic cooling schedule (LSA). The local
search performs alternating sequences of descending and as-
cending steps for each individual of the population, where
the length of a sequence with uniform direction is controlled
by the estimated value of Γ. We present results from com-
putational experiments on a synthetic routing tasks, and we
provide experimental evidence that our genetic local search
procedure, that combines LSA and PMX, performs better
than algorithms using either LSA or PMX only.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving and Search

General Terms
Algorithms
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1. INTRODUCTION
The problem of minimizing the tree costs of single requests

under the constraint that all path capacities are within a
user-specified capacity bound, i.e. the requests are executed
simultaneously, is referred to as the capacity constrained
multicast routing problem (CCMRP) [4].

The CCMRP can be formalised as a constrained Steiner
tree problem, which is known to be NP-complete. We note
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that in applications like video conferencing, media broad-
casting, and distance-learning the routing procedure is up-
dated only from time to time, e.g. when new customers reg-
ister to use one of the services. In such cases, off-line rout-
ing algorithms are an appropriate way to solve the routing
problem. Since we are dealing with an NP-complete prob-
lem, local search methods are a natural choice to approach
the problem.

We propose a genetic local search algorithm to solve mul-
ticast routing problems. The general structure of the algo-
rithm follows the approach presented by Merz and Freisleben
[7]: a classical local search is executed for each individual
of a population and combined with a crossover operation,
where a key element constitutes a thorough analysis of the
underlying landscape.

2. LSA PRE-PROCESSING
We employ the following formal definition of multicast

routing: Given a graph G = (V, E) that represents a com-
munication network with node set V and edges E, we de-
fine two non-negative weight functions Co : E → � and
Ca : E → �, where Co is the cost function and Ca is the
capacity function on E, respectively.

Each of the point-to-multipoint requests has a source node
s ∈ V and a set of destination nodes D ⊆ V . We define a
multicast request R by setting
R = [vs ⇒ (v1, v2, ...., vn); C], where
vs = the source node of R;
D = {v1, ...., vn} = the destination nodes;
C = the capacity required by each vs ⇒ vi.
The multicast problem P is then defined by P = [G;Co;
Ca; R1, ..., Rn].

In a pre-processing step, we utilize simulated annealing
[1] for the analysis of multicast routing. The configuration
space consists of all feasible solutions for a given multicast
problem P = [G; Co;Ca; R1, ..., Rn]:

M=
{
S|S =[Ri1 , ..., Rin ]; Ri1 , ..., Rin are KMB-routed

}
. (1)

By NS we denote the neighbourhood of S, and Z(S) de-
notes the underlying objective function. Given S ∈ M by
S = [Ri1 , ..., Rin ], the neighbourhood NS includes S itself
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and is defined by the following procedure:
(1) Two integers a and b, 1 ≤ a < b ≤ n, are randomly cho-
sen, and the order of all requests from number ia to number
ib is reversed; a new potential configuration S′ is generated.
(2) The potential configuration S′ is validated for feasibility,
i.e. we try to simultaneously schedule all the requests from
Rib upwards by using an implementation of the KMB algo-
rithm [6]. If a conflict occurs, a new pair (a, b) is generated.
(3) If S′ indeed belongs to M, the objective function Z(S)
is calculated.

The objective function represents a combined measure of
transmission costs and capacity constraints: let T (R) denote
the set of edges of the tree associated with the request R
from configuration S ∈ M. We first define W (R) := C ·∑

e∈T (R) Co(e). The value of the objective function Z(S),

S ∈ M, is then simply given by Z(S) :=
∑

R from S W (R).
We consider a special type of simulated annealing that

is based on Hajek’s theorem [5] for the cooling schedule
c(k) = Γ/ ln(k + 2), k = 0, 1, ...: if Fmin denotes the set
of optimum solutions and af (k) is the probability to be in
f after k steps, the asymptotic convergence

∑
f∈Fmin

af (k)

−→
k→∞1 of logarithmic simulated annealing (LSA) is guaran-

teed if and only if Γ is lower bounded by the maximum value
of the minimum escape height from local minima.

In our approach, the landscape analysis basically esti-
mates Γ. For a pre-defined number of transitions T , we
proceed as follows in order to find an estimation of Γ: first,
the procedure tries to estimate the intermediate increase
Gest of the objective function between two successive im-
provements of the best value Z(S) found so far. Then, we
establish a conjecture about Γest that is based on Gest. The
initial estimate is from two randomly generated initial solu-
tions: G0

est :=|Z(S1
0) − Z(S2

0) |.
The LSA algorithm has been implemented in Java. The

underlying graphs are the instances steinb10, steinb11, and
steinb18 from the OR library [3] (here, we report results
for steinb18 only). The graphs have 75 − 100 nodes and
150 − 200 edges. Each edge was randomly assigned a cost
value Co(e) ∈ {1, 2, ..., 10}; the capacity of edges was set
by Ca(e) = 12. For the steinb-instances, 20 requests were
generated randomly. From the 20 requests, we derived 12
multicast routing problems Pi, with Pi defined by {R1, R2,
..., Ri}, i = 9, ..., 20. For each Pi, we performed 12 com-
putational experiments: for each of the two values of T =
104, 2 ·104 the experiments were executed for 6 different val-
ues Γ := Gest/c for c = 1, 2, 4, 8, 16, 20, 32. Based on our
computational experiments, we established the conjecture:

Γest ≈ Gest/10. (2)

3. GENETIC LOCAL SEARCH FOR
MULTICAST ROUTING

Over the past few years, genetic local search has been
investigated in the context of a variety of combinatorial op-
timisation problems; cf. [7] and the literature therein. The
basic idea is relatively simple: a (quasi-)deterministic local
search with continuous improvements of the objective func-
tion is executed for all individuals of a population; if the
individual runs are stuck in local minima, a crossover oper-
ation is applied in order to leave local minima.

In our heuristic, we employ such a “modest random” pro-
cedure: if after L = 50 unsuccessful trials no neighbour with
a better value of the objective function has been found, the

current solution S is declared to be a potential local mini-
mum, and the procedure switches from downward steps to a
sequence of strictly upward steps with random selection in
neighbourhoods. The upward steps are executed until either
an S′ with Z(S′) ≥ Z(S) + Γest has been reached, or after
L unsuccessful trials no neighbour with a larger value of the
objective function has been found. In either of the two cases,
the procedure switches back to strictly downward steps with
random selection in neighbourhoods. Thus, for each individ-
ual, a random walk through the landscape is executed, and
after K steps, the walk is interrupted by the partially mixed
crossover (PMX) operation [2, 8] and “roulette wheel” selec-
tion under the elitist model is applied in order to generate
a new population of the same size.

Apart from Γest, L and K, the parameters are M = popu-
lation size and N = total number of PMX applications to a
single element. The parameters were chosen in such a way
that M ·K ·N is in the region of T from our experiments with
LSA (Section 2): M = 7, 10, K = 70, 80, and N = 20, 25.

In Table 1, the numbers in bold face indicate improve-
ments in comparison to the results obtained by LSA; cf.
Section 2. The genetic local search with LSA pre-processing
performs better on larger multicast routing instances com-
pared to applications of either LSA or PMX only, especially
for a total number of operations M ·K ·N that is equivalent
to T = 2 · 104. For most of the instances, LSA produces
better results than the use of PMX crossover only.

Table 1: Zbest (GLS: elitist PMX, steinb18).
Size of N =20, K =70, N =25, K =80,

Pi L=50, M =7 L=50, M =10
GLS GLS PMX only

15 2216 2204 2218
16 2379 2375 2385
17 2523 2500 2539
18 2646 2634 2653
19 2736 2723 2749
20 2967 2947 2993
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