
An Efficient Approach to Unbounded Bi-Objective
Archives – Introducing the Mak_Tree Algorithm

Adam Berry
University of Tasmania
School of Computing

Private Bag 100, Hobart, Tasmania, Australia

Adam.Berry@utas.edu.au

Peter Vamplew
University of Ballarat

School of IT and Mathematical Sciences
PO Box 663, Ballarat, Victoria, Australia

p.vamplew@ballarat.edu.au

ABSTRACT
Given the prominence of elite archiving in contemporary
multiobjective optimisation research and the limitations inherent
in bounded population sizes, it is unusual that the vast majority of
popular techniques aggressively truncate the capacity of archives
and are based upon inefficient list representations. By forming
better data structures and algorithms for the storage of archival
members, the need for truncation is reduced and unbounded elite
sets become viable. While work does exist in this vein, it is
always of a general nature and significant improvements can be
made in the bi-objective case. As such, this paper elucidates the
unique properties of two-dimensional non-dominated sets and
capitalises on these notions to develop the highly efficient and
specialised bi-objective Mak_Tree algorithm. Theoretical results
indicate that the specialised approach is preferable to pre-existing
general techniques, while empirical analysis illustrates improved
performance over both unbounded and bounded list techniques.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; I.2.m [Artificial Intelligence]:
Miscellaneous.

General Terms
Algorithms and Performance.

Keywords
Multiobjective, multi-criteria, archives, data structures, red-black
trees, balanced trees, bi-objective, dual-objective.

1. INTRODUCTION
Contemporary multiobjective optimisation research holds that the
use of an elite archive of impressive solutions can fundamentally
increase the performance of a given algorithm (see, for example,
[12]). It is for this reason that the second generation of
evolutionary optimisation techniques – that is, those that have
followed the pioneering works of Schaffer [10], Srinivas and Deb
[11], and others – are typically reliant on an active store of
apparently good solutions. Most notable amongst this burgeoning
array of methodologies are PAES [7], SPEA [14], SPEA2 [13],
NSGA2 [3] and PESA [8]: all of which are reliant on archive-

based elitism to drive solutions towards ever-better
approximations of the Pareto optimal front.
Since these approaches implicitly (and often explicitly: see [7])
use a naïve list representation for members of the archive [6], the
cost of searching and maintaining large or unbounded stores is
prohibitive and must therefore be avoided. Indeed, the worst case
complexity while using a list data structure is O(km) per archival
insertion, where k is the number of objectives and m is the size of
the archive. Given such inefficiency, efforts to reduce the size of
m are hardly surprising.
Unfortunately, the artificial truncation of elite stores can lead to a
variety of problems that result in performance degradation (as
illustrated in Section 3). Chief amongst these issues is the potential
for fronts to oscillate or recede due to the removal of members
from the archive. The truncation operation also complicates
crowding estimation and may lead to poor frontal exploration.
Given the problems which stem from the simple list representation
of the archive and the mechanisms required to curb the
complexity burden it carries, it is unusual that more work has not
been directed at improving or finding better suited data structures
or algorithms. Only Fieldsend et al. [4], Mostaghin et al. [9] and
Jensen [6] have offered suitable alternatives via augmented tree
structures. While their approaches each yield efficiency gains,
significant improvements can be made in the bi-objective case.
As such, this paper proposes a new specialised bi-objective
approach – the Mak_Tree algorithm – that capitalises on the
unique properties of two-dimensional non-dominated sets to
produce an unbounded archiving approach that is both highly
efficient and low in storage space.

2. MULTIOBJECTIVE DEFINITIONS
2.1 Dominance
Solution Sa strongly dominates, and is thus better than, solution Sb
(and conversely, Sb is strictly dominated, or bettered, by Sa) for a
minimising multiobjective problem f with k objectives iff:
 1.. 1..() ()<k a k bf S f S (1)

where weak dominance/domination is achieved by loosening the
condition to allow equality between solutions1.

2.2 Incomparability
Two solutions are incomparable if neither of the solutions weakly
dominates the other:
 , {1,.. } : () () and () ()∃ ∈ < >i a i b j a j bi j k f S f S f S f S (2)

1 Note that all Pareto-based relationships described herein refer to

performance – rather than genotypic – characteristics of solutions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

619

2.3 Equality
A solution is considered to be equal to another solution, in this
context at least, if they produce the same results for all objectives
in the given problem. This is typically known as objective-space
equality and does not necessarily infer that the solutions are
composed of identical decision variables.

2.4 Pareto Fronts
Note that unlike single-objective optimisation, where a strict
ordering of fitness can be observed, multiobjective problems
feature only a partial order and thus no single ideal or optimal
solution typically exists. Instead, the explicit goal of all
multiobjective optimisers is to find a good approximation of the
Pareto optimal front – that is, the set of solutions that weakly
dominate any other possible proposal. If a solution is non-
dominated with respect to only the proposals produced thus far, it
is considered locally optimal and thus forms part of the local
optimal front.
While the quality of a produced-front is difficult to quantify, it is
generally accepted that the practical ideal is a set of solutions that
produce result vectors that are evenly distributed, well-spread and
close to the true optimal front in objective-space.

2.5 Special Properties of Bi-Objective Fronts
Non-dominated fronts take on a series of special properties when
the number of objectives is strictly two. Since these properties
only exist in bi-objective domains, these problems should be
considered as a special subset of the general multiobjective case.

2.5.1 Property One: Ordering
If solutions are ordered according to their ascending value
(decreasing performance) on the first objective, then it is always
the case that the same order represents descending value
(increasing performance) on the second objective2. This can be
verified by considering any two solutions in a non-dominated bi-
objective set: if solution Sa outperforms solution Sb on objective
one, it follows that for Sb to be non-dominated it must outperform
Sa on objective two.
Interestingly, this property means that the extent of any bi-
objective non-dominated front can be found by simply retrieving
the head and tail of the ordered list. Similarly, the nearest
neighbour of a solution in objective-space will always be either its
predecessor or successor in the list.

2.5.2 Property Two: Objective Result Variance
Since any two non-dominated solutions may only be
incomparable or equal with each other, an interesting property
emerges in the two-dimensional case. Assuming that equal
solutions may be stored as a single entity in the front, all such
entities will contain completely unique values across a given
objective. This is not true of the generic multiobjective problem,
as solutions sharing a single objective result may still be
incomparable.

2.5.3 Property Three: Dominated Sets
Consider a list of solutions ordered on the performance of an
arbitrarily chosen objective: if solutions at index i and j (where

2 Without loss of generality, this type of ordering is assumed for

all ordered bi-objective lists discussed herein.

j≥i) are both dominated by some incoming proposal, then all
solutions with an index between i and j (inclusive) are also
dominated (referred to here as a dominated set). If i is the lowest
dominated index and j is the highest, then the dominated set
represents every dominated solution in the list. As an example,
consider Figure 1. If a solution with results equaling (5,-2) is
entered and it dominates solutions at index i and j, then the
shaded region must be dominated. Since i and j are also the
lowest and highest indexes of dominated solutions, the shaded
region represents the complete dominated set.
Verifying this property is straight-forward. Let Sd be the
dominating solution such that:
 () () ()1 2 1 2 1 2

() , ; () , ; and () ,= = =i i i j j j d d df S r r f S r r f S r r (3)

then, if property two holds, it is always the case that:

1 1 1 2 2 2
 and ≤ < ≤ <d i j d j ir r r r r r (4)

Capitalising on properties one and two, all solutions with index
w>i will be worse on objective one than Sd :
 { }

1 1 1
1,..,> ≥ ∀ ∈ +w i dr r r w i m (5)

and, by property one, solutions with index w<j must be worse on
objective two:
 { }

2 2 2
1,.., 1> ≥ ∀ ∈ −w j dr r r w j (6)

Thus, solutions with indexes in the range [i, j] are dominated by Sd.

2.5.4 Property Four: Non-Dominance
If any solution Sa is not dominated by its in-order predecessor Sp,
then Sa is non-dominated with respect to the entire ordered list. If
Sa has no predecessor, then the solution is the head of the ordered
list and represents an extreme point in objective space – it too,
will be non-dominated with respect to the set.
Again, the notion is easily verified. By the ordering property, it is
always the case that Sa cannot be dominated by any successor Ss,
since Ss will always be outperformed on the first objective. If Sp
does not dominate Sa then, by property one, the following holds:

2 2 2 21 0...−< < <a p pS S S S (7)

and Sa cannot be dominated by any preceding element in the list.
Thus, Sa must be non-dominated with respect to the entire list.

2.5.5 Property Five: Dominance
A simple extension of property four is that if solution Sa is
dominated by any member of the list, it must also be dominated
by its predecessor. This property is proven by considering some
solution Sd that dominates Sa. Since the predecessor Sp is
preferable to Sa on objective one and since Sp is guaranteed to be
better on objective two than Sd (recalling that Sd may not be a
successor of Sa, and by applying property one), Sp must also
dominate Sa.

3. ELITIST ARCHIVING
The truncated elitist archive typical of contemporary algorithms is
simply a regularly updated approximation of the prevailing local
optimal front. The optimisation algorithm capitalises on these
locally optimal solutions to bias exploration around previously

(0,20) (10,10) (20,5) (25,2) (31,0) (40,-5)
 i j

Figure 1 – An Ordered Bi-Objective List
The shaded region is dominated by incoming vector (5,-2).

620

beneficial areas of the search space.
While the results achieved by applying such online storage to
multiobjective algorithms are significant, there exist enough
limitations and drawbacks in the truncated approach to indicate
that unbounded storage is preferable. Specifically, in trying to
form a good approximation of the locally optimal front, truncated
archives may suffer from frontal degradation, inaccurate crowding
measures and the loss of expensive regions of objective space.

3.1 Frontal Degradation
Given that a local optimal front will be composed of solutions that
are strictly non-dominated by any other previously generated
proposal, it is reasonable to expect all members of an elite archive
to meet the same requirements (even if they form only a subset of
the true front). However, the truncation operation means that the
quality of the archive may degrade over time – invalidating the
optimality requirement by allowing weak solutions into the
archive.
The potential for decreasing archive quality is best exemplified
via a diagram. Consider the extremely simple three-member elite
archive illustrated in Figure 2a: if solution b is removed due to a
truncation operation, the map of dominated space becomes
inaccurate – the highlighted region in Figure 2b should be
included, but is not. The effect is that a poor solution which was
dominated by b, but is otherwise incomparable with the remaining
members of the archive, will be incorrectly accepted as an elite
member.
The effect of degrading fronts can be extremely detrimental to the
performance of any given algorithm. In the extreme case,
frequent truncation of archives may lead to a retreating front –
where the archive becomes a progressively worse approximation
of the Pareto optimal set. The more likely case however, and one
which Fieldsend et al. have verified empirically [4], is frontal
oscillation – where good solutions are truncated from the archive
and then rediscovered as part of the algorithm’s search procedure.
Obviously, the time spent rediscovering good ideas is better spent
investigating less populated areas of the front and is costly to both
the efficiency and efficacy of the search process.

3.2 Inaccurate Crowd Estimation
Given that one of the explicit aims in developing a good
approximation of the Pareto optimal front is achieving an evenly
distributed set of solutions, crowding estimation is very important
in directing the search towards areas of low result-density.
Unfortunately, truncation of archives can lead to misleading
density approximations, as crowding measures will be based on an
incomplete set of the true local optimal front. In Figure 3a it is
obvious that solutions a, b and c occupy the most densely
explored region of objective space, but the truncation of point b
from the archive leads to a uniform spacing of points that de-
emphasises the isolation of d (as illustrated in Figure 3b). The
danger that exists here is that solutions may be added and
subsequently truncated from the crowded region – worsening the
true distribution of points with little effect on the apparent
archive-based crowding of the same area.
It seems reasonable then, to apply crowding measures that
consider all solutions encountered throughout the run, rather than
just those stored locally in the archive. However, such an
approach is also open to problems – as illustrated in Figure 4. If
truncation is to be applied according to some global crowding
measure, the archive will lose solution a and become overly
concentrated around solution b. Such degeneration into locally
crowded arrangements not only diminishes the likelihood of
finding a richly distributed front efficiently (since the search will
become focused around a single area of objective space), but it
also permits increased frontal oscillation.

3.3 Loss of Expensive Regions
Under the presence of discontinuous fronts, isolated regions,
constraints, deception and bias, certain solutions can reasonably
be thought of as being more valuable to the search process than
others. The loss of a highly valuable solution that resides isolated
in a disconnected and sparsely populated portion of objective
space, for instance, would severely inhibit the capacity of the
algorithm to search the region in which it resides. Indeed, the
effect is even more pronounced than oscillation, as simply
rediscovering the lost solution may be extremely difficult.
The principle here is an important one – the more complex the
objective space becomes, the more important the size of the
archive. Specifically, archival size acts as an artificially enforced
threshold on the number of distinct regions that can be explored
simultaneously by a search algorithm. Should the number of
distinct regions in objective space surpass the size of the archive,
the algorithm will either be confined to a subset of the objective
space or, more likely, suffer significant performance degradation
as the archive consistently cycles between available zones –
repetitively discarding solutions that may have been invaluable to
a balanced search.

0

3

6

9

12

0 3 6 9 12

Apparent ly Dominated

Now Apparent ly Not
Dominated

a

c

0

3

6

9

12

0 3 6 9 12

Dominateda

b

c

Figure 2 – Frontal Degradation in Objective Space
The loss of solution b from the archive means that the highlighted region

is incorrectly labelled as non-dominated.

Figure 3 – Poor Crowding Estimation in Objective-Space
The loss of solution b from the archive means that the resultant archive

appears evenly distributed.

0

3

6

9

12

0 3 6 9 12

a
b

c

d

0

3

6

9

12

0 3 6 9 12

a

c

d

0

3

6

9

12

0 3 6 9 12

Global
Crowding = 5

Global
Crowding = 4

a

b

Figure 4 – Inaccurate Global:Local Crowd Mappings
Solution a is in a globally crowded region of objective-space, but a locally

uncrowded zone. The loss of a would lead to excessive search pressure around b.

(a) (b)

(a) (b)

621

4. ELITE ARCHIVE DATA STRUCTURES
4.1 Quad-Trees
The first series of algorithms described specifically for unbounded
archiving are the three variants proposed by Mostaghim, Teich
and Tyagi [9]. All three approaches result in the storage of non-
dominated solutions in quad-trees and differ primarily in the way
deletion occurs. Still, the same general problems beset each
technique: deletion may require re-insertion, despite practical
improvements made in the Quad-Tree2 and Quad-Tree3
algorithms; and empirical evidence suggests that the approach is
more costly than a simple linear list for a large number of
evaluations. Indeed, on the relatively simple ZDT1 function
developed by Zitzler, Deb and Thiele [12], the variants are slower
on average than an unbounded list even after 400,000 evaluations.
Thus, the proposed quad-tree-based algorithms are ultimately of
limited practical worth (and will therefore not be discussed further
in this paper), but provided the impetus for similarly motivated
ideas to be explored.

4.2 Dominated Trees
Improving significantly on the performance of the Quad-Tree
algorithms, Fieldsend, Everson and Singh [4] introduce both a
new selection mechanism for unbounded archives – namely,
Partitioned Quasi-Random Selection (PQRS) – and efficient data
structures for the storage and maintenance of archival solution
sets – specifically, Dominated and Non-Dominated Trees.
Maintenance of the archive occurs in a single data structure – be it
either the Dominated or Non-Dominated Tree. Both alternatives
are similarly composed of approximately jm/kk unique composite
points: combinations of the objective-results from multiple
independent solutions (constituents). Importantly, no composite
point is ever incomparable with another, and so the weakly-
dominates relation can impose a complete order on any set of
points – thus facilitating the use of ordered data structures, such
as balanced binary trees.
Empirically, Fieldsend et al. demonstrate the efficiency, and
efficacy, of using the proposed mechanisms, with particularly
impressive timing results when compared to the performance of
an unbounded linear list. However, the approach is not without
its limitations. In particular, the selected Dominated Tree
structure may sporadically require complete re-building in order
to maintain a suitable approximation of the optimal number of
composite points (jm/kk). Moreover, to determine non-dominance
of a solution with respect to the archive (which must occur on
every attempted archival insertion), the constituents of composite
points that are incomparable with the applicant solution must each
be checked for dominance in-turn. The same constituent
verifications must also be made for both the weakest composite
point to dominate the solution (Cw) and all composites that share
an axis with Cw. The effect is that the logarithmic nature of tree-
insertion is offset by the need for periodic linear searches of
solution sub-sets. While Fieldsend et al. correctly note that the
algorithm is unlikely to degenerate into a truly linear search of the
entire population of solutions, the over-head it induces is certainly
significant enough to degrade performance.

4.3 Orthogonal Range Searching
While much of Jensen’s [6] thorough paper regarding the
application of data structures to multiobjective optimisation

focuses on improving the run-time performance of non-dominated
sorting, it also briefly addresses archive maintenance. In
particular, the paper suggests the use of fractional cascading and
Dynamic Range Trees to enable orthogonal (rectangular) range
queries for the identification of dominated or dominating
solutions. Providing efficient run time complexities, the approach
is of significant merit, though the use of Dynamic Range Trees
will incur a non-linear storage complexity. Moreover, since it was
not the focus of his work, Jensen does not implement or test the
data structure, meaning that empirical performance analysis is
presently unavailable. Thus, expansion upon this original
proposal, particularly on problems of low dimensionality, lies as
an important area of future work.

5. INTRODUCING THE MAK_TREE
All algorithms proposed thus far are, quite reasonably, designed
for generic k-objective non-dominated sets. However, as
introduced in Section 2.5, the bi-objective case carries a number
of unique properties that may be manipulated to form more
efficient specialised data structures and storage algorithms. The
Mak_Tree algorithm represents such an approach, delivering a
highly efficient technique that is specifically tailored to the needs
of bi-objective optimisation.

5.1 The Mak_Tree Data Structure
The Mak_Tree is a generic label for any binary tree structure that
is dynamic, self-balancing and ordered (arbitrarily) by
performance on the first objective. A node in any Mak_Tree
represents a collection of solutions with identical objective scores
(to enable property two) and the tree, as a whole, is strictly non-
dominated. As such, the tree itself is not particularly interesting
and can take on a wide variety of forms, from AVL structures to
the Red-Black trees [1,5] used herein (see Figure 6 for a Red-
Black representation of the data in Figure 1). It is the Mak_Tree
algorithms, which build upon the unique properties of bi-
objective sets and simple binary search trees, that are interesting
and will form the focus of this work.
Still, before moving on, it is worthwhile noting that the structure
facilitates the efficient discovery of a number of interesting frontal
properties. Since the extent of a front is merely the head and tail
of the sorted list (see Section 2.5.1), the Mak_Tree can locate
such solutions in O(log m). Additional information, such as the
least/most occupied node, or the oldest/youngest stored solution,
can also be maintained via branch annotations; while the structure
can be easily extended to support PAES-like cells.

5.2 Updating the Mak_Trees
It is obvious that for a Mak_Tree to remain non-dominated, it
must only accept non-dominated solutions into the tree and prune
any solution that becomes dominated due to an insertion. The
basic algorithm to achieve such behaviour is outlined in
Algorithm 1, where solution S is inserted into archive A. To
further illustrate the behaviour of the update operations
introduced in the algorithm, it is beneficial to consider two
general concepts: verifying non-dominance and locating
dominated nodes.

Figure 6 – An Example Mak_Tree (Via a Red-Black Structure)

25,2
31,0 10,10

0,20 20,5 40,-5

622

5.2.1.1 Verifying Non-Dominance
In order for a proposal to be inserted into the archive, it must not
be dominated by any other stored solution. Considering the
procedure adopted in Algorithm 1, it is not necessarily intuitive
how this is achieved. However, recall that a unique property of
bi-objective non-dominated fronts is that if a solution is non-
dominated with respect to its predecessor, then it is also non-
dominated with respect to the remainder of the front (property
four, Section 2.5.4). Since insertion mirrors simple binary-tree
insertion, and this means that the proposal will always be
compared with its predecessor (unless it is dominated before this
point or no such predecessor exists), any successfully added
solution is guaranteed to be non-dominated.

5.2.1.2 Locating Dominated Nodes
Central to the algorithm for locating dominated nodes is the
concept of dominated sets introduced in property three (Section
2.5.3) – that is, if a solution dominates nodes at index i and index
j, it must also dominate the set of nodes with indices between i
and j. Since this essentially represents a range-query, it is useful
to build on the range-related properties inherent in simple binary
search trees. Specifically, it is always the case that if a node y is
the right-child of x, then all left-descendents of y will have in-
order indices between the indexes of x and y. This property also
holds if y is a left-child of x and all right-descendents of y are
considered. The effect is that once an initial dominated node has
been identified, any dominated node to its right is guaranteed to
have a dominated left sub-tree, while any dominated node to its
left must have a dominated right sub-tree. As an example,
consider Figure 6; if both (25,2) and (10,10) are dominated, then
the (20,5) sub-tree must also be completely dominated.
With this in mind, locating dominated nodes becomes relatively
straight-forward and particularly efficient in the Mak_Tree
algorithm. After the discovery of the first dominated node B at
index b, the location of all dominated nodes with indices between
b+1 and j requires at most O(log m) comparisons. Specifically,
the search proceeds as follows (starting at the right-child of B): if
the current node is dominated label it and the left sub-tree as
dominated and search the right sub-tree; otherwise, everything to
the right of the current node is non-dominated, so move left. The
discovery of all nodes with indices between i and b-1 requires
little modification to the standard insertion procedure – on
dominance, the search progresses left as usual, with the node and
right sub-tree marked as being completely dominated.
Once discovered, the dominated nodes must be removed from the
tree (lines 20–22 in Algorithm 1). It is important to note that
dominated sub-trees and individual dominated nodes are handled
independently during this deletion procedure. As evidenced in
Section 6.1.2.2, the deletion of large sub-trees, in particular, can
afford the Mak_Tree algorithm an impressive performance gain.

6. RESULTS
6.1 Complexity Analysis
When considering the performance of a given data structure and
algorithm, both time and space complexity are significant. While
emphasis is typically placed on efficiency, high space complexity
can induce tighter limits on the feasible capacity of a given
structure. Since the very nature of unbounded archives is to store
particularly large solution sets, it is important to reduce such limits.

Algorithm 1 – Insertion into the Mak_Tree

Inputs:

1 2(,)=S s s The inserted solution, where s1 and s2 denote
objective scores.

1: if ()=∅A If the tree is empty
2: : { }=A S add the solution to the tree.
3: else
4: : false; _ : {}= =rejected del nodes

5: _ : {}; : null; := = = Adel subs B node root Start the search at the root.

6: ()while (leaf) and (true)≠ ≠node rejected

7: if ()≺node S If the current node dominates S
8: true=rejected then the algorithm ends.
9: else if ()≺S node If the solution dominates the

10:
handle_dominance (, , ,

_ , _)
S node B

del nodes del subs

current node then call the
handle_dominance helper.

12: : left_or_insert(,)=node node S Move left, or insert if at leaf.
13: else if ()=S node If the solution and node share
14: := +node node s objective scores, add s to node
15: true=rejected and end the algorithm.
16: 1 1else if (s)< node If the objective-one score of S
17: : left_or_insert(,)=node node S is less than that of node, move
18: else left or insert if node is a leaf.
19: : right_or_insert(,)=node node S Otherwise, move/insert right.
20: if ((null) and (false))≠ =B rejected If the solution was dominating
21: delete_all_sub_trees(_)del subs then remove all dominated
22: delete_all_nodes(_)del nodes nodes and sub-trees.

Algorithm 2 – Handle_Dominance Helper

Inputs:
S The inserted solution.
node The dominated node being examined.
B The first found dominated node.

_del nodes

The set of individual nodes that are dominated by S.
_del subs The set of sub-trees that are completely dominated by S.

1: _ : _= +del nodes del nodes node

2: if (null)=B If B has not yet been found.
3: :=B node
4: : right ()=current B
5: while(null)≠current

6: 2 2if ()≤S current If the solution dominates the

7: _ : _= +del nodes del nodes current current node, both the node and
8: if (left () null)≠current its left sub-tree (if it exists)
9: _ : _ left ()= +del subs del subs current should be deleted.

10: : right ()=current current Move right.
11: else The solution can only dominate
12: : left ()=current current nodes to the left, so move left.
13: else if (right() null)≠node If B has been found, all nodes
14: _ : _ right()= +del subs del subs node to the right must be dominated.

6.1.1 Space Complexity
The optimal space complexity for any unbounded archive is O(m),
as all solutions in the archival set must be accessible. Since the
Mak_Tree contains at most m nodes and the simple nature of the
tree requires no repetition of nodes or solutions, the spatial
complexity of the Mak_Tree is optimal and equal to O(m).

623

The Dominated Tree structures achieve similarly optimal space
complexity, though it requires cleaning at appropriate thresholds
to ensure that such optimality holds.
Finally, the Dynamic Range Tree suggested by Jensen requires
O(m log m) space (see [2]) due to its two-level tree structure and
thus represents the most expensive storage option presented in the
literature thus far.

6.1.2 Run-Time Complexity
With respect to performance complexity, it is useful to consider
the insertion of two distinct types of solution: strictly non-
dominating – those that are dominated by or equal to some
component of the archive, or otherwise completely incomparable
– and dominating.

6.1.2.1 Insertion of Non-Dominating Solutions
As alluded to in Section 5.2.1.1, the Mak_Tree algorithm is
particularly efficient when inserting non-dominating solutions, as
the algorithm requires at most O(log m) dominance comparisons
during the simple binary navigation. Since insertion in Red-Black
Trees will only ever require at most O(log m) node re-colourings
and one rotation, the worst-case time cost for the insertion of any
non-dominating solution in the Mak_Tree is O(log m). Such
performance is optimal for any structure based on self-balancing
binary search trees.
The Dominated Tree structures achieve similar performance,
though the need for linear checking of composite constituents may
be costly. If the solution under consideration is dominated, then
performance is optimal and requires only O(log m) dominance
comparisons. However, the algorithm is sub-optimal under the
insertion of strictly incomparable solutions, with the burden of
checking c constituents for dominance resulting in a search cost of
O(log m + c). While not discussed explicitly in the source paper,
it also seems likely that verification of solution equality would
require the checking of constituents belonging to the composite
point sharing an axis with the solution – thus leading to sub-
optimal performance if the inserted solution already has an
equivalent stored. Additionally, note that these time complexities
only hold under suitable maintenance of the corresponding
Dominated Tree and assume that the need for cleaning is infrequent.
A query in the two-dimensional fractional cascading Dynamic
Range Tree will cost O(log m log(log m) + α), where α is the set
of solutions satisfying the range query (see [2] for succinct
summaries of Dynamic Range Tree behaviours and costs). For
any insertion, the algorithm will require at most two orthogonal
range queries – the first identifies those solutions that dominate
the proposal, while the second highlights archival members
dominated by the proposal. For a non-dominating solution, the
second query will always return the empty set, while the first
query need only return the first dominating node (since any α>0 is
enough to disqualify the incoming solution from inclusion).
Thus, the total query cost for identifying a non-dominating node
is O(log m log(log m)). Since the update cost of the structure is
also O(log m log(log m)), the total time cost for the insertion of a
non-dominating solution into the Dynamic Range Tree is also
O(log m log(log m)).

6.1.2.2 Insertion of Dominating Solutions
Handling dominating solutions is an inherently more expensive
proposition as it will also require both the identification of

dominated solutions and their subsequent removal. As discussed
in Section 5.2.1.2, all η dominated nodes can be efficiently
discovered with O(log m) dominance comparisons using the
Mak_Tree. If the naïve approach is taken and each of the η
dominated nodes are deleted in-turn, the final cost of identifying
and removing dominated nodes with the Mak_Tree is O(η log m).
However, given that the query may return dominated sub-trees, it
is useful to capitalise on sub-tree deletion in Red-Black Trees.
Specifically, for any sub-tree requiring deletion, the cost of
removing the sub-tree is O(log τ log m) rather than O(τ log m),
where τ is the size of the sub-tree. For small η the difference is
not particularly significant, but as η increases, so must the size or
number of sub-trees identified for deletion. The effect is
particularly evident in analysing the worst-case insertion, where
the number of dominated nodes tends towards the size of the tree3
(η ≈ m). In this case there will be approximately (2 log m) sub-
trees and (2 log m) separate individual nodes that require deletion.
The individual nodes will cost a total of O((log m)2) to remove
(though the amortised cost of this operation can be reduced if
individual deletion occurs after sub-tree deletion is completed).
The cost of deleting all sub-trees will be ((log m) x 2 x (1 + 2 + 3 +
... + log (m-1))) => O(log m (log m)2) = O((log m)3). Thus, the
total worst-case bound of identifying and removing dominated
nodes from a Mak_Tree is O((log m)3).
The Dynamic Range Tree can identify all η dominated solutions
using an orthogonal query that costs O(log m log (log m) + η).
Once discovered, the dominated solutions must then be removed
from the tree at a cost of O(η log m log (log m)). Thus, when
worst-case insertion occurs, the Dynamic Range Tree carries a
cost of O(m log m log (log m)).
To locate all η nodes for deletion, the Dominated Tree must
perform two binary searches and subsequently check every
constituent of dominated composite points. Thus, the cost of
locating all dominated nodes in the archive will be at least O(log
m + η) and, more generally, O(log m + η + δ), where δ is the
number of constituents belonging to dominated composite points.
To minimise this cost, Fieldsend et al. propose the use of the
alternative (though conceptually very similar) Non-Dominated
Tree structure which ensures that any dominated composite point
will feature only dominated constituents. While offering some
performance gain, constituents belonging to incomparable
composite points will still need to be verified. Thus, the cost of
locating dominated nodes using the Non-Dominated Tree variant
will be O(log m + µ), where µ is the number of incomparable
composite constituents that must be examined.
Upon the deletion of any solution, the corresponding Dominated
Tree structure must update all composite points for which the
solution was a constituent. If the solution represented the only
constituent of a composite point, the composite point will be
removed from the archive in O(log m) time (assuming use of a
self-balancing tree). If the solution was used in the most
dominating composite point then, in the two-dimensional case, the
remaining constituent of the composite represents the new
coordinates of the dominating point and the update can be
completed in constant time. Otherwise, the affected composite

3 Though it is actually trivial to handle complete domination: if

the left-most and right-most nodes in the tree are dominated,
simply have the inserted solution become the root.

624

point is updated through the re-use of a constituent of the
succeeding (dominated) composite – requiring an O(log m)
successor search. Thus, the cost of deleting a single solution from
any Dominated Tree is O(ν log m), where ν is the number of
composite points that the solution is a member of. Deletion of η
solutions will cost O((V+η) log m), where V is the total number of
extra composite points to which the η dominated solutions belong.
Note that some practical improvements can be made over this
performance if it is known when all constituents of a composite
point are dominated (as is the case for certain composite points in
Non-Dominated Trees). Given this knowledge, the completely
dominated composite point can be deleted from the tree without
the need for intermediary coordinate re-labeling. However, given
that the constituents of the dominated composites may also form
part of non-dominated composites elsewhere in the tree, the
overriding complexity costs remain much the same unless
frequent cleaning occurs. Better improvements are seen when
applying binary sub-tree deletion to remove sets of completely
dominated nodes, though the need to check and update
constituents in non-dominated composite points curb the
advantages afforded to such an approach when η is small. Still,
such techniques may hold merit and are certainly worth further
consideration in future work.

6.1.2.3 Summary of Run-Time Complexity
As evidenced in Table 1, the Mak_Tree provides superior time
complexities to those previously discussed in the literature. The
Dynamic Range Tree is generally more expensive due to its two
level structure – though the optimisation of the approach or the
application of one-dimensional range trees rests as an interesting
area of future work. The Dominated Tree structures proposed by
Fieldsend et al. provide similar outcomes to the Mak_Tree, but
only under the assumption that constituents contribute to a very
small number of points and that composite cleaning is infrequent.
Since composite cleaning requires the successive deletion of all
constituents from all composite points they contribute to
(excluding the least dominating node) or the complete rebuilding
of the tree, the cost of such a procedure is prohibitive in all but
sparse usage.

6.2 Empirical Analysis
While theoretical analysis of algorithms provides an important
grounding for the understanding of performance – particularly
with respect to worst-case bounds – empirical examinations can
elucidate behaviour under more realistic conditions. As such, the
performance of the Mak_Tree was evaluated over five distinct
test functions that each exhibit different problem features.
Specifically, the tests (T1–T5) are equivalent to the ZDT1–4 and
ZDT6 functions proposed by Zitzler et al. [12], though with a
linear shift of 0.35 applied to all decision variables involved in the
formation of the g function (for reasons to be explored in future

work). To place the performance of the Mak_Tree in context, the
behaviour of both the common linear-list approach and variously
sized truncated archives are also considered. In this work, the
truncated archives maintain a constantly ordered list of non-
dominated solutions, such that a complete set of nearest neighbour
calculations (which take place whenever the archive threshold is
breached) can occur in only O(m) time. Since solutions are
inserted into the archive individually in these tests, truncations
only ever require the removal of the single most crowded solution.

The results illustrated in Figures 7–12, indicate the average
cumulative time costs across twenty distinct solution sets on each
of the five problems. Each input set was produced by a single
standard, real-valued, NSGA-II run (with population size of 100,
crossover rate of 0.9 and mutation probability of 1/v – where v is
the number of decision variables). Note that while only problems
T4 and T5 are displayed graphically, the results illustrated are
indicative of those seen across the complete test suite.
The Mak_Tree algorithm outperforms the naïve list approach on
all examined problems. Note also that while the time-cost of the
list approach grows exponentially, the Mak_Tree has
approximately linear growth. This is particularly significant given
that results reported on the performance of the Dominated Tree
also indicate exponential growth.
Perhaps more significantly, the Mak_Tree also betters the
performance of the truncation techniques. While both approaches
yield approximately linear performance, the Mak_Tree is faster on
every examined problem. The result is an important one,
particularly considering the disadvantages inherent in truncation
(see Section 3) – if the Mak_Tree can outperform limited archives,
then the approach is applicable not just for particularly complex
problems, but for generic use in all bi-objective problem domains.

7. CONCLUSIONS AND FUTURE WORK
By capitalising on the unique properties of non-dominated bi-
objective sets, the Mak_Tree algorithm offers an efficient
approach for the storage, querying and updating of unbounded
two-dimensional elite archives. Big-oh results confirm that this
specialist approach achieves optimal run-time complexity with
respect to the insertion of strictly non-dominating solutions into a
tree structure. In the more complex case, where a dominating
solution is added to the archive, the Mak_Tree algorithm is
preferable to pre-existing techniques. Unlike more complex
structures, the Mak_Tree also achieves optimal space complexity
and should be relatively straight-forward to implement. With
respect to empirical results, the Mak_Tree is shown to outperform
both unbounded and tightly bound archives using the naïve,
though common, linear-list technique. Such promising results
suggest that unbounded archives, and the Mak_Tree in particular,
can be used in bi-objective problem domains with very little, if
any, additional cost. Since problems are known to exist with pre-

Approach Spatial
Complexity

Cost of Inserting Non-
Dominating Solutions

Cost of Searching for Dominated
Solutions

Cost of Deleting
Dominated Solutions

Mak_Tree O(m) O(log m) O(log m) O(η log m)♣

Dominated Tree O(m)† O(log m + c)‡♦ O(log m + η + δ) ♦♥ || O(log m + µ) ♦◊ O((V+η) log m) ♦♣

Dynamic Range Tree O(m log m) O(log m log(log m)) O(log m log (log m) + η) O(η log m log (log m))

Table 1 – Big-Oh Space and Performance Complexity for Examined Data Structures
† Assumes constituents do not contribute to a large number of composites. ‡ Can be reduced to O(log m) for insertion of dominated solutions. ♦Assumes

infrequent composite cleaning. ♣ Can be improved as η increases. ♥ Dominated Tree specific. ◊ Non-Dominated Tree specific.

625

existing truncation approaches, such low-cost inclusion of
unbounded archives is a significant step towards improving the
performance of bi-objective optimisation techniques.
While the results are promising, the empirical investigations
address only a small range of test functions and a more expansive
investigation is necessary. Additional avenues of future work
include the specialisation of pre-existing archiving techniques to
the two-dimensional case; the formation of optimisation
algorithms to capitalise on the properties of the Mak_Tree; and
the generalisation of the Mak_Tree to higher-dimensional
problems. Also note that while the Mak_Tree is designed for
unbounded elite archives, it also provides an appropriate structure
for complete population storage and truncated elite archives.

8. ACKNOWLEDGMENTS
The authors would like to thank Pauline Mak, Trixie Berry,
Michael Berry and the School of Computing at UTas.

9. REFERENCES
[1] Bayer, R., Symmetric Binary B-Trees: Data Structures and

Maintenance Algorithms. Acta Informatica, 1972.
[2] Chiang, Y.-J. and Tamassia, R., Dynamic Algorithms in

Computational Geometry (Revised Version). Proceedings of
IEEE Special Issue on Computational Geometry, 1992.

[3] Deb, K., Agrawal, S., Pratab, A., and Meyarivan, T. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-
Objective Optimization: NSGA-II. in Proceedings of PPSN
VI. 2000: Springer. LNCS No. 1917.

[4] Fieldsend, J.E., Everson, R.M., and Singh, S., Using
Unconstrained Elite Archives for Multiobjective
Optimization. IEEE Transactions on Evolutionary
Computation, 2003. 7(3): p. 305-323.

[5] Guibas, L.J. and Sedgewick, R., A Dichromatic Framework

for Balanced Trees. Proceedings of the 19th Annual
Symposium on Foundations of Computer Science, 1978.

[6] Jensen, M.T., Reducing the Run-Time Complexity of
Multiobjective EAs: The NSGA-II and Other Algorithms.
IEEE Transactions on Evolutionary Computation, 2003.
7(5): p. 503-515.

[7] Knowles, J.D. and Corne, D.W., Approximating the
Nondominated Front Using the Pareto Archived Evolution
Strategy. Evolutionary Computation, 2000. 8(2): p. 149-172.

[8] Knowles, J.D., Corne, D.W., and Oates, M.J. The Pareto-
Envelope based Selection Algorithm for Multiobjective
Optimization. in Proceedings of PPSN VI. 2000: Springer.

[9] Mostaghim, S., Teich, J., and Tyagi, A. Comparison of Data
Structures for Storing Pareto-sets in MOEAs. in Congress on
Evolutionary Computation. 2002: IEEE Service Center.

[10] Schaffer, J.D. Multiple Objective Optimization with Vector
Evaluated Genetic Algorithms. in Genetic Algorithms and
their Applications: Proceedings of the First International
Conference on Genetic Algorithms. 1985.

[11] Srinivas, N. and Deb, K., Multiobjective Optimization Using
Nondominated Sorting in Genetic Algorithms. Evolutionary
Computation, 1994. 2(3): p. 221-248.

[12] Zitzler, E., Deb, K., and Thiele, L., Comparison of
Multiobjective Evolutionary Algorithms: Empirical Results.
Evolutionary Computation, 2000. 8(2): p. 173-195.

[13] Zitzler, E., Laumanns, M., and Thiele, L. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. in EUROGEN
2001. p. 95-100.

[14] Zitzler, E. and Thiele, L., An Evolutionary Algorithm for
Multiobjective Optimization: The Strength Pareto Approach.
1998, Computer Engineering and Communication Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH).

Figures 7–12 – Empirical Results
For graphs, the x-axis represents the number of solutions processed (in thousands); the y-axis on the T4 and T5 graphs is the cumulative processing time in

seconds; the y-axis on the archive sizes graph is the total number of unique (non-equal) members stored in the archive for a given test function.

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Linked List

M ak_Tree
0

2

4

6

8

10

0 10 20 30 40 50 60 70 80 90 100

Truncated at 100

Truncated at 50

M ak_Tree

T4 T4

0
2
4
6
8

10
12
14

0 10 20 30 40 50 60 70 80 90 100

Linked List

M ak_Tree

0
1
2
3
4
5
6
7

0 10 20 30 40 50 60 70 80 90 100

Truncated at 100

Truncated at 50

M ak_Tree

T5 T5

 Average Total Time Costs Per Test
Algorithm T1 T2 T3 T4 T5
Mak_Tree 2.1 2.8 3.2 3.5 3.2
Linear List 56.7 48.1 54 196.2 12.9
Truncated (100) 8 7.5 7.9 8.5 6.7
Truncated (50) 3.7 5.5 6.4 6.7 5.9

0

2000

4000

6000

8000

0 10 20 30 40 50 60 70 80 90 100

Test 4

Test 5

Tests 1, 2 & 3

Archive Sizes

626

