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ABSTRACT 
Given the prominence of elite archiving in contemporary 
multiobjective optimisation research and the limitations inherent 
in bounded population sizes, it is unusual that the vast majority of 
popular techniques aggressively truncate the capacity of archives 
and are based upon inefficient list representations.  By forming 
better data structures and algorithms for the storage of archival 
members, the need for truncation is reduced and unbounded elite 
sets become viable.  While work does exist in this vein, it is 
always of a general nature and significant improvements can be 
made in the bi-objective case.  As such, this paper elucidates the 
unique properties of two-dimensional non-dominated sets and 
capitalises on these notions to develop the highly efficient and 
specialised bi-objective Mak_Tree algorithm.  Theoretical results 
indicate that the specialised approach is preferable to pre-existing 
general techniques, while empirical analysis illustrates improved 
performance over both unbounded and bounded list techniques. 

Categories and Subject Descriptors 
E.1 [Data Structures]: Trees; I.2.m [Artificial Intelligence]: 
Miscellaneous.  

General Terms 
Algorithms and Performance. 

Keywords 
Multiobjective, multi-criteria, archives, data structures, red-black 
trees, balanced trees, bi-objective, dual-objective. 

1. INTRODUCTION 
Contemporary multiobjective optimisation research holds that the 
use of an elite archive of impressive solutions can fundamentally 
increase the performance of a given algorithm (see, for example, 
[12]).  It is for this reason that the second generation of 
evolutionary optimisation techniques – that is, those that have 
followed the pioneering works of Schaffer [10], Srinivas and Deb 
[11], and others – are typically reliant on an active store of 
apparently good solutions.  Most notable amongst this burgeoning 
array of methodologies are PAES [7], SPEA [14], SPEA2 [13], 
NSGA2 [3] and PESA [8]: all of which are reliant on archive-

based elitism to drive solutions towards ever-better 
approximations of the Pareto optimal front. 
Since these approaches implicitly (and often explicitly: see [7]) 
use a naïve list representation for members of the archive [6], the 
cost of searching and maintaining large or unbounded stores is 
prohibitive and must therefore be avoided.  Indeed, the worst case 
complexity while using a list data structure is O(km) per archival 
insertion, where k is the number of objectives and m is the size of 
the archive.  Given such inefficiency, efforts to reduce the size of 
m are hardly surprising. 
Unfortunately, the artificial truncation of elite stores can lead to a 
variety of problems that result in performance degradation (as 
illustrated in Section 3).  Chief amongst these issues is the potential 
for fronts to oscillate or recede due to the removal of members 
from the archive.  The truncation operation also complicates 
crowding estimation and may lead to poor frontal exploration. 
Given the problems which stem from the simple list representation 
of the archive and the mechanisms required to curb the 
complexity burden it carries, it is unusual that more work has not 
been directed at improving or finding better suited data structures 
or algorithms.  Only Fieldsend et al. [4], Mostaghin et al. [9] and 
Jensen [6] have offered suitable alternatives via augmented tree 
structures.  While their approaches each yield efficiency gains, 
significant improvements can be made in the bi-objective case. 
As such, this paper proposes a new specialised bi-objective 
approach – the Mak_Tree algorithm – that capitalises on the 
unique properties of two-dimensional non-dominated sets to 
produce an unbounded archiving approach that is both highly 
efficient and low in storage space. 

2. MULTIOBJECTIVE DEFINITIONS 
2.1 Dominance 
Solution Sa strongly dominates, and is thus better than, solution Sb 
(and conversely, Sb is strictly dominated, or bettered, by Sa) for a 
minimising multiobjective problem f with k objectives iff: 
 1.. 1..( ) ( )<k a k bf S f S  (1)

where weak dominance/domination is achieved by loosening the 
condition to allow equality between solutions1. 

2.2 Incomparability 
Two solutions are incomparable if neither of the solutions weakly 
dominates the other: 
 , {1,.. } : ( ) ( ) and ( ) ( )∃ ∈ < >i a i b j a j bi j k f S f S f S f S  (2)

                                                                 
1  Note that all Pareto-based relationships described herein refer to 

performance – rather than genotypic – characteristics of solutions. 
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2.3 Equality 
A solution is considered to be equal to another solution, in this 
context at least, if they produce the same results for all objectives 
in the given problem.  This is typically known as objective-space 
equality and does not necessarily infer that the solutions are 
composed of identical decision variables. 

2.4 Pareto Fronts 
Note that unlike single-objective optimisation, where a strict 
ordering of fitness can be observed, multiobjective problems 
feature only a partial order and thus no single ideal or optimal 
solution typically exists.  Instead, the explicit goal of all 
multiobjective optimisers is to find a good approximation of the 
Pareto optimal front – that is, the set of solutions that weakly 
dominate any other possible proposal.  If a solution is non-
dominated with respect to only the proposals produced thus far, it 
is considered locally optimal and thus forms part of the local 
optimal front.   
While the quality of a produced-front is difficult to quantify, it is 
generally accepted that the practical ideal is a set of solutions that 
produce result vectors that are evenly distributed, well-spread and 
close to the true optimal front in objective-space. 

2.5 Special Properties of Bi-Objective Fronts 
Non-dominated fronts take on a series of special properties when 
the number of objectives is strictly two.  Since these properties 
only exist in bi-objective domains, these problems should be 
considered as a special subset of the general multiobjective case.   

2.5.1 Property One: Ordering 
If solutions are ordered according to their ascending value 
(decreasing performance) on the first objective, then it is always 
the case that the same order represents descending value 
(increasing performance) on the second objective2.  This can be 
verified by considering any two solutions in a non-dominated bi-
objective set: if solution Sa outperforms solution Sb on objective 
one, it follows that for Sb to be non-dominated it must outperform 
Sa on objective two.  
Interestingly, this property means that the extent of any bi-
objective non-dominated front can be found by simply retrieving 
the head and tail of the ordered list.  Similarly, the nearest 
neighbour of a solution in objective-space will always be either its 
predecessor or successor in the list. 

2.5.2 Property Two: Objective Result Variance 
Since any two non-dominated solutions may only be 
incomparable or equal with each other, an interesting property 
emerges in the two-dimensional case.  Assuming that equal 
solutions may be stored as a single entity in the front, all such 
entities will contain completely unique values across a given 
objective.  This is not true of the generic multiobjective problem, 
as solutions sharing a single objective result may still be 
incomparable. 

2.5.3 Property Three: Dominated Sets 
Consider a list of solutions ordered on the performance of an 
arbitrarily chosen objective: if solutions at index i and j (where  
                                                                 
2 Without loss of generality, this type of ordering is assumed for 

all ordered bi-objective lists discussed herein. 

 
 
 
 
 
 

j≥i) are both dominated by some incoming proposal, then all 
solutions with an index between i and j (inclusive) are also 
dominated (referred to here as a dominated set).  If i is the lowest 
dominated index and j is the highest, then the dominated set 
represents every dominated solution in the list.  As an example, 
consider Figure 1.  If a solution with results equaling (5,-2) is 
entered and it dominates solutions at index i and j, then the 
shaded region must be dominated.  Since i and j are also the 
lowest and highest indexes of dominated solutions, the shaded 
region represents the complete dominated set. 
Verifying this property is straight-forward.  Let Sd be the 
dominating solution such that: 
 ( ) ( ) ( )1 2 1 2 1 2

( ) , ; ( ) , ; and ( ) ,= = =i i i j j j d d df S r r f S r r f S r r  (3)

then, if property two holds, it is always the case that: 
 

1 1 1 2 2 2
 and ≤ < ≤ <d i j d j ir r r r r r  (4)

Capitalising on properties one and two, all solutions with index 
w>i will be worse on objective one than Sd : 
 { }

1 1 1
1,..,> ≥ ∀ ∈ +w i dr r r w i m  (5)

and, by property one, solutions with index w<j must be worse on 
objective two: 
 { }

2 2 2
1,.., 1> ≥ ∀ ∈ −w j dr r r w j  (6)

Thus, solutions with indexes in the range [i, j] are dominated by Sd. 

2.5.4   Property Four: Non-Dominance 
If any solution Sa is not dominated by its in-order predecessor Sp, 
then Sa is non-dominated with respect to the entire ordered list.  If 
Sa has no predecessor, then the solution is the head of the ordered 
list and represents an extreme point in objective space – it too, 
will be non-dominated with respect to the set.   
Again, the notion is easily verified.  By the ordering property, it is 
always the case that Sa cannot be dominated by any successor Ss, 
since Ss will always be outperformed on the first objective.  If Sp 
does not dominate Sa then, by property one, the following holds: 
 

2 2 2 21 0...−< < <a p pS S S S  (7)

and Sa cannot be dominated by any preceding element in the list.  
Thus, Sa must be non-dominated with respect to the entire list.  

2.5.5 Property Five: Dominance 
A simple extension of property four is that if solution Sa is 
dominated by any member of the list, it must also be dominated 
by its predecessor.  This property is proven by considering some 
solution Sd that dominates Sa.  Since the predecessor Sp is 
preferable to Sa on objective one and since Sp is guaranteed to be 
better on objective two than Sd (recalling that Sd may not be a 
successor of Sa, and by applying property one), Sp must also 
dominate Sa. 

3. ELITIST ARCHIVING 
The truncated elitist archive typical of contemporary algorithms is 
simply a regularly updated approximation of the prevailing local 
optimal front.  The optimisation algorithm capitalises on these 
locally optimal solutions to bias exploration around previously 

(0,20) (10,10) (20,5) (25,2) (31,0) (40,-5)
 i   j  

Figure 1 – An Ordered Bi-Objective List 
The shaded region is dominated by incoming vector (5,-2).
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beneficial areas of the search space. 
While the results achieved by applying such online storage to 
multiobjective algorithms are significant, there exist enough 
limitations and drawbacks in the truncated approach to indicate 
that unbounded storage is preferable.  Specifically, in trying to 
form a good approximation of the locally optimal front, truncated 
archives may suffer from frontal degradation, inaccurate crowding 
measures and the loss of expensive regions of objective space. 

3.1 Frontal Degradation 
Given that a local optimal front will be composed of solutions that 
are strictly non-dominated by any other previously generated 
proposal, it is reasonable to expect all members of an elite archive 
to meet the same requirements (even if they form only a subset of 
the true front).  However, the truncation operation means that the 
quality of the archive may degrade over time – invalidating the 
optimality requirement by allowing weak solutions into the 
archive. 
The potential for decreasing archive quality is best exemplified 
via a diagram.  Consider the extremely simple three-member elite 
archive illustrated in Figure 2a: if solution b is removed due to a 
truncation operation, the map of dominated space becomes 
inaccurate – the highlighted region in Figure 2b should be 
included, but is not.  The effect is that a poor solution which was 
dominated by b, but is otherwise incomparable with the remaining 
members of the archive, will be incorrectly accepted as an elite 
member. 
The effect of degrading fronts can be extremely detrimental to the 
performance of any given algorithm.  In the extreme case, 
frequent truncation of archives may lead to a retreating front – 
where the archive becomes a progressively worse approximation 
of the Pareto optimal set.  The more likely case however, and one 
which Fieldsend et al. have verified empirically [4], is frontal 
oscillation – where good solutions are truncated from the archive 
and then rediscovered as part of the algorithm’s search procedure.  
Obviously, the time spent rediscovering good ideas is better spent 
investigating less populated areas of the front and is costly to both 
the efficiency and efficacy of the search process. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  
 
 
 

3.2 Inaccurate Crowd Estimation 
Given that one of the explicit aims in developing a good 
approximation of the Pareto optimal front is achieving an evenly 
distributed set of solutions, crowding estimation is very important 
in directing the search towards areas of low result-density.  
Unfortunately, truncation of archives can lead to misleading 
density approximations, as crowding measures will be based on an 
incomplete set of the true local optimal front.  In Figure 3a it is 
obvious that solutions a, b and c occupy the most densely 
explored region of objective space, but the truncation of point b 
from the archive leads to a uniform spacing of points that de-
emphasises the isolation of d (as illustrated in Figure 3b).  The 
danger that exists here is that solutions may be added and 
subsequently truncated from the crowded region – worsening the 
true distribution of points with little effect on the apparent 
archive-based crowding of the same area. 
It seems reasonable then, to apply crowding measures that 
consider all solutions encountered throughout the run, rather than 
just those stored locally in the archive.  However, such an 
approach is also open to problems – as illustrated in Figure 4.  If 
truncation is to be applied according to some global crowding 
measure, the archive will lose solution a and become overly 
concentrated around solution b.  Such degeneration into locally 
crowded arrangements not only diminishes the likelihood of 
finding a richly distributed front efficiently (since the search will 
become focused around a single area of objective space), but it 
also permits increased frontal oscillation. 

3.3 Loss of Expensive Regions 
Under the presence of discontinuous fronts, isolated regions, 
constraints, deception and bias, certain solutions can reasonably 
be thought of as being more valuable to the search process than 
others.  The loss of a highly valuable solution that resides isolated 
in a disconnected and sparsely populated portion of objective 
space, for instance, would severely inhibit the capacity of the 
algorithm to search the region in which it resides.  Indeed, the 
effect is even more pronounced than oscillation, as simply 
rediscovering the lost solution may be extremely difficult.   
The principle here is an important one – the more complex the 
objective space becomes, the more important the size of the 
archive.  Specifically, archival size acts as an artificially enforced 
threshold on the number of distinct regions that can be explored 
simultaneously by a search algorithm.  Should the number of 
distinct regions in objective space surpass the size of the archive, 
the algorithm will either be confined to a subset of the objective 
space or, more likely, suffer significant performance degradation 
as the archive consistently cycles between available zones – 
repetitively discarding solutions that may have been invaluable to 
a balanced search. 
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Figure 2 – Frontal Degradation in Objective Space 
The loss of solution b from the archive means that the highlighted region 

is incorrectly labelled as non-dominated. 

Figure 3 – Poor Crowding Estimation in Objective-Space
The loss of solution b from the archive means that the resultant archive 

appears evenly distributed. 
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Figure 4 – Inaccurate Global:Local Crowd Mappings 
Solution a is in a globally crowded region of objective-space, but a locally 

uncrowded zone.  The loss of a would lead to excessive search pressure around b.
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4. ELITE ARCHIVE DATA STRUCTURES 
4.1 Quad-Trees 
The first series of algorithms described specifically for unbounded 
archiving are the three variants proposed by Mostaghim, Teich 
and Tyagi [9].  All three approaches result in the storage of non-
dominated solutions in quad-trees and differ primarily in the way 
deletion occurs.  Still, the same general problems beset each 
technique: deletion may require re-insertion, despite practical 
improvements made in the Quad-Tree2 and Quad-Tree3 
algorithms; and empirical evidence suggests that the approach is 
more costly than a simple linear list for a large number of 
evaluations.  Indeed, on the relatively simple ZDT1 function 
developed by Zitzler, Deb and Thiele [12], the variants are slower 
on average than an unbounded list even after 400,000 evaluations. 
Thus, the proposed quad-tree-based algorithms are ultimately of 
limited practical worth (and will therefore not be discussed further 
in this paper), but provided the impetus for similarly motivated 
ideas to be explored. 

4.2 Dominated Trees 
Improving significantly on the performance of the Quad-Tree 
algorithms, Fieldsend, Everson and Singh [4] introduce both a 
new selection mechanism for unbounded archives – namely, 
Partitioned Quasi-Random Selection (PQRS) – and efficient data 
structures for the storage and maintenance of archival solution 
sets – specifically, Dominated and Non-Dominated Trees.   
Maintenance of the archive occurs in a single data structure – be it 
either the Dominated or Non-Dominated Tree.  Both alternatives 
are similarly composed of approximately jm/kk unique composite 
points: combinations of the objective-results from multiple 
independent solutions (constituents).  Importantly, no composite 
point is ever incomparable with another, and so the weakly-
dominates relation can impose a complete order on any set of 
points – thus facilitating the use of ordered data structures, such 
as balanced binary trees.  
Empirically, Fieldsend et al. demonstrate the efficiency, and 
efficacy, of using the proposed mechanisms, with particularly 
impressive timing results when compared to the performance of 
an unbounded linear list.  However, the approach is not without 
its limitations.  In particular, the selected Dominated Tree 
structure may sporadically require complete re-building in order 
to maintain a suitable approximation of the optimal number of 
composite points (jm/kk).  Moreover, to determine non-dominance 
of a solution with respect to the archive (which must occur on 
every attempted archival insertion), the constituents of composite 
points that are incomparable with the applicant solution must each 
be checked for dominance in-turn.  The same constituent 
verifications must also be made for both the weakest composite 
point to dominate the solution (Cw) and all composites that share 
an axis with Cw.  The effect is that the logarithmic nature of tree-
insertion is offset by the need for periodic linear searches of 
solution sub-sets.  While Fieldsend et al. correctly note that the 
algorithm is unlikely to degenerate into a truly linear search of the 
entire population of solutions, the over-head it induces is certainly 
significant enough to degrade performance. 

4.3 Orthogonal Range Searching 
While much of Jensen’s [6] thorough paper regarding the 
application of data structures to multiobjective optimisation 

focuses on improving the run-time performance of non-dominated 
sorting, it also briefly addresses archive maintenance.  In 
particular, the paper suggests the use of fractional cascading and 
Dynamic Range Trees to enable orthogonal (rectangular) range 
queries for the identification of dominated or dominating 
solutions.  Providing efficient run time complexities, the approach 
is of significant merit, though the use of Dynamic Range Trees 
will incur a non-linear storage complexity.  Moreover, since it was 
not the focus of his work, Jensen does not implement or test the 
data structure, meaning that empirical performance analysis is 
presently unavailable.  Thus, expansion upon this original 
proposal, particularly on problems of low dimensionality, lies as 
an important area of future work. 

5. INTRODUCING THE MAK_TREE 
All algorithms proposed thus far are, quite reasonably, designed 
for generic k-objective non-dominated sets.  However, as 
introduced in Section 2.5, the bi-objective case carries a number 
of unique properties that may be manipulated to form more 
efficient specialised data structures and storage algorithms.  The 
Mak_Tree algorithm represents such an approach, delivering a 
highly efficient technique that is specifically tailored to the needs 
of bi-objective optimisation. 

5.1 The Mak_Tree Data Structure 
The Mak_Tree is a generic label for any binary tree structure that 
is dynamic, self-balancing and ordered (arbitrarily) by 
performance on the first objective.  A node in any Mak_Tree 
represents a collection of solutions with identical objective scores 
(to enable property two) and the tree, as a whole, is strictly non-
dominated.  As such, the tree itself is not particularly interesting 
and can take on a wide variety of forms, from AVL structures to 
the Red-Black trees [1,5] used herein (see Figure 6 for a Red-
Black representation of the data in Figure 1).  It is the Mak_Tree 
algorithms, which build upon the unique properties of bi-
objective sets and simple binary search trees, that are interesting 
and will form the focus of this work.    
Still, before moving on, it is worthwhile noting that the structure 
facilitates the efficient discovery of a number of interesting frontal 
properties.  Since the extent of a front is merely the head and tail 
of the sorted list (see Section 2.5.1), the Mak_Tree can locate 
such solutions in O(log m).  Additional information, such as the 
least/most occupied node, or the oldest/youngest stored solution, 
can also be maintained via branch annotations; while the structure 
can be easily extended to support PAES-like cells.   

5.2 Updating the Mak_Trees 
It is obvious that for a Mak_Tree to remain non-dominated, it 
must only accept non-dominated solutions into the tree and prune 
any solution that becomes dominated due to an insertion.  The 
basic algorithm to achieve such behaviour is outlined in 
Algorithm 1, where solution S is inserted into archive A.  To 
further illustrate the behaviour of the update operations 
introduced in the algorithm, it is beneficial to consider two 
general concepts: verifying non-dominance and locating 
dominated nodes. 
 
 
 
 
Figure 6 – An Example Mak_Tree (Via a Red-Black Structure)

25,2 
31,0 10,10

0,20 20,5 40,-5
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5.2.1.1 Verifying Non-Dominance 
In order for a proposal to be inserted into the archive, it must not 
be dominated by any other stored solution.  Considering the 
procedure adopted in Algorithm 1, it is not necessarily intuitive 
how this is achieved.  However, recall that a unique property of 
bi-objective non-dominated fronts is that if a solution is non-
dominated with respect to its predecessor, then it is also non-
dominated with respect to the remainder of the front (property 
four, Section 2.5.4).  Since insertion mirrors simple binary-tree 
insertion, and this means that the proposal will always be 
compared with its predecessor (unless it is dominated before this 
point or no such predecessor exists), any successfully added 
solution is guaranteed to be non-dominated. 

5.2.1.2 Locating Dominated Nodes 
Central to the algorithm for locating dominated nodes is the 
concept of dominated sets introduced in property three (Section 
2.5.3) – that is, if a solution dominates nodes at index i and index 
j, it must also dominate the set of nodes with indices between i 
and j.  Since this essentially represents a range-query, it is useful 
to build on the range-related properties inherent in simple binary 
search trees.  Specifically, it is always the case that if a node y is 
the right-child of x, then all left-descendents of y will have in-
order indices between the indexes of x and y.  This property also 
holds if y is a left-child of x and all right-descendents of y are 
considered.  The effect is that once an initial dominated node has 
been identified, any dominated node to its right is guaranteed to 
have a dominated left sub-tree, while any dominated node to its 
left must have a dominated right sub-tree.  As an example, 
consider Figure 6; if both (25,2) and (10,10) are dominated, then 
the (20,5) sub-tree must also be completely dominated. 
With this in mind, locating dominated nodes becomes relatively 
straight-forward and particularly efficient in the Mak_Tree 
algorithm.  After the discovery of the first dominated node B at 
index b, the location of all dominated nodes with indices between 
b+1 and j requires at most O(log m) comparisons.  Specifically, 
the search proceeds as follows (starting at the right-child of B): if 
the current node is dominated label it and the left sub-tree as 
dominated and search the right sub-tree; otherwise, everything to 
the right of the current node is non-dominated, so move left.  The 
discovery of all nodes with indices between i and b-1 requires 
little modification to the standard insertion procedure – on 
dominance, the search progresses left as usual, with the node and 
right sub-tree marked as being completely dominated.   
Once discovered, the dominated nodes must be removed from the 
tree (lines 20–22 in Algorithm 1).  It is important to note that 
dominated sub-trees and individual dominated nodes are handled 
independently during this deletion procedure.  As evidenced in 
Section 6.1.2.2, the deletion of large sub-trees, in particular, can 
afford the Mak_Tree algorithm an impressive performance gain. 

6. RESULTS 
6.1 Complexity Analysis 
When considering the performance of a given data structure and 
algorithm, both time and space complexity are significant.  While 
emphasis is typically placed on efficiency, high space complexity 
can induce tighter limits on the feasible capacity of a given 
structure.  Since the very nature of unbounded archives is to store 
particularly large solution sets, it is important to reduce such limits.   

Algorithm 1 – Insertion into the Mak_Tree 

Inputs:  

1 2( , )=S s s  The inserted solution, where s1 and s2 denote  
objective scores. 

1: if ( )=∅A  If the tree is empty 
2:  : { }=A S  add the solution to the tree. 
3: else   
4:  : false; _ : {}= =rejected del nodes   

5:  _ : {}; : null; := = = Adel subs B node root  Start the search at the root. 

6:  ( )while ( leaf ) and ( true)≠ ≠node rejected   

7:   if ( )≺node S  If the current node dominates S 
8:    true=rejected  then the algorithm ends. 
9:   else if ( )≺S node  If the solution dominates the 

10:    
handle_dominance ( , , ,

_ , _ )
S node B

del nodes del subs
 

current node then call the 
handle_dominance helper. 

12:    : left_or_insert( , )=node node S  Move left, or insert if at leaf.  
13:   else if ( )=S node  If the solution and node share 
14:    := +node node s  objective scores, add s to node 
15:    true=rejected  and end the algorithm. 
16:   1 1else if (s )< node  If the objective-one score of S 
17:    : left_or_insert( , )=node node S  is less than that of node, move  
18:   else  left or insert if node is a leaf. 
19:    : right_or_insert( , )=node node S  Otherwise, move/insert right. 
20:  if (( null) and ( false))≠ =B rejected  If the solution was dominating 
21:   delete_all_sub_trees( _ )del subs  then remove all dominated 
22:   delete_all_nodes( _ )del nodes  nodes and sub-trees. 

 

Algorithm 2 – Handle_Dominance Helper 

Inputs:  
S  The inserted solution. 
node  The dominated node being examined. 
B  The first found dominated node. 

_del nodes  
 

The set of individual nodes that are dominated by S. 
_del subs  The set of sub-trees that are completely dominated by S.

1: _ : _= +del nodes del nodes node   

2: if ( null)=B  If B has not yet been found. 
3:  :=B node   
4:  : right ( )=current B   
5:  while( null)≠current   

6:   2 2if ( )≤S current  If the solution dominates the 

7:    _ : _= +del nodes del nodes current  current node, both the node and
8:    if (left ( ) null)≠current  its left sub-tree (if it exists) 
9:     _ : _ left ( )= +del subs del subs current  should be deleted. 

10:    : right ( )=current current  Move right.  
11:   else  The solution can only dominate 
12:    : left ( )=current current  nodes to the left, so move left. 
13: else if (right( ) null)≠node  If B has been found, all nodes 
14:  _ : _ right( )= +del subs del subs node  to the right must be dominated. 

 

6.1.1 Space Complexity 
The optimal space complexity for any unbounded archive is O(m), 
as all solutions in the archival set must be accessible.  Since the 
Mak_Tree contains at most m nodes and the simple nature of the 
tree requires no repetition of nodes or solutions, the spatial 
complexity of the Mak_Tree is optimal and equal to O(m). 
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The Dominated Tree structures achieve similarly optimal space 
complexity, though it requires cleaning at appropriate thresholds 
to ensure that such optimality holds. 
Finally, the Dynamic Range Tree suggested by Jensen requires 
O(m log m) space (see [2]) due to its two-level tree structure and 
thus represents the most expensive storage option presented in the 
literature thus far. 

6.1.2 Run-Time Complexity 
With respect to performance complexity, it is useful to consider 
the insertion of two distinct types of solution: strictly non-
dominating – those that are dominated by or equal to some 
component of the archive, or otherwise completely incomparable 
– and dominating.   

6.1.2.1 Insertion of Non-Dominating Solutions 
As alluded to in Section 5.2.1.1, the Mak_Tree algorithm is 
particularly efficient when inserting non-dominating solutions, as 
the algorithm requires at most O(log m) dominance comparisons 
during the simple binary navigation.  Since insertion in Red-Black 
Trees will only ever require at most O(log m) node re-colourings 
and one rotation, the worst-case time cost for the insertion of any 
non-dominating solution in the Mak_Tree is O(log m).  Such 
performance is optimal for any structure based on self-balancing 
binary search trees. 
The Dominated Tree structures achieve similar performance, 
though the need for linear checking of composite constituents may 
be costly.  If the solution under consideration is dominated, then 
performance is optimal and requires only O(log m) dominance 
comparisons.  However, the algorithm is sub-optimal under the 
insertion of strictly incomparable solutions, with the burden of 
checking c constituents for dominance resulting in a search cost of 
O(log m + c).  While not discussed explicitly in the source paper, 
it also seems likely that verification of solution equality would 
require the checking of constituents belonging to the composite 
point sharing an axis with the solution – thus leading to sub-
optimal performance if the inserted solution already has an 
equivalent stored.  Additionally, note that these time complexities 
only hold under suitable maintenance of the corresponding 
Dominated Tree and assume that the need for cleaning is infrequent.  
A query in the two-dimensional fractional cascading Dynamic 
Range Tree will cost O(log m log(log m) + α), where α is the set 
of solutions satisfying the range query (see [2] for succinct 
summaries of Dynamic Range Tree behaviours and costs).  For 
any insertion, the algorithm will require at most two orthogonal 
range queries – the first identifies those solutions that dominate 
the proposal, while the second highlights archival members 
dominated by the proposal.  For a non-dominating solution, the 
second query will always return the empty set, while the first 
query need only return the first dominating node (since any α>0 is 
enough to disqualify the incoming solution from inclusion).  
Thus, the total query cost for identifying a non-dominating node 
is O(log m log(log m)).  Since the update cost of the structure is 
also O(log m log(log m)), the total time cost for the insertion of a 
non-dominating solution into the Dynamic Range Tree is also 
O(log m log(log m)). 

6.1.2.2 Insertion of Dominating Solutions 
Handling dominating solutions is an inherently more expensive 
proposition as it will also require both the identification of 

dominated solutions and their subsequent removal.  As discussed 
in Section 5.2.1.2, all η dominated nodes can be efficiently 
discovered with O(log m) dominance comparisons using the 
Mak_Tree.  If the naïve approach is taken and each of the η 
dominated nodes are deleted in-turn, the final cost of identifying 
and removing dominated nodes with the Mak_Tree is O(η log m).  
However, given that the query may return dominated sub-trees, it 
is useful to capitalise on sub-tree deletion in Red-Black Trees.  
Specifically, for any sub-tree requiring deletion, the cost of 
removing the sub-tree is O(log τ log m) rather than O(τ log m), 
where τ is the size of the sub-tree.  For small η the difference is 
not particularly significant, but as η increases, so must the size or 
number of sub-trees identified for deletion.  The effect is 
particularly evident in analysing the worst-case insertion, where 
the number of dominated nodes tends towards the size of the tree3 
(η ≈ m).  In this case there will be approximately (2 log m) sub-
trees and (2 log m) separate individual nodes that require deletion.  
The individual nodes will cost a total of O((log m)2) to remove 
(though the amortised cost of this operation can be reduced if 
individual deletion occurs after sub-tree deletion is completed).  
The cost of deleting all sub-trees will be ((log m) x 2 x (1 + 2 + 3 + 
... + log (m-1))) => O(log m (log m)2) = O((log m)3).  Thus, the 
total worst-case bound of identifying and removing dominated 
nodes from a Mak_Tree is O((log m)3). 
The Dynamic Range Tree can identify all η dominated solutions 
using an orthogonal query that costs O(log m log (log m) + η).  
Once discovered, the dominated solutions must then be removed 
from the tree at a cost of O(η log m log (log m)).  Thus, when 
worst-case insertion occurs, the Dynamic Range Tree carries a 
cost of O(m log m log (log m)).   
To locate all η nodes for deletion, the Dominated Tree must 
perform two binary searches and subsequently check every 
constituent of dominated composite points.  Thus, the cost of 
locating all dominated nodes in the archive will be at least O(log 
m + η) and, more generally, O(log m + η + δ), where δ is the 
number of constituents belonging to dominated composite points.  
To minimise this cost, Fieldsend et al. propose the use of the 
alternative (though conceptually very similar) Non-Dominated 
Tree structure which ensures that any dominated composite point 
will feature only dominated constituents.  While offering some 
performance gain, constituents belonging to incomparable 
composite points will still need to be verified.  Thus, the cost of 
locating dominated nodes using the Non-Dominated Tree variant 
will be O(log m + µ), where µ is the number of incomparable 
composite constituents that must be examined. 
Upon the deletion of any solution, the corresponding Dominated 
Tree structure must update all composite points for which the 
solution was a constituent.  If the solution represented the only 
constituent of a composite point, the composite point will be 
removed from the archive in O(log m) time (assuming use of a 
self-balancing tree).  If the solution was used in the most 
dominating composite point then, in the two-dimensional case, the 
remaining constituent of the composite represents the new 
coordinates of the dominating point and the update can be 
completed in constant time. Otherwise, the affected composite  

                                                                 
3 Though it is actually trivial to handle complete domination: if 

the left-most and right-most nodes in the tree are dominated, 
simply have the inserted solution become the root. 
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point is updated through the re-use of a constituent of the 
succeeding (dominated) composite – requiring an O(log m) 
successor search.  Thus, the cost of deleting a single solution from 
any Dominated Tree is O(ν log m), where ν is the number of 
composite points that the solution is a member of.  Deletion of η 
solutions will cost O((V+η) log m), where V is the total number of 
extra composite points to which the η dominated solutions belong. 
Note that some practical improvements can be made over this 
performance if it is known when all constituents of a composite 
point are dominated (as is the case for certain composite points in 
Non-Dominated Trees).  Given this knowledge, the completely 
dominated composite point can be deleted from the tree without 
the need for intermediary coordinate re-labeling.  However, given 
that the constituents of the dominated composites may also form 
part of non-dominated composites elsewhere in the tree, the 
overriding complexity costs remain much the same unless 
frequent cleaning occurs.  Better improvements are seen when 
applying binary sub-tree deletion to remove sets of completely 
dominated nodes, though the need to check and update 
constituents in non-dominated composite points curb the 
advantages afforded to such an approach when η is small.  Still, 
such techniques may hold merit and are certainly worth further 
consideration in future work.  

6.1.2.3 Summary of Run-Time Complexity 
As evidenced in Table 1, the Mak_Tree provides superior time 
complexities to those previously discussed in the literature.  The 
Dynamic Range Tree is generally more expensive due to its two 
level structure – though the optimisation of the approach or the 
application of one-dimensional range trees rests as an interesting 
area of future work.  The Dominated Tree structures proposed by 
Fieldsend et al. provide similar outcomes to the Mak_Tree, but 
only under the assumption that constituents contribute to a very 
small number of points and that composite cleaning is infrequent. 
Since composite cleaning requires the successive deletion of all 
constituents from all composite points they contribute to 
(excluding the least dominating node) or the complete rebuilding 
of the tree, the cost of such a procedure is prohibitive in all but 
sparse usage. 

6.2 Empirical Analysis 
While theoretical analysis of algorithms provides an important 
grounding for the understanding of performance – particularly 
with respect to worst-case bounds – empirical examinations can 
elucidate behaviour under more realistic conditions.  As such, the 
performance of the Mak_Tree was evaluated over five distinct  
test functions that each exhibit different problem features. 
Specifically, the tests (T1–T5) are equivalent to the ZDT1–4 and 
ZDT6 functions proposed by Zitzler et al. [12], though with a 
linear shift of 0.35 applied to all decision variables involved in the 
formation of the g function (for reasons to be explored in future 

 
 
 
 
 
 
 
 
 
 
work).  To place the performance of the Mak_Tree in context, the 
behaviour of both the common linear-list approach and variously 
sized truncated archives are also considered.  In this work, the 
truncated archives maintain a constantly ordered list of non-
dominated solutions, such that a complete set of nearest neighbour 
calculations (which take place whenever the archive threshold is 
breached) can occur in only O(m) time.  Since solutions are 
inserted into the archive individually in these tests, truncations 
only ever require the removal of the single most crowded solution. 

The results illustrated in Figures 7–12, indicate the average 
cumulative time costs across twenty distinct solution sets on each 
of the five problems.  Each input set was produced by a single 
standard, real-valued, NSGA-II run (with population size of 100, 
crossover rate of 0.9 and mutation probability of 1/v – where v is 
the number of decision variables).  Note that while only problems 
T4 and T5 are displayed graphically, the results illustrated are 
indicative of those seen across the complete test suite. 
The Mak_Tree algorithm outperforms the naïve list approach on 
all examined problems.  Note also that while the time-cost of the 
list approach grows exponentially, the Mak_Tree has 
approximately linear growth.  This is particularly significant given 
that results reported on the performance of the Dominated Tree 
also indicate exponential growth.   
Perhaps more significantly, the Mak_Tree also betters the 
performance of the truncation techniques.  While both approaches 
yield approximately linear performance, the Mak_Tree is faster on 
every examined problem.  The result is an important one, 
particularly considering the disadvantages inherent in truncation 
(see Section 3) – if the Mak_Tree can outperform limited archives, 
then the approach is applicable not just for particularly complex  
problems, but for generic use in all bi-objective problem domains. 

7. CONCLUSIONS AND FUTURE WORK 
By capitalising on the unique properties of non-dominated bi-
objective sets, the Mak_Tree algorithm offers an efficient 
approach for the storage, querying and updating of unbounded 
two-dimensional elite archives.  Big-oh results confirm that this 
specialist approach achieves optimal run-time complexity with 
respect to the insertion of strictly non-dominating solutions into a 
tree structure.  In the more complex case, where a dominating 
solution is added to the archive, the Mak_Tree algorithm is 
preferable to pre-existing techniques.  Unlike more complex 
structures, the Mak_Tree also achieves optimal space complexity 
and should be relatively straight-forward to implement.  With 
respect to empirical results, the Mak_Tree is shown to outperform 
both unbounded and tightly bound archives using the naïve, 
though common, linear-list technique.  Such promising results 
suggest that unbounded archives, and the Mak_Tree in particular, 
can be used in bi-objective problem domains with very little, if 
any, additional cost.  Since problems are known to exist with pre- 

Approach Spatial 
Complexity 

Cost of Inserting Non-
Dominating Solutions 

Cost of Searching for Dominated 
Solutions 

Cost of Deleting 
Dominated Solutions 

Mak_Tree O(m) O(log m) O(log m) O(η log m)♣ 

Dominated Tree O(m)† O(log m + c)‡♦ O(log m + η + δ) ♦♥ || O(log m + µ) ♦◊ O((V+η) log m) ♦♣ 

Dynamic Range Tree O(m log m) O(log m log(log m)) O(log m log (log m) + η) O(η log m log (log m)) 

Table 1 – Big-Oh Space and Performance Complexity for Examined Data Structures 
† Assumes constituents do not contribute to a large number of composites.  ‡ Can be reduced to O(log m) for insertion of dominated solutions.  ♦Assumes 

infrequent composite cleaning.  ♣ Can be improved as η increases.  ♥ Dominated Tree specific.  ◊ Non-Dominated Tree specific. 
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existing truncation approaches, such low-cost inclusion of 
unbounded archives is a significant step towards improving the 
performance of bi-objective optimisation techniques. 
While the results are promising, the empirical investigations 
address only a small range of test functions and a more expansive 
investigation is necessary. Additional avenues of future work 
include the specialisation of pre-existing archiving techniques to 
the two-dimensional case; the formation of optimisation 
algorithms to capitalise on the properties of the Mak_Tree; and 
the generalisation of the Mak_Tree to higher-dimensional 
problems.  Also note that while the Mak_Tree is designed for 
unbounded elite archives, it also provides an appropriate structure 
for complete population storage and truncated elite archives.   
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Figures 7–12 – Empirical Results 
For graphs, the x-axis represents the number of solutions processed (in thousands); the y-axis on the T4 and T5 graphs is the cumulative processing time in  

seconds; the y-axis on the archive sizes graph is the total number of unique (non-equal) members stored in the archive for a given test function. 
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Algorithm T1 T2 T3 T4 T5 
Mak_Tree 2.1 2.8 3.2 3.5 3.2 
Linear List 56.7 48.1 54 196.2 12.9 
Truncated (100) 8 7.5 7.9 8.5 6.7 
Truncated (50) 3.7 5.5 6.4 6.7 5.9 
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