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ABSTRACT
Recently, gradient techniques for solving numerical multi–
objective optimization problems have appeared in the lit-
erature. Although promising results have already been ob-
tained when combined with multi–objective evolutionary al-
gorithms (MOEAs), an important question remains: what
is the best way to integrate the use of gradient techniques in
the evolutionary cycle of a MOEA. In this paper, we present
an adaptive resource–allocation scheme that uses three gra-
dient techniques in addition to the variation operator in a
MOEA. During optimization, the effectivity of the gradient
techniques is monitored and the available computational re-
sources are redistributed to allow the (currently) most effec-
tive operator to spend the most resources. In addition, we
indicate how the multi–objective search can be stimulated
to also search along the Pareto front, ultimately resulting
in a better and wider spread of solutions. We perform tests
on a few well–known benchmark problems as well as two
novel benchmark problems with specific gradient properties.
We compare the results of our adaptive resource–allocation
scheme with the same MOEA without the use of gradi-
ent techniques and a scheme in which resource allocation
is constant. The results show that our proposed adaptive
resource–allocation scheme makes proper use of the gradient
techniques only when required and thereby leads to results
that are close to the best results that can be obtained by
fine–tuning the resource allocation for a specific problem.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient meth-
ods; I.2 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms, Performance, Experimentation, Theory
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1. INTRODUCTION
In many problems of interest, particularly in continuous

optimization problems, local features of the search space can
be highly informative of the directions in which better so-
lutions may be found. Non–evolutionary machine–learning
methods therefore often employ gradient descent. Gradient
information has also been used in single–objective evolu-
tionary methods under the name of memetic algorithms [15].
More recent is the use of multi–objective gradient techniques
either alone or in combination with multi–objective evolu-
tionary algorithms (MOEAs) [2, 5, 8, 13, 18, 19].

While some problems may benefit from the use of gradient
information, in other problems the additional cost required
to calculate gradients does not weigh up to the benefits.
It is therefore important to determine for which problems
the use of a gradient technique brings advantage, as is also
implied by the No Free Lunch notion that no single method
is optimal for all problems.

The idea of determining the utility of gradient techniques
can be taken one step further by not only selectively apply-
ing the technique to certain problems, but also varying the
probability of applying the technique during optimization.

Adaptively choosing the probability of operators has sev-
eral advantages in addition to the potential improvements
in efficiency. First, a practitioner wishing to apply a method
with adaptive operator probabilities is relieved of the need
to select and tune the different operator probabilities. Fur-
thermore, by leaving the choice of the operator probabilities
to the search algorithm, a larger part of the optimization
task is automated. Finally, adapting the probabilities of the
operators can render optimization methods more robust, as
any unfavorable choices of parameters can be corrected dur-
ing the course of the run.

In this paper, we investigate the combined use of three
gradient techniques for numerical multi–objective optimiza-
tion by an adaptive means of choosing how often to use
each gradient technique. In addition to the related work
on gradient techniques for numerical multi–objective opti-
mization as cited above, related work therefore concerns the
use of adaptive operator probabilities. An interesting find
in biology that may appear related is that the E. Coli bac-
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terium increases its probability of mutation when it runs
out of food; as E.Coli cells begin to starve, the expression
of DNA Polymerase IV is quadrupled, so that a mutation–
causing enzyme is activated [14]. This biological mechanism
appears to be aimed at guaranteeing survival. Our focus
here however is on the engineering question of how efficient
optimization may be achieved.

Perhaps the first use of adaptive operator probabilities is
by Davis [6]. In this work, an operator receives credit if it
produces offspring that improves over the best fitness in the
current population, and additional credit is assigned to ear-
lier operators along the lineage. The operator probability is
adapted based on the ratio of received credit to the number
of times the operator was applied.

Rather than adapting the probability of operators that
apply to the whole genome, the probability of applying an
operator can also be considered per bit. This idea has been
used with the aim of preserving relevant schemata, based on
uniform crossover [23]. Bitwise operator probabilities have
also been used with mutation [1].

More recent work on adaptive operator probabilities is
given by Julstrom’s ADOPP [10]. ADOPP sets the proba-
bility of mutation and crossover operators proportional to
their recent success in producing improved offspring. In
more recent work, the resulting development of the oper-
ator probabilities is studied [11].

In the above mentioned works, adaptive resource–allocation
is performed for single–objective optimization. In this pa-
per, we specifically aim at multi–objective optimization.

The remainder of this paper is organized as follows. In
Section 2 we briefly review existing gradient techniques for
numerical multi-objective optimization. In Section 3 we
present our adaptive resource–allocation scheme. In Sec-
tion 4 we present the results from our experiments. Finally,
concluding remarks are presented in Section 5.

2. GRADIENT TECHNIQUES
In earlier work we described three techniques to compute

and use gradient information in multi–objective optimiza-
tion [2]. Two of these techniques only use the gradient in-
formation of a single objective function at a time. A third
approach was specifically designed on the basis of an exten-
sion of the notion of gradient to the multi–objective setting.
Because in this paper we will make use of these three gradi-
ent techniques, we briefly recall them.

2.1 The techniques

2.1.1 Random–objective conjugate gradients
In this straightforward approach the conjugate gradients

algorithm is applied to a randomly chosen objective. The re-
sulting technique is called ROCG (Random–Objective Con-
jugate Gradients). It depends completely on the correlation
between the objectives whether the best local improvement
in a single objective also leads to an improvement in the
other objectives. Since this is typically not the case, the
percentage of local searches that leads to an improvement
(i.e. a solution that dominates the solution from where the
local search started) is typically small.

2.1.2 Alternating–objective repeated line–search
To reduce the probability of improving a single objec-

tive while making the objective value in the other objective

worse, the objective that is searched locally can be altered
during search. Care should still be taken not to let the local
search in a single objective converge to a minimum. Doing
so results in the same approach as ROCG. Hence a single
line–search in the direction of the negative gradient of that
objective can be performed in a single, alternatingly chosen
objective. This process is repeated until a multi–objective
local minimum is found. We refer to this technique as AORL
(Alternating–Objective Repeated Line–search).

2.1.3 Combined–objectives repeated line–search
This final technique is best described as a multi–objective

version of gradient descent. A line–search is performed in
a promising direction. When the line–search terminates, a
new line–search is initiated in a new promising direction
found at the new location. It was shown that a set of direc-
tions can be computed such that each of these directions
improves both objectives simultaneously [2]. This result
is more general than other related work in the literature
where only a single direction is found. Moreover, these di-
rections are maximal in the sense that they do not domi-
nate each other. Note that a line–search in this case does
not aim to minimize a single objective but aims to find the
best non–dominated solution in the given direction, i.e. the
line–search in this strategy is itself a multi–objective search
algorithm. We refer to this strategy as CORL (Combined–
Objectives Repeated Line–search).

2.2 MOEA integration: fixed ratio
We employ a generational hybridization scheme. A gra-

dient technique is applied to one or more solutions in a
candidate set at the end of each generation. From earlier
work we found that taking this candidate set to be the en-
tire population (instead of the selected solutions or only the
non–dominated solutions) gives the best results.

To control the ratio of search effort spent by the MOEA
and by the gradient technique we use a ratio parameter ρe.
We aim to keep the ratio of the number of evaluations re-
quired by the gradient technique and the total number of
evaluations required so far equal to ρe. To this end, the gra-
dient technique is applied only as long as the current actual
ratio is smaller than ρe.

3. COMBINING GRADIENT TECHNIQUES

3.1 The technique
Although the CORL technique is often the most effective

one, this isn’t always the case [2]. In some cases the gradi-
ents of the individual objectives may already allow for im-
provements. The three different gradient techniques all have
their strengths and weaknesses. Together however, they of-
fer a diverse spectrum of ways to exploit the multi–objective
gradient. To have the benefits of all three gradient tech-
niques we propose to combine them.

3.2 MOEA integration: fixed ratios
The simplest way to combine the gradient techniques is to

use a straightforward extension of the integration of a single
gradient technique as presented in Section 2.2. A genera-
tional scheme is used in which now all gradient techniques
are applied to one or more solutions at the end of each gener-
ation. Each technique is only applied as long as the current
ratio of evaluations for that specific technique is smaller than
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ρe. Note that since we now have three gradient techniques,
we have 0 ≤ ρe < 1

3
. If, for instance, we set ρe = 25%, then

all operators, i.e. both the variation operator and the three
gradient techniques, are allowed to spend an equal share,
i.e. a quarter, of all evaluations.

3.3 MOEA integration: adaptive ratios
A fixed–ratio approach cannot in general be optimal. If

one gradient technique is clearly superior to another gradi-
ent technique for a particular problem, it is more efficient to
allow the more superior technique to spend more search ef-
fort. An intuitively more favorable integration is thus a com-
bination of the gradient techniques such that during search
the most effective gradient technique is assigned the largest
probability. Or, if no technique is efficient compared to the
base MOEA, to reduce the use of the gradient techniques
to a minimum. This amounts to the adaptive allocation of
resources to operators of interest [20].

Since the three operators all have a different way of ex-
ploiting gradient information, it makes sense not to allocate
all resources to the operator that creates the most non–
dominated solutions. In other words, the reward of applying
a local search method is not to be measured only in the ef-
ficiency of the operator concerning the resources it requires
per new non–dominated solution. An operator is addition-
ally favorable if it is able to generate non–dominated solu-
tions in a sparsely populated location, even if this requires
more resources than another operator requires to generate
new non–dominated solutions in a more crowded location.
In the absence of an all–encompassing reward mechanism we
therefore opt for a method that attempts to match the prob-
ability of applying an operator (i.e. a probability–matching
approach [6, 9]) to its relative reward instead of maximiz-
ing the probability of the most rewarding operator (i.e. an
adaptive pursuit approach [21, 22]).

To compute the number of solutions that each of the gra-
dient techniques is to be applied to in the next generation we
redistribute the total number of evaluations that was used
previously. Redistribution will be done proportionally to
the observed efficiency of the gradient techniques in terms
of average number of improvements (i.e. generation of new
non–dominated solutions) per evaluation.

3.3.1 Number of evaluations: Eo(t)

We denote the number of evaluations that are to this
end taken into consideration for a specific operator by Eo(t)
in generation t, o ∈ {VAR,ROCG,AORL,CORL}. We
denote the actual number of evaluations that an opera-
tor used in generation t by Eo(t). For the gradient tech-
niques, we take the number of evaluations for a specific
technique to be just the number of evaluations that the
technique actually used in the recent most generation, i.e.
Eo(t) = Eo(t). For the variation operator of the base MOEA
we sum all evaluations backwards over previous generations
until the number of evaluations is at least as large as the
largest number of evaluations used by any gradient tech-
nique, i.e. EVAR(t) =

Pt
t′=tmin

EVAR(t) where tmin is cho-

sen as large as possible such that EVAR(t) ≥ Eo(t) for all
o ∈ {ROCG,AORL,CORL} holds, keeping in mind that
tmin ≥ 0. The reason for doing this is twofold:

• Fairness of comparison
The population size in the base MOEA is fixed and

so is the number of offspring it generates in each gen-
eration. Unless large population sizes are used, the
number of evaluations used by the gradient techniques
in a single generation is typically much larger than the
number of evaluations used by the base MOEA. Com-
puting efficiency over the same number of evaluations
is a much more fair basis of comparison.

• Allowing an increase in calls to gradient techniques
If the base MOEA gets stuck and the efficiency of one
or more gradient techniques is higher, we want to allow
the number of evaluations per generation allocated to
the gradient techniques to grow to facilitate an increase
in calls. If we only take the number of evaluations by
the base MOEA from a single generation, the total
number of evaluations to redistribute per generation
remains rather constant. For instance, assume that the
variation operator resulted in 100 evaluations and each
gradient technique used 200 evaluations in a single call.
Furthermore, assume that only one gradient technique
generates improvements. Then 700 evaluations are re-
distributed to that gradient technique. This leads to
3 calls to the best gradient technique in the next gen-
eration, which in turn leads to an expected number of
evaluations of 600 by the gradient techniques and 100
by the variation operator. Hence the number of calls
to the best gradient technique stays at most 3. How-
ever, because the gradient technique is truly superior,
we would like the number of calls to that operator to
be allowed to grow. In our approach, the counted num-
ber of evaluations of the base MOEA would have been
200 instead of 100. This would lead to 800 evaluations
to be allotted to the best gradient technique, result-
ing in 4 calls in the next generation. Moreover, in a
subsequent generation we would count back 800 eval-
uations for the EA to match the 800 evaluations used
by the gradient technique. If the gradient technique
is again superior, it will now be assigned 1600 evalua-
tions, leading to an exponential growth of the number
of calls to that gradient technique.

3.3.2 Number of improvements: Io(t)

Let Io(t) be the number of improvements obtained by an
operator in generation t. It is computed as follows:

• Variation operator
Count the number of offspring solutions that

1. are not dominated by any solution in the set of
selected solutions and

2. dominate at least one solution in the set of se-
lected solutions.

• Gradient technique
Count the number of solutions that were subjected to
the gradient technique and resulted in a solution that

1. is not dominated by any solution in the popula-
tion and

2. dominates the solution that the gradient tech-
nique started from

This notion of improvement is strict. In addition to not
being dominated, new solutions must dominate the solu-
tion(s) it was created from. However, to ensure a diverse
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front during the search and also to ensure that the front may
be expanded sideways once the search gets near the Pareto–
optimal front, the second requirement can be dropped. This
allows the search to perform “sideway” steps in addition to
“forward” or “domination” steps.

Analogous to the number of evaluations, for the gradient
techniques we have that the number of improvements Io(t)
that is used to compute the redistribution of the evalua-
tions is just the number of improvements in the recent most
generation, i.e. Io(t) = Io(t). For the variation operator
on the other hand, the same summation is used as for the
evaluations, i.e. IVAR(t) =

Pt
t′=tmin

IVAR(t).

3.3.3 Redistribution of evaluations
The reward Ro(t) that an operator o is assigned at the

end of generation t is its efficiency in terms of the number
of improvements per evaluation:

Ro(t) =
Io(t)

Eo(t)
(1)

Moreover, we define Ro(t) to be 0 if Eo(t) = 0. The higher
the value of Ro(t), the more cost-effective operator o is.
The proportional redistribution of the total number of eval-
uations E(t) =

P
o Eo(t) equals:

ERedist
o (t) =

Ro(t)P
o′ Ro′(t)

E(t) (2)

Now, let Co(t) be the number of times gradient technique
o was called in generation t. The number of calls CRedist

o (t)
that gradient technique o should be called in generation t+1
on the basis of the recent most evidence is just the redistri-
bution of the evaluations divided by the average number of
evaluations per call for that particular gradient technique:

CRedist
o (t) =

Co(t)

Eo(t)
ERedist

o (t) (3)

To compute the number of calls Co(t+1) to gradient tech-
nique o in generation t + 1, we use memory decay to ensure
a smooth decrease in calls if the efficiency of o drops in sub-
sequent generations. To implement memory decay, we use
a running average CRun

o (t) from which the discrete value for
Co(t) is derived. Because we want to stimulate the use of
gradient techniques, we propose to not use memory decay if
the redistribution in equation 3 indicates that the number
of calls to a gradient technique should increase, i.e.:

CRun
o (t+1) =

8><
>:
CRedist

o (t) if CRedist
o (t) ≥ CRun

o (t)

ηDecayCRun
o (t)+

(1 − ηDecay)CRedist
o (t) otherwise

(4)
In principle, we will use Co(t) = �CRun

o (t)�. Now, if at
some point Co(t) = 0 holds, then gradient technique o will
no longer be used throughout the run. However, its non–
usefulness may be only temporary. Therefore, we propose to
force a call to gradient technique o after a while. The num-
ber of generations to wait in generation t, denoted Wo(t),
is just the inverse of the running average of the number of
calls to perform in the next generation, i.e.:

Wo(t + 1) =

(�1/CRun
o (t + 1)� if Wo(t) = 0

Wo(t) − 1 otherwise
(5)

with Wo(0) = 0. To ensure that after waiting one call to the
gradient technique is performed, Co(t) is defined as follows:

Co(t) =

(
1 if Wo(t − 1) = 1

�CRun
o (t)� otherwise

(6)

with Co(0) = 1.

4. EXPERIMENTS

4.1 Setup

4.1.1 Multi–objective optimization problems
Five of the problems we have used for testing have been

taken from the literature on designing difficult and interest-
ing multi–objective optimization problems and on compar-
ing various MOEAs [7, 24]. Specifically, we have used the
problems known as EC i, i ∈ {1, 2, 3, 4, 6}. For specific de-
tails regarding the difficulty of these problems we refer the
interested reader to the indicated literature. Their defini-
tions are presented in Table 1.

We have designed two additional problems. These prob-
lems are labeled BD i, i ∈ {1, 2} in Table 1. The main reason
for adding these two problems is because of their gradient
properties. Both problems make use of Rosenbrocks func-
tion, which is a challenging function that requires proper
gradient–exploitation in order to find the minimum. In func-
tion BD1 it is easy to distribute points along the front. For
any value that is obtained from Rosenbrocks function that is
defined over all variables except the first one, a linear front
is uniformly obtained by sampling x0 uniformly in its do-
main of [0; 1]. To move such a front to Pareto optimality,
all that is required is the minimization of Rosenbrocks func-
tion. Function BD2 is harder than BD1 in the sense that the
objective functions overlap in all variables instead of only in
the first one. This automatically decreases the usefulness of
gradient techniques that only take into account one objec-
tive at a time. An additional difficulty of BD2 is that the
first objective is much easier to minimize than the second
objective. As a consequence, the search is likely to converge
first towards a small part of the Pareto front, i.e. an area
near the solution that minimizes the first objective. In order
to obtain the full Pareto front, the MOEA must be able to
traverse along the Pareto front. Although in itself this is
already a typical problem for most MOEAs, for BD2 this
additionally requires proper gradient exploitation because
the second objective is Rosenbrocks function.

4.1.2 Performance indicator
To measure performance we only consider the subset of

all non–dominated solutions in the population upon termi-
nation. We call such a subset an approximation set and
denote it by S. A performance indicator is a function of
approximation sets S and returns a real value that indicates
how good S is in some aspect. More detailed information
regarding the importance of using good performance indica-
tors for evaluation may be found in literature [3, 12, 25].
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NameObjectives Domain

EC 1

f0 =x0, f1 = γ
“
1 − p

f0/γ
”

γ =1 + 9
“Pl−1

i=1 xi/(l − 1)
” [0; 1]30

(l = 30)

EC 2

f0 =x0, f1 = γ
`
1 − (f0/γ)2

´
γ =1 + 9

“Pl−1
i=1 xi/(l − 1)

” [0; 1]30

(l = 30)

EC 3

f0 =x0

f1 =γ
“
1 − p

f0/γ − (f0/γ)sin(10πf0)
”

γ =1 + 9
“Pl−1

i=1 xi/(l − 1)
”

[0; 1]30

(l = 30)

EC 4
f0 =x0, f1 = γ

“
1 − p

f0/γ
”

γ =1 + 10(l − 1) +
Pl−1

i=1

`
x2

i − 10cos(4πxi)
´

[−1; 1]×
[−5; 5]9

(l = 10)

EC 6

f0 =1 − e−4x0sin6(6πx0)

f1 =γ
`
1 − (f0/γ)2

´
γ =1 + 9

“Pl−1
i=1 xi/(l − 1)

”0.25

[0; 1]10

(l = 10)

BD1

f0 =x0

f1 =1 − x0 + γ

γ =
Pl−2

i=1

`
100(xi+1 − x2

i )
2 + (1 − xi)

2)
´

[0; 1]×
[−5.12; 5.12]9

(l = 10)

BD2

f0 =
Pl−1

i=0 x2
i

f1 =
Pl−2

i=0

`
100(xi+1 − x2

i )
2 + (1 − xi)

2)
´ [−5.12; 5.12]10

(l = 10)

Table 1: The benchmark problems used for testing.

Here we use a performance indicator that uses knowledge
of the optimum, i.e. the Pareto–optimal front. We define the
distance d(x0, x1) between two multi–objective solutions x0

and x1 to be the Euclidean distance between their objective
values f(x0) and f(x1). The performance indicator we use
computes the average of the distance to the closest solution
in an approximation set S over all solutions in the Pareto–
optimal set PS . We denote this indicator by DPF →S and
refer to it as the distance from the Pareto–optimal front to
an approximation set. A smaller value for this performance
indicator is preferable and a value of 0 is obtained if and
only if the approximation set and the Pareto–optimal front
are identical. This indicator is ideal for evaluating perfor-
mance if the optimum is known because it describes how
well the Pareto–optimal front is covered and thereby rep-
resents an intuitive trade–off between the diversity of the
approximation set and its proximity (i.e. closeness to the
Pareto–optimal front). Even if all points in the approxima-
tion set are on the Pareto–optimal front the indicator is not
minimized unless the solutions in the approximation set are
spread out perfectly.

Because the Pareto–optimal front may be continuous, a
line integration over the entire Pareto front is required in
the definition of the performance indicator. In a practical
setting, it is easier to compute a uniformly sampled set of
many solutions along the Pareto–optimal front and to use
this discretized representation of PF instead. We have used
this approach using 5000 uniformly sampled points. The
performance indicator now is defined as follows:

DPF →S(S) =
1

|PS |
X

x1∈PS

min
x0∈S

{d(x0, x1)} (7)

4.1.3 Base MOEA
The base MOEA we use is the naive MIDEA [4]. This

MOEA is an EDA specifically designed for multi–objective
optimization. It has been shown to give good results on a
wide variety of problems defined in both discrete and con-
tinuous parameter spaces. Moreover, it is fast and easy to
understand, making it a good baseline algorithm. The fol-
lowing gives a brief overview of its main features. For specific
details the interested reader is referred to the literature [4].

The naive MIDEA maintains a population of size n. In
each generation it selects a subset of this population of size
�τn�, τ ∈ [ 1

n
; 1[, to perform variation with. By means of

variation n−�τn� new solutions are generated which replace
the solutions in the population that were not selected.

Selection is performed using a diversity–preserving selec-
tion operator. Since the goal in multi–objective optimization
is both to get close to the Pareto–optimal front and to get
a good diverse representation of that front, a good selection
operator must exert selection pressure with respect to both
aspects. The selection operator in the naive MIDEA does
this by using truncation selection on the basis of domination
count (i.e. the number of times a solution is dominated). If
the number of non–dominated solutions exceeds the targeted
selection size �τn�, a nearest–neighbour heuristic in the ob-
jective space is used to ensure that a well–spread, represen-
tative subset of all non–dominated solutions is chosen.

The variation operator is geometrical in nature and is
specifically designed to provide an advantage over tradi-
tional variation operators. The selected solutions are first
clustered in the objective space. Subsequently, the actual
variation takes place only between individuals in the same
cluster, i.e. a mating restriction is employed. The ratio-
nale is that variation inside each cluster can process spe-
cific information about the different regions along the Pareto
front. Such a parallel exploration automatically gives a bet-
ter probability of obtaining a well–spread set of offspring
solutions. To further stimulate diversity along the Pareto
front each new offspring solution is constructed from a ran-
domly chosen cluster. Variation inside a single cluster is
done by estimating a one–dimensional normal–distribution
for each variable separately and subsequently drawing new
samples from the estimated distribution.

4.1.4 General algorithmic setup
For selection we set τ to 0.3, conforming to earlier work [4]

and the rule–of–thumb for FDA [16]. We allowed gradi-
ent techniques to perform 10 iterations each time they were
called. Gradient information was approximated when re-
quired using Δxi = 10−13. Furthermore, we have used
the Polak–Ribiere variant of the conjugate gradient algo-
rithm [17]. We set ρe to 0.5 for the single-gradient MOEA
integration, i.e. divide the number of evaluations equally
among the gradient technique and the base MOEA. For the
combined-gradient MOEA integration we set ρe to 0.25. Fi-
nally, we used ηDecay = 0.75.

It is important to note that all variables have a bounded
range. If the variables move outside of this range, some ob-
jective values can become non–existent. It is therefore im-
portant to keep the variables within their ranges. However,
a simple repair mechanism that changes a variable to its
boundary value if it has exceeded this boundary value gives
artifacts that may lead us to draw false conclusions about
the performance of the tested MOEAs. If for instance the
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search on problem EC 6 probes a solution that has all neg-
ative values for each of the variables xi with i ≥ 1, then
the repair mechanism sets all these variables to 0. This is
especially well possible during a gradient–search procedure
because the gradient with respect to the second objective
points in the direction of all negative values for variables
xi with i ≥ 1. It is not hard to see that the solution re-
sulting after boundary repair lies on the Pareto front. We
have therefore adapted the local search operators such that
local search never changes a solution into one that lies out
of the problem range. Similarly, the sampling procedure of
the naive MIDEA is changed to prevent the generation of
solutions that are out of bounds.

4.2 Results
Adaptive operator allocation scheme
Figures 2 and 3 show convergence graphs, averaged over 100
independent runs, of the DPF →S indicator for all problems
and all MOEAs with a population size of 500. To reduce the
number of individual lines and because the individual gra-
dient techniques were already addressed in depth in earlier
work [2], we combined the results of the individual gradient
techniques into a grey area that covers the range between
the best and the worst results of the individual gradient
techniques. In that earlier work, it was already found and
explained that for problems EC 1, EC 2, EC 3 and EC 6, the
relative contribution of the gradient techniques is inferior to
the contribution by the base MOEA, especially in the begin-
ning of the run. The base MOEA is already able to move the
Pareto front by improving many solutions simultaneously.
Gradient search can then not provide additional help fast
enough because the number of evaluations required before a
solution is improved is relatively large, making local search
much more expensive. In addition, on problem EC 6 the con-
tribution by gradient techniques was found to be inferior not
only because of the parallel efficiency of the base MOEA, but
also because the multi–objective gradient is simply harder
to exploit in this problem. It can be seen from the conver-
gence graphs that our adaptive resource–allocation scheme
reduces the calls to the gradient techniques to a minimum for
these problems and therefore results in a performance close
to that of the base MOEA alone, outperforming all fixed–
ratio resource–allocation schemes. The minimal application
of the gradient techniques by our resource–allocation scheme
on EC 6 is additionally illustrated in Figure 1.

On the EC 4 problem, especially the CORL gradient tech-
nique is known from our earlier work to be a good search
operator for finding new non–dominated solutions. From the
design of problems BD1 and BD2 we also know that gradi-
ent techniques can greatly aid the base MOEA. It can be
seen from the results that our adaptive resource–allocation
scheme now is better than the base MOEA, similar to the
fixed–ratio resource–allocation schemes. In addition, with
exception of the BD1 problem, our adaptive resource–alloca-
tion scheme again outperforms the 25%–each fixed–ratio
resource–allocation scheme. The adaptive application of the
gradient techniques by our resource–allocation scheme on
EC 4, on average stimulating especially the use of CORL,
is additionally illustrated in Figure 1. On the BD1 prob-
lem, the 25%–each fixed–ratio resource–allocation scheme is
probably close to optimal when taking into account only the
number of improvements per evaluation. Indeed, our adap-
tive resource–allocation scheme was found to spend on aver-

age 75% of all evaluations on gradient techniques on the BD1

problem. The 50% CORL-only resource–allocation scheme
is however still better (it is the lower–bound of the grey
area). The reason why this specific division of resources is
not picked up by our adaptive resource–allocation scheme is
that the size of the improvements is not taken into account
(i.e. the length of the improvement in the objective space).
Taking this into account would lead to a weighted sum of
improvements. It should however be noted that a proper
weighting of the size of improvements is not straightforward
since small improvements may still be extremely valuable
when other techniques aren’t able to make improvements.
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Figure 1: Typical runs on problems EC 6 and EC 4

showing the number of calls to gradient techniques.

Alternative improvement definition (sideway steps)
From the results it becomes immediately clear that by count-
ing improvements also when a new non–dominated solution
is created that does not necessarily itself dominate the so-
lution(s) it was created from, i.e. allowing sideway steps, is
beneficial. By design, we already knew that this property
was likely to be strongly required for the BD2 problem to ef-
ficiently find a good spread along the entire Pareto–optimal
front. Indeed, the improvement obtained is remarkably large
on this problem. The gradient technique is now able to
traverse the Pareto–optimal front sideways and thereby ob-
tain a good spread along the entire Pareto–optimal front.
Even when the Pareto–optimal front can be reached in many
parts, it may still be beneficial to explicitly allow sideway
steps to obtain a nice spread along the Pareto front. In
addition, having a good spread improves diversity, which
in turn may stimulate exploration, possibly even leading to
finding solutions that are closer to the Pareto–optimal front.
The experimental results confirm this hypothesis as allow-
ing sideway steps leads to results that are never worse. On
the EC 4 problem, the results are even significantly better
although this problem is not specifically designed to require
movement along the Pareto–optimal front.

5. CONCLUSIONS
When applying EAs to specific, e.g. real–world, problems,

it is often found that the addition of local search operators
can aid in finding good solutions quickly and reliably. It is
however an important question how these local search oper-
ators should be incorporated in the evolutionary cycle. To
avoid specific heuristic decisions, an adaptive approach can
be taken. This has been well documented in the literature
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Figure 2: Convergence graphs for all MOEAs on
problems EC 1, EC 2 and EC 3.
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problems EC 4, EC 6, BD1 and BD2. The legend is
the same as used in Figure 2.
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for single–objective optimization. In this paper we have pre-
sented an adaptive resource–allocation scheme for the use of
three gradient techniques in numerical multi–objective evo-
lutionary optimization. In each generation, the effectivity
of each gradient technique and the variation operator of the
MOEA is assessed in terms of the number of improvements
per evaluation. The total number of evaluations used in the
recent most generation is then redistributed proportionally
to the effectivity of each operator for the next generation.

Our experiments show that our scheme allows for proper
adaptive allocation of computing resources to the various
operators. For problems where the gradient techniques con-
tribute little, the scheme minimizes the use of the gradient
techniques. For problems where the gradient techniques do
contribute significantly, the scheme allows the contributing
gradient techniques to be applied much more often.

In addition to the adaptive operator allocation scheme, we
have shown that by counting (and accepting) improvements
not as solutions that dominate the solutions they were con-
structed from, but as solutions that are not–dominated (i.e.
a less strict notion of improvement), the application of gra-
dient techniques allows the traversal of the Pareto front in
a sideway fashion. This property can be greatly beneficial
to the overall search efficiency of the MOEA, especially on
problems where it is easy to converge to a specific part of
the Pareto–optimal front, but it is hard to find substantially
larger parts of the Pareto–optimal front. In our experiments,
the results for using this notion of improvement were never
worse than for using the more strict notion of improvement.

We conclude that the adaptive resource–allocation scheme
that we proposed is a robust and flexible method for numer-
ical multi–objective evolutionary optimization. Although
specific choices for specific problems may yet lead to slightly
better results, our scheme is effective enough to validly argue
that there is no obvious need for practitioners to fine–tune
these choices but that instead, our scheme can be used.
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