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ABSTRACT
Evolutionary multi-objective optimization (EMO) method-
ologies have been amply applied to find a representative
set of Pareto-optimal solutions in the past decade and be-
yond. Although there are advantages of knowing the range
of each objective for Pareto-optimality and the shape of
the Pareto-optimal frontier itself in a problem for an ad-
equate decision-making, the task of choosing a single pre-
ferred Pareto-optimal solution is also an important task which
has received a lukewarm attention so far. In this paper, we
combine one such preference-based strategy with an EMO
methodology and demonstrate how, instead of one solution,
a preferred set solutions near the reference points can be
found parallely. We propose a modified EMO procedure
based on the elitist non-dominated sorting GA or NSGA-
II. On two-objective to 10-objective optimization problems,
the modified NSGA-II approach shows its efficacy in finding
an adequate set of Pareto-optimal points. Such procedures
will provide the decision-maker with a set of solutions near
her/his preference so that a better and a more reliable deci-
sion can be made.

Categories and Subject Descriptors
J.6 [Computer-aided Engineering]: Computer-aided de-
sign; J.2 [Physical Sciences and Engineering]: Engi-
neering; G.1.6 [Optimization]: Stochastic programming

General Terms
Algorithms, design

Keywords
Multi-objective optimization, reference points, preference-
based optimization, decision making.
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For the past 15 years or so, evolutionary multi-objective
optimization (EMO) methodologies have adequately demon-
strated their usefulness in finding a well-converged and well-
distributed set of near Pareto-optimal solutions [3, 6]. Due
to these extensive studies and available source codes both
commercially and freely, the EMO procedures have been
popularly applied in various problem-solving tasks and have
received a great deal of attention even by the classical multi-
criterion optimization and decision-making communities.

However, recent studies [9] have discovered that one of
the EMO methodologies – NSGA-II [8] – faces difficulty in
solving problems with a large number of objectives: (i) the
visualization of four or more objective space is a difficulty
which may limit EMO methodologies for finding the entire
Pareto-optimal set, (ii) the emphasis of all non-dominated
solutions in a population for a large number of objectives
may not produce enough selection pressure for a small-sized
population to move towards the Pareto-optimal region fast
enough and (iii) there is a need of an exponentially more
number of points to represent a higher-dimensional Pareto-
optimal front. Although the use of a large population and
a better visualization technique may extend their applica-
tions to five or more objectives, there exists a considerable
amount of doubt for the use of an EMO procedure in finding
a well-representative set of Pareto-optimal solutions in the
case of 10 or more objectives. In large-objective problem-
solving, EMO methodologies can be put to benefit in finding
a preferred and smaller set of Pareto-optimal solutions, in-
stead of the entire frontier. This approach has a practical
viewpoint and allows a decision-maker to concentrate only
to those regions on the Pareto-optimal frontier which are
of interest to her/him. EMO methodologies may provide
an advantage over their classical counterparts for another
pragmatic reason, which we discuss next.

The classical interactive multi-criterion optimization meth-
ods demand the decision-makers to suggest a reference di-
rection or reference points or other clues [16] which result
in a preferred set of solutions on the Pareto-optimal front.
In these classical approaches, based on such clues, a single-
objective optimization problem is usually formed and a sin-
gle solution is found. A single solution (although optimal
corresponding to the given clue) does not provide a good
idea of the properties of solutions near the desired region of
the front. By providing a clue, the decision-maker is not usu-
ally looking for a single solution, rather she/he is interested
in knowing the properties of solutions which correspond to
the optimum and near-optimum solutions respecting the
clue. This is because while providing the clue in terms of
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weight vectors or reference directions or reference points, the
decision-maker has simply provided a higher-level informa-
tion about her/his choice. Ideally, by providing a number
of such clues, the decision-maker in the beginning is inter-
ested in choosing a region of her/his interest. We here argue
that instead of finding a single solution near the region of
interest, if a number of solutions in the region of interest are
found, the decision-maker will be able to make a better and
more reliable decision. Moreover, if multiple such regions of
interest can be found simultaneously, decision-makers can
make a more effective and parallel search towards finding
an ultimate preferred solution.

In this paper, we use the concept of reference point method-
ology in an EMO and attempt to find a set of preferred
Pareto-optimal solutions near the regions of interest to a
decision-maker. The modified NSGA-II approach suggested
here is able to solve as many as 10 objectives effectively.
All simulation runs on test problems and on some engineer-
ing design problems amply demonstrate their usefulness in
practice and show another use of a hybrid-EMO methodol-
ogy in allowing the decision-maker to solve multi-objective
optimization problems better and with more confidence.

2. PREFERENCE-BASED EMO APPROACHES
In the context of finding a preferred set of solutions, in-

stead of the entire Pareto-optimal solutions, quite a few
studies have been made in the past. The approach by Deb
[5] was motivated by the goal programming idea [13] and
required the DM to specify a goal or an aspiration level for
each objective. Based on that information, Deb modified his
NSGA approach to find a set of solutions which are closest
to the supplied goal point, if the goal point is an infeasi-
ble solution and find the solution which correspond to the
supplied goal objective vector, if it is a feasible one. The
method did not care finding the Pareto-optimal solutions
corresponding to the multi-objective optimization problem,
rather attempted to find solutions satisfying the supplied
goals.

The weighted-sum approach for multi-objective optimiza-
tion was utilized by a number of researchers in finding a few
preferred solutions. The method by Cvetkovic and Parmee
[4] assigned each criterion a weight wi, and additionally re-
quired a minimum level for dominance τ . Then, the def-
inition of dominance was redefined as follows: x � y ⇔P

i:fi(x)≤fi(y) wi ≥ τ, with a strict inequality for at least one

objective. To facilitate specification of the required weights,
they suggested a method to turn fuzzy preferences into spe-
cific quantitative weights. However, since for every criterion
the dominance scheme only considers whether one solution
is better than another solution, and not by how much it is
better, this approach allows only a very coarse guidance and
is difficult to control. Jin and Sendhoff also proposed a way
to convert fuzzy preferences into weight intervals, and then
used their dynamic weighted aggregation EA [14] to obtain
the corresponding solutions. This approach converted the
multi-objective optimization problem into a single objective
optimization problem by weighted aggregation, but varied
the weights dynamically during the optimization run within
the relevant boundaries.

In the guided multi-objective EA (G-MOEA) proposed by
Branke et al. [2], user preferences were taken into account
by modifying the definition of dominance. The approach
allowed the DM to specify, for each pair of objectives, maxi-

mally acceptable trade-offs. For example, in the case of two
objectives, the DM could define that an improvement by one
unit in objective f2 is worth a degradation of objective f1

by at most a12 units. Similarly, a gain in objective f1 by
one unit is worth at most a21 units of objective f2. This
information is then used to modify the dominance scheme
as follows for two objectives:

x � y ⇔ (f1(x) + a12f2(x) ≤ f1(y) + a12f2(y)) ∧
(a21f1(x) + f2(x) ≤ a21f1(y) + f2(y)),

with inequality in at least one case. Although the idea works
quite well for two objectives and was well utilized for dis-
tributed computing purposes elsewhere [12], providing all
pair-wise information in a problem having a large number
of objectives becomes a real difficulty.

In order to find a biased distribution anywhere on the
Pareto-optimal front, a previous study [7] used a biased fit-
ness sharing approach and implemented on NSGA. Based on
a weight vector specifying the importance of one objective
function over the other, a biased distribution was obtained
on two-objective problems. However, the approach could
not be used to obtain a biased distribution anywhere on the
Pareto-optimal front and in an controlled manner. Recently,
Branke and Deb [1] suggested a modified and controllable bi-
ases sharing approach in which by specifying a reference di-
rection (or a linear utility function), a set of Pareto-optimal
solutions near the best solution of the utility function were
found. To implement, all solutions were projected on to
the linear hyper-plane and crowding distance values were
computed by the ratio of the distances of neighboring so-
lutions in the original objective space and on the projected
hyper-plane. Thus, solutions which lie on a plane parallel
to the chosen hyper-plane would have a comparatively large
crowding distance and would be preferred. The complete
process was shown to converge near to the optimal solution
to the utility function in a number of two and three-objective
optimization problems. The procedure demanded two user-
defined parameters: a reference direction and a parameter
which controls the extent of diversity needed in the final set
of solutions.

The above preference-based procedures are useful in their
own merits and are some ways to find a preferred set of
Pareto-optimal solutions. However, each of the above method-
ologies, including the modified biased sharing approach, can-
not be used for finding points corresponding to multiple pref-
erence conditions simultaneously. Moreover, the above ap-
proaches do not provide an easy relationship between the
supplied information (guided domination cone or reference
direction) and the location of the corresponding preferred
region on the Pareto-optimal front. In this paper, we make
use some of the above principles and suggest a new and novel
procedure which have the following capabilities:

1. Multiple preference conditions can be specified simul-
taneously.

2. For each preference condition, a set of Pareto-optimal
solutions close to the supplied reference point is the
target set of solutions, instead of one solution.

3. The method is indifferent to the shape of the Pareto-
optimal frontier (such as convex or non-convex, contin-
uous or discrete, connected or disconnected and oth-
ers).
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4. The method is applicable to a large number of objec-
tives (say, 10 or more), a large number of variables,
and linear or non-linear constraints.

The proposed procedure is a way of finding a preferred set
of solutions in an interactive multi-objective optimization
problem, which is motivated by the classical reference point
approach, which we discuss next.

3. REFERENCE POINT INTERACTIVE AP-
PROACH

As an alternative to the value function methods, Wierzbicki
[20] suggested the reference point approach in which the goal
is to achieve a weakly, ε-properly or Pareto-optimal solu-
tion closest to a supplied reference point of aspiration level
based on solving an achievement scalarizing problem. Given
a reference point z for an M -objective optimization problem
of minimizing (f1(x), . . . , fi(x)) with x ∈ S, the following
single-objective optimization problem is solved for this pur-
pose:

Minimize maxM
i=1 [wi(fi(x) − zi)] ,

Subject to x ∈ S.
(1)

Here, wi is the i-th component of a chosen weight vector
used for scalarizing the objectives. Figure 1 illustrates the
concept. For a chosen reference point, the closest Pareto-
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f2
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w1

z
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Figure 1: Classical reference point approach.

optimal solution (in the sense of the weighted-sum of the ob-
jectives) is the target solution to the reference point method.
To make the procedure interactive and useful in practice,
Wierzbicki [20] suggested a procedure in which the obtained
solution z′ is used to create M new reference points, as fol-
lows:

z(j) = z + (z′ − z) · e(j), (2)

where e(j) is the j-th coordinate direction vector. For the
two-objective problem shown in the figure, two such new
reference points (zA and zB) are also shown. New Pareto-
optimal solutions are then found by forming new achieve-
ment scalarizing problems. If the decision-maker is not satis-
fied with any of these Pareto-optimal solutions, a new refer-
ence point is suggested and the above procedure is repeated.
It is interesting to note that the reference point may be a fea-
sible one (deducible from a solution vector) or an infeasible

point which cannot be obtained from any solution from the
feasible search space. If a reference point is feasible and is
not a Pareto-optimal solution, the decision-maker may then
be interested in knowing solutions which are Pareto-optimal
and close to the reference point. On the other hand, if the
reference point is an infeasible one, the decision-maker would
be interested in finding Pareto-optimal solutions which are
close to the supplied reference point.

To utilize the reference point approach in practice, the
decision-maker needs to supply a reference point and a weight
vector at a time. The location of the reference point causes
the procedure to focus on a certain region in the Pareto-
optimal frontier, whereas a supplied weight vector makes
a finer trade-off among the the objectives and focuses the
procedure to find a single Pareto-optimal solution (in most
situations) trading-off the objectives. Thus, the reference
point provides a higher-level information about the region
to focus and weight vector provides a more detailed infor-
mation about what point on the Pareto-optimal front to
converge.

4. PROPOSED REFERENCE POINT BASED
EMO APPROACH

The classical reference point approach discussed above,
will find a solution depending on the chosen weight vector
and is therefore subjective. Moreover, the single solution is
specific to the chosen weight vector and does not provide
any information about how the solution would change with
a slight change in the weight vector. To find a solution for
another weight vector, a new achievement scalarizing prob-
lem needs to be formed again and solved. Moreover, de-
spite some modifications [19], the reference point approach
works with only one reference point at a time. However, the
decision-maker may be interested in exploring the preferred
regions of Pareto-optimality for multiple reference points si-
multaneously.

With the above principles of reference point approaches
and difficulties with the classical methods, we propose an
EMO methodology by which a set of Pareto-optimal solu-
tions near a supplied set of reference points will be found,
thereby eliminating the need of any weight vector and the
need of applying the methodologies again and again. In-
stead of finding a single solution corresponding to a particu-
lar weight vector, the proposed procedure will attempt to a
find a set of solutions in the neighborhood of the correspond-
ing Pareto-optimal solution, so that the decision-maker can
have a better idea of the region rather than a single solution.

To implement the procedure, we use the elitist non-dominated
sorting GA or NSGA-II [8]. However, a similar strategy can
also be adopted with any other EMO methodology. In the
following, we describe an iteration of the proposed reference-
point-based NSGA-II procedure (we call here as R-NSGA-
II) for which the decision-maker supplies one or more ref-
erence points. As usual, both parent and offspring popu-
lations are combined together and a non-dominated sorting
is performed to classify the combined population into dif-
ferent levels of non-domination. Solutions from the best
non-domination levels are chosen front-wise as before and
a modified crowding distance operator is used to choose a
subset of solutions from the last front which cannot be en-
tirely chosen to maintain the population size of the next
population. The following update is performed:
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Step 1: For each reference point, the normalized Euclidean
distance of each solution of the front is calculated and
the solutions are sorted in ascending order of distance.
This way, the solution closest to the reference point is
assigned a rank of one.

Step 2: After such computations are performed for all ref-
erence points, the minimum of the assigned ranks is
assigned as the crowding distance to a solution. This
way, solutions closest to all reference points are as-
signed the smallest crowding distance of one. The so-
lutions having next-to-smallest Euclidean distance to
all reference points are assigned the next-to-smallest
crowding distance of two, and so on. Thereafter, solu-
tions with a smaller crowding distance are preferred.

Step 3: To control the extent of obtained solutions, all so-
lutions having a sum of normalized difference in objec-
tive values of ε or less between them are grouped. A
randomly picked solution from each group is retained
and rest all group members are assigned a large crowd-
ing distance in order to discourage them to remain in
the race.

The above procedure provides an equal emphasis of solu-
tions closest to each reference point, thereby allowing multi-
ple regions of interest to be found simultaneously in a single
simulation run. Moreover, the use of the ε-based selection
strategy (which is also similar to the ε-dominance strategies
suggested elsewhere [15, 10]) ensures a spread of solutions
near the preferred Pareto-optimal regions.

In the parlance of the classical reference point approach,
the above procedure is equivalent to using a weight vec-
tor emphasizing each objective function equally or using
wi = 1/M . If the decision-maker is interested in biasing
some objectives more than others, a suitable weight vec-
tor can be used with each reference point and instead of
emphasizing solutions with the shortest Euclidean distance
from a reference point, solutions with a shortest weighted
Euclidean distance from the reference point can be empha-
sized. We replace the Euclidean distance measure with the
following weighted Euclidean distance measure:

dij =

vuut MX
i=1

wi

„
fi(x) − zi

fmax
i − fmin

i

«2

, (3)

where fmax
i and fmin

i are the population maximum and min-
imum function values of i-th objective.

5. SIMULATION RESULTS
We now show simulation results on two to 10 objectives

using the proposed methodology. In all simulations, we use
the SBX operator with an index of 10 and polynomial muta-
tion with an index 20. We also use a population of size 100
and run till 500 generations to investigate if a good distri-
bution of solutions remain for a large number of iterations.

5.1 Two-Objective ZDT Test Problems
In this section, we consider three ZDT test problems.

5.1.1 Test Problem ZDT1
First, we consider the 30-variable ZDT1 problem. This

problem has a convex Pareto-optimal front spanning con-
tinuously in f1 ∈ [0, 1] and follows a function relationship:

f2 = 1−√
f1. Figure 2 shows the effect of different ε values

on the distribution. Two reference points are chosen for this
problem and are shown in filled diamonds. Four different ε
values of 0.0001, 0.001, 0.005 and 0.01 are chosen. Solutions
with ε = 0.0001 are shown on the true Pareto-optimal front.
It is interesting to note how solutions close to the two chosen
reference points are obtained on the Pareto-optimal front.
Solutions with other ε values are shown with an offset to the
true Pareto-optimal front. It is clear that with a large value
of ε, the range of obtained solutions is also large. Thus, if
the decision-maker would like to obtain a large neighbor-
hood of solutions near the desired region, a large value of ε
can be chosen. For a particular population size and a chosen
number of reference points, the extent of obtained solutions
gets fixed by maintaining a distance between consecutive
solutions of an amount ε.

Next, we consider five reference points, of which two are
feasible and three are infeasible. Figure 3 shows the obtained
solutions with ε = 0.001. Near all five reference points, a
good extent of solutions are obtained on the Pareto-optimal
front.

To investigate the effect of a weight-vector in obtaining the
preferred distribution (similar to the classical achievement
scalarization approach), we use the normalized Euclidean
distance measure given in equation 3. Figure 4 shows the
obtained distribution with R-NSGA-II with ε = 0.001 on
ZDT1 problem for three different weight vectors: (0.5, 0.5),
(0.2, 0.8) and (0.8, 0.2). A reference point z = (0.3, 0.3) is
used. As expected, for the first weight vector, the obtained
solutions are closest to the reference point. For the second
weight vector, more emphasis on f2 is given, thereby finding
solutions which are closer to minimum of f2. An opposite
phenomenon is observed with the weight vector (0.8, 0.2), in
which more emphasis on f1 is provided. These results show
that if the decision-maker is interested in biasing some ob-
jectives more than the others, a biased distribution closest
to the chosen reference point can be obtained by the pro-
posed R-NSGA-II. In all subsequent simulations, we use a
uniform weight vector, however a non-uniform weight-vector
can also be used, if desired.

5.1.2 Test Problem ZDT2
The 30-variable ZDT2 problem is considered next. This

problem has a non-convex Pareto-optimal front ranging in
f1.f2 ∈ [0, 1] with f2 = 1 − f2

1 . Three reference points are
chosen and the obtained set of points with ε = 0.001 are
shown in Figure 5. It can be clearly seen that non-convexity
of the Pareto-optimal front does not cause any difficulty to
the proposed methodology.

5.1.3 Test Problem ZDT3
The 30-variable ZDT3 problem has a disconnected set of

Pareto-optimal fronts. Three reference points are chosen
and the obtained set of solutions found using ε = 0.001 are
shown in Figure 6. It is interesting to note that correspond-
ing to the reference point lying between the two disconnected
fronts, solutions on both fronts are discovered, providing an
idea of the nature of the Pareto-optimality at the region. By
using a classical approach, a only one solution on one of the
sub-fronts would have been discovered.

This study also reveals an important matter with the pro-
posed approach, which we discuss next. Since the complete
Pareto-optimal front is not the target of the approach and
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Figure 2: Effect of ε in obtaining
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tions on ZDT1.
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Figure 4: Biased preferred solu-
tions with different weight vectors
around a reference point for ZDT1.
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Figure 5: Preferred solutions for
three reference points with ε =
0.001 on ZDT2.
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Figure 7: Preferred solutions for
two reference points with ε = 0.01
on DTLZ2.

since the proposed procedure emphasizes non-dominated so-
lutions, some non-Pareto-optimal solutions can be found
by the proposed procedure particularly in problems hav-
ing non-continuous Pareto-optimal fronts. Solution A (refer
Figure 6) is one such point which is not a Pareto-optimal
solution but is found as a part of the final subpopulation
by the proposed approach. To make this solution domi-
nated, there exist no neighboring solution in the objective
space. Only when solutions such as solution B are present
in the population, such spurious solutions (like solution A)
will not remain in the final population. However, the cho-
sen reference points can be such that the solution B may
not be a part of the preferred solutions. In such situations,
such spurious solutions (like solution A) may appear in the
final population. However, to ensure the Pareto-optimality
of a solution, an ε-constraint approach can be applied with
f1 ≤ fA

1 constraint. If a solution dominating solution A is
found by the ε-constraint approach, then solution A cannot
be a member of the Pareto-optimal set. However, in this
paper we realize the need of such a second-level optimiza-
tion strategy for ensuring Pareto-optimality, but we do not
perform such a study here.

5.2 Three-Objective DTLZ2 Problem
The 11-variable DTLZ2 problem has a three-dimensional,

non-convex, Pareto-optimal front. We use two reference
points as shown in Figure 7. We use ε = 0.01 here. A
good distribution of solutions near the two reference points
are obtained. This indicates the ability of the proposed pro-
cedure in solving three-objective optimization problems as
well.

5.3 Five-Objective DTLZ2 Problem
Next, we apply the proposed procedure with ε = 0.01 to

the 14-variable DTLZ2 problem. Two reference points are
chosen as follows: (i) (0.5, 0.5, 0.5, 0.5, 0.5) and (ii) (0.2,
0.2, 0.2, 0.2, 0.8). Figure 8 shows the value-path plot of the
five-objective solutions. It is clear that two distinct sets of
solutions near the above reference points are obtained by the
proposed procedure. Since the Pareto-optimal solutions in
the DTLZ2 problem satisfy

PM
i=1 f2

i equal to one, we com-
pute the left side of this expression for all obtained solutions
and the values are found to lie within [1.000, 1.044] (at most
4.4% from one), thereby meaning that all solutions are very
close to the true Pareto-optimal front.
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Figure 8: Preferred solutions for two reference
points with ε = 0.01 on five-objective DTLZ2.

5.4 10-Objective DTLZ2 Problem
We then attempt to solve 19-variable DTLZ2 problem

with one reference point: fi = 0.25 for all i = 1, 2, . . . , 10.
We use ε = 0.01 and the obtained distribution is shown
in Figure 9. Although the objective values can vary in
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Figure 9: Preferred solutions for one reference point
with ε = 0.01 on 10-objective DTLZ2.

[0,1], the points concentrates near fi = 1/
√

10 or 0.316,
which would be the region closest to the chosen reference
point. When we compute

P10
i=1 f2

i of all obtained solutions,
they are found to be exactly equal to one, thereby meaning
that all R-NSGA-II solutions are on the true Pareto-optimal
front. This study shows that the proposed procedure is
also able to solve a 10-objective problem, although it has
been shown elsewhere [9] that the original NSGA-II faces
difficulty in finding a converged and well-distributed set of
solutions on the true Pareto-optimal front for the same 10-
objective DTLZ2 problem. Thus, it can be concluded that if
a small region on a large-dimensional Pareto-optimal front
is the target, the proposed procedure is a way to find it in
a reasonable amount of computations.

6. TWO ENGINEERING DESIGN PROBLEMS
Next, we apply the proposed methodology to two engi-

neering design problems, each having two objectives.

6.1 Welded Beam Design Problem
The welded beam design problem has four real-parameter

variables x = (h, �, t, b) and four non-linear constraints. One
of the two objectives is to minimize the cost of fabrication
and other is to minimize the end deflection of the welded
beam [6]:

Minimize f1(�x) = 1.10471h2� + 0.04811tb(14.0 + �),
Minimize f2(�x) = 2.1952

t3b
,

Subject to g1(�x) ≡ 13, 600 − τ (�x) ≥ 0,
g2(�x) ≡ 30, 000 − σ(�x) ≥ 0,
g3(�x) ≡ b − h ≥ 0,
g4(�x) ≡ Pc(�x) − 6, 000 ≥ 0,
0.125 ≤ h, b ≤ 5.0,
0.1 ≤ �, t ≤ 10.0.

(4)
There are four constraints. The stress and buckling terms
are non-linear to design variables and are given as follows
[17]:

τ(�x) =

r
(τ ′)2 + (τ ′′)2 + (�τ ′τ ′′)/

q
0.25(�2 + (h + t)2),

τ ′ =
6, 000√

2h�
,

τ ′′ =
6, 000(14 + 0.5�)

p
0.25(�2 + (h + t)2)

2 {0.707h�(�2/12 + 0.25(h + t)2)} ,

σ(�x) =
504, 000

t2b
,

Pc(�x) = 64, 746.022(1 − 0.0282346t)tb3 .

The objectives are conflicting in nature and NSGA-II is ap-
plied elsewhere to find the optimized non-dominated front
to this problem [6]. Here, instead of finding the complete
Pareto-optimal front, we are interested in finding the op-
timized trade-off regions closest to three chosen reference
points: (i) (4,0.0030), (ii) (20,0.0020), and (iii) (40,0.0002).
Figure 10 shows the obtained solutions. To investigate where
these regions are with respect to the complete trade-off front,
we also show the original NSGA-II solutions with a ‘+’.
First, the obtained preferred solutions are found to be falling

Complete front
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Obtained
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Figure 10: Preferred solutions for three reference
points with ε = 0.001 on the welded beam design
problem.

on the trade-off frontier obtained using the original NSGA-
II. Second, solutions close to the given reference points are
found. It is interesting to note that although the second
reference point is feasible. meaning that there may exist
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a solution vector x, which will produce the given reference
point (that is, corresponding to a cost of 20 units and a de-
flection of 0.002 units), the task is to find, if possible, a set of
solutions which are better than the given reference point in
all objectives. The figure shows that the supplied reference
point is not an optimal solution and there exist a number of
solutions which dominate this solution x. Although shortest
distances from the reference points are preferred, the em-
phasis of non-dominated solutions over dominated solutions
enables Pareto-optimal solutions to be found.

Thus, if the decision-maker is interested in knowing trade-
off optimal solutions in three major areas (minimum cost,
intermediate to cost and deflection and minimum deflection)
the proposed procedure is able to find solutions near the
supplied reference points, instead of finding solution on the
entire Pareto-optimal front, thereby allowing the decision-
maker to consider only a few solutions and that too solutions
which lie in the regions of her/his interest.

6.2 Spring Design Problem
Finally, we consider another engineering design problem

in which two of the three design variables are discrete in
nature, thereby causing the Pareto-optimal front to have a
discrete set of solutions. Diameter of the wire (d), diameter
of the spring (D) and the number of turns (N) are to be
found for minimizing volume of spring and minimizing the
stress developed due to the application of a load. Denoting
the variable vector x = (x1, x2, x3) = (N, d, D), we write
the two-objective, eight-constraint optimization problem as
follows [11]:

Minimize f1(�x) = 0.25π2x2
2x3(x1 + 2),

Minimize f2(�x) = 8KPmaxx3
πx23 ,

Subject to g1(�x) = lmax − Pmax
k

− 1.05(x1 + 2)x2 ≥ 0,
g2(�x) = x2 − dmin ≥ 0,
g3(�x) = Dmax − (x2 + x3) ≥ 0,
g4(�x) = C − 3 ≥ 0,
g5(�x) = δpm − δp ≥ 0,
g6(�x) = Pmax−P

k
− δw ≥ 0,

g7(�x) = S − 8KPmaxx3
πx23 ≥ 0,

g8(�x) = Vmax − 0.25π2x2
2x3(x1 + 2) ≥ 0,

x1 is integer, x2 is discrete, x3 is continuous.
(5)

The parameters used are as follows:

K = 4C−1
4C−4

+ 0.615x2
x3

, P = 300 lb, Dmax = 3 in,

Pmax = 1, 000 lb, δw = 1.25 in, δp = P
k

,
δpm = 6 in, S = 189 ksi, dmin = 0.2 in,

G = 11, 500, 000 lb/in2, Vmax = 30 in3, k = Gx2
4

8x1x33 ,

lmax = 14 in, C = x3/x2.

The 42 discrete values of d are given below:
0
BBBBBBB@

0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132,
0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020,
0.023, 0.025, 0.028, 0.032, 0.035, 0.041,
0.047, 0.054, 0.063, 0.072, 0.080, 0.092,
0.105, 0.120, 0.135, 0.148, 0.162, 0.177,
0.192, 0.207, 0.225, 0.244, 0.263, 0.283,
0.307, 0.331, 0.362, 0.394, 0.4375, 0.5.

1
CCCCCCCA

The design variables d and D are treated as real-valued
parameters in the NSGA-II with d taking discrete values
from the above set and N is treated with a five-bit binary
string, thereby coding integers in the range [1,32]. While
SBX and polynomial mutation operators are used to handle

d and D, a single-point crossover and bit-wise mutation are
used to handle N .

We apply the R-NSGA-II with two reference points: (4,
180,000) (feasible) and (25, 20,000) (infeasible) with a uni-
form weight vector and with ε = 0.001. Figure 11 shows
the R-NSGA-II solutions which are found to be closer to
the two reference points. The trade-off optimized solutions
found by the original NSGA-II are also shown. It is inter-
esting to note how the proposed preferred technique can be
used to find a set of solutions near some chosen aspiration
points, supplied by the decision-maker.

Reference point
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Figure 11: Preferred solutions around two reference
points for the spring design problem.

7. CONCLUSIONS
In this paper, we have addressed an important task of

combining EMO methodologies with a classical multi-criterion
decision-making approach to not find a single optimal solu-
tion, but to find a set of solutions near the desired region
of decision-maker’s interest. With a number of trade-off so-
lutions in the region of interests we have argued that the
decision-maker would be able to make a better and more
reliable decision than with a single solution. The refer-
ence point approach is a common methodology in multi-
criterion decision-making, in which one or more reference
(goal) points are specified by the decision-maker before hand.
The target in such an optimization task is then to identify
the Pareto-optimal region closest to the reference points. In
the reference point based NSGA-II approach, the niching
operator of the original NSGA-II has been updated to em-
phasize such solutions. The proposed procedure has been
applied to a number of two to 10-objective optimization
problems with two to five reference points and in all cases the
desired set of solutions have been obtained. The approach
involves a new parameter (ε) which controls the extent of
the distribution of solutions near the closest Pareto-optimal
solution.

The main crux of this paper is exploitation of the popu-
lation approach of an EMO procedure in finding more than
one solutions not on the entire Pareto-optimal frontier, but
in the regions of Pareto-optimality which are of interest to
the decision-maker. The population slots are well utilized
in not only making an implicit parallel search [18], but also
to find (i) multiple regions of interest simultaneously and

641



(ii) multiple trade-off solutions in the close vicinity of each
desired region of interest.

The reference points can be chosen by having an idea
of the extent of Pareto-optimal solutions through compu-
tations of the ideal and the nadir point. The ideal point
can be found by minimizing each objective individually and
constructing an objective vector with the minimum objec-
tive values. The nadir point is the objective vector which
corresponds to the worst objective value of Pareto-optimal
solutions. The estimation of the nadir point is not an easy
task. A recent study has suggested an EMO-based nadir-
point estimation procedure efficiently for problems having
as many as 10 objectives [9]. Even if the supplied reference
points are not close to the Pareto-optimal frontier, the pro-
posed methodology can find Pareto-optimal solutions closest
to the reference points.

Having been well demonstrating the task of finding multi-
ple Pareto-optimal solutions in multi-objective optimization
problems, the EMO researchers and applicationists should
now concentrate in devising methodologies of solving the
complete task of finding preferred and Pareto-optimal solu-
tions in an interactive manner with a decision-maker. Al-
though the ultimate target in such an activity is to come up
with a single solution, the use of an EMO procedure can be
well applied with a decision-making strategy in finding a set
of preferred solutions in regions of interest to the decision-
maker, so that the solutions in a region collectively bring out
properties of the solutions there. Such an activity will then
allow the decision-maker to first make a higher-level search
of choosing a region of interest on the Pareto-optimal front,
rather than using a single solution to focus on a particu-
lar solution. At IIT Kanpur, we are currently working on
an interactive EMO procedure in which the reference-point
based strategy is one of the options of finding a preferred
solution.
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