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ABSTRACT
Nadir point plays an important role in multi-objective opti-
mization because of its importance in estimating the range
of objective values corresponding to desired Pareto-optimal
solutions and also in using many classical interactive opti-
mization techniques. Since this point corresponds to the
worst Pareto-optimal solution of each objective, the task
of estimating the nadir point necessitates information about
the whole Pareto optimal frontier and is reported to be a dif-
ficult task using classical means. In this paper, for the first
time, we have proposed a couple of modifications to an exist-
ing evolutionary multi-objective optimization procedure to
focus its search towards the extreme objective values front-
wise. On up to 20-objective optimization problems, both
proposed procedures are found to be capable of finding a
near nadir point quickly and reliably. Simulation results are
interesting and should encourage further studies and appli-
cations in estimating the nadir point, a process which should
lead to a better interactive procedure of finding and arriving
at a desired Pareto-optimal solution.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Nonlinear programming, un-
constrained optimization

General Terms
Algorithms, performance, experimentation

Keywords
Nadir objective vector, nadir point, multi-objective opti-
mization, non-dominated sorting GA, evolutionary multi-
objective optimization (EMO), ideal point.

1. INTRODUCTION
In a multi-objective optimization procedure, an estima-

tion of the nadir objective vector is an important task. The
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nadir objective vector represents the worst value of each ob-
jective function corresponding to the entire Pareto-optimal
set. Sometimes, this point is confused with the point repre-
senting the worst objective value of the entire search space,
which is often an over-estimation of the nadir objective vec-
tor. Along with the ideal objective vector (a point con-
structed by the best value of each objective), the nadir ob-
jective vector is used to normalize objective functions [11], a
matter often desired for an adequate functioning of a multi-
objective optimization algorithm. With these two extreme
values, the objective functions can be scaled so that each
scaled objective takes values more or less in the same range.
These scaled values can be used for optimization with dif-
ferent algorithms like the weighted-sum approach or the
Tchebycheff metric method [11, 3]. Such a scaling procedure
may help in reducing the computational cost by solving the
problem faster [13]. Apart from normalizing the objective
function values, nadir objective vector is also used for finding
Pareto-optimal solutions by different interactive algorithms
like guess method and others [11]. The general idea of these
methods is to maximize the minimum weighted deviation
from the nadir objective vector. Moreover, the knowledge of
nadir and ideal objective values helps the decision-maker in
adjusting her/his expectations on a realistic level by knowing
the range of each objective and can then be used to focus on
a desired region. Furthermore, in visualizing Pareto-optimal
solutions, the knowledge of the nadir objective vector is es-
sential. Along with the ideal point, the nadir point will
then provide the range of each objective to facilitate in vi-
sualizing the trade-off information through value paths, bar
charts, petal diagrams etc. [11, 12].

Since estimating the nadir point necessitates information
about the whole Pareto optimal frontier, any procedure of
estimating this point should involve finding Pareto-optimal
solutions. This makes the task more difficult compared to
finding the ideal point [10], which corresponds to the best
objective values over the entire search space. Since evo-
lutionary multi-objective optimization (EMO) algorithms
attempt to find the entire Pareto-optimal frontier, EMO
methodologies stand as viable candidates for this task. How-
ever, an estimation of the nadir objective vector need not
involve finding intermediate Pareto-optimal solutions. Only
extreme solutions corresponding to the Pareto-optimal set
will be adequate for the task. In this paper, we have sug-
gested two modifications to an existing EMO methodology
– elitist non-dominated sorting GA or NSGA-II [4] – for em-
phasizing extreme Pareto-optimal solutions, thereby leading
to the estimate of the nadir point. Simulation results on
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up to 20-objective (rarely solved using an EMO) optimiza-
tion problems demonstrate that one of the two approaches
– the extremized crowded NSGA-II – is capable of finding a
near nadir point more quickly and reliably than the original
NSGA-II.

2. NADIR OBJECTIVE VECTOR
Multi-objective optimization problems involve a number

of conflicting objectives (fj , j = 1, 2, . . . , M) and theoret-
ically give rise to a set of Pareto-optimal solutions, which
provide a trade-off among the objectives. Let us consider
a two-objective minimization problem, as shown in Figure
1. To calculate the nadir objective vector if f1 and f2 are
maximized individually, we shall obtain points A and B,
respectively. These two points produce an extreme point
zw (termed as the ‘worst objective vector’ in the figure),
which is not the true nadir point. A nadir point must be
constructed with the worst objective values of all Pareto-
optimal solutions, and not with the worst objective values
of the entire search space. Thus, to find the nadir point, the
Pareto-optimality of the solutions used for constructing the
nadir point must be first established. This makes the task
of finding the nadir point difficult.

3. EXISTING METHODS
To overcome this difficulty, researchers have suggested dif-

ferent methods. Benayoun et al. [1] introduced the first
interactive multi-objective optimization method using an
estimated nadir point (although authors did not use the
term ‘nadir’), which was to be found by using a payoff ta-
ble method. In this method, a table is constructed where
i-th row of the table represents values of all other objec-
tive functions calculated at the point where i-th objective is
minimum. Thereafter, the maximum value of the i-th col-
umn can be considered as an estimate of the upper bound of
the i-th objective and these maximum values together may
be used to construct the estimated nadir vector. The main
difficulty of such an approach is that corresponding to the
minimum solution of an objective there may exist more than
one solutions having different values of other objectives, es-
pecially in problems having more than two objectives. Con-
sider the Pareto-optimal front of a typical three-objective
optimization problem shown in Figure 2. The minimum
value of the first objective function is f1 = 0. It can be
seen from the figure that there exist a number of solutions
having f1 = 0 and different values of f2 and f3 (all solu-
tions on the line BC). In the payoff table method, when the

following three solutions are found f (1) = (0, 0, 1)T (point

C), f (2) = (1, 0, 0)T (point A), and f (3) = (0, 1, 0)T (point
B) corresponding to minimizations of f1, f2, and f3, the
true nadir point znad = (1, 1, 1)T can be found. However,

if solutions f (1) = (0, 0.2, 0.8)T , f (2) = (0.5, 0, 0.5)T and

f (3) = (0.7, 0.3, 0)T (marked with open circles) are found
corresponding minimizations of f1, f2, and f3, respectively,
a wrong estimate z′ = (0.7, 0.3, 0.8)T of the nadir point will
be made. The figure shows such a wrong nadir point rep-
resents only a portion (shown dark-shaded) of the Pareto-
optimal front.

Later, Iserman and Steuer [9] demonstrated the difficul-
ties of finding a nadir point even for linear problems and em-
phasized the need of using a method better than the payoff
table method. Dessouky et al. [7] suggested three heuristic

methods and Korhonen et al. [10] suggested another heuris-
tic method for this purpose. Let us point out that all these
methods suggested have been developed for multi-objective
linear problems where all objectives and constraints are lin-
ear functions of the variables.

Ehrgott and Tenfelde-Podehl [8] proposed an algorithm
based on subproblems, that is, to find the nadir point for
an M -objective problem, Pareto-optimal solutions of lower-
dimensional problems are used. Such a requirement may
make the algorithm computationally impractical beyond three
objectives. Moreover, authors did not suggest how to ex-
tend the idea to nonlinear problems. It must be emphasized
that although the determination of the nadir point depends
on finding the worst objective values in the set of Pareto-
optimal solutions, even for linear problems, this is a difficult
task.

4. EVOLUTIONARY APPROACH
Because the determination of the nadir point is associated

with the Pareto-optimal solutions, thereby hinting that a
determination of a set of Pareto-optimal solutions will facil-
itate the estimation of the nadir point. For the past decade
or so, evolutionary multi-objective optimization (EMO) al-
gorithms have been gaining popularity because of their abil-
ity to find multiple, wide-spread, Pareto-optimal solutions
simultaneously in a single simulation run [3, 2]. Since they
aim at finding a set of Pareto-optimal solutions, an EMO
procedure can be an ideal way to find the nadir objec-
tive vector. However, the naive procedure of first finding a
Pareto-optimal set and then determining the nadir objective
vector from the set seems to cause a dilemma. Recall that
the main purpose of the nadir objective vector is to normal-
ize the objectives so an interactive multi-objective optimiza-
tion algorithm can be used to find a desired Pareto-optimal
solution. However, if an EMO is used to find a representa-
tive Pareto-optimal set, there is no major reason for finding
the nadir point. In an interactive sense [5], an application of
an EMO procedure can provide an idea of the nature of the
Pareto-optimal set and subsequent applications of an EMO
procedure to a desired (or preferred) region of the Pareto-
optimal set may be equivalent to the nadir point based in-
teractive methods.

However, EMO procedures use the concept of Pareto-
dominance in their working principles and have been criti-
cized for the ineffectiveness for handling a large number of
objectives (more than five objectives or so). To represent a
high-dimensional Pareto-optimal front requires an exponen-
tially large number of points [3]. This causes EMO proce-
dures to be inadequate to find the complete Pareto-optimal
front in the first place. Thus, for handling a large number
of objectives, it may be not advantageous to use the two-
pronged EMO procedure of finding the Pareto-optimal front
and focusing in a desired region. Instead, the EMO pro-
cedure may be used to achieve both tasks simultaneously
in one application in which the main focus is to distribute
the population into those regions of the Pareto-optima set
which will construct the nadir point correctly. For the three-
objective minimization problem of Figure 2, the proposed
EMO procedure should distribute its population members
near regions A, B, and C, instead of on the entire Pareto-
optimal set so that the true nadir point can be found quickly.
In the following section, we describe two EMO procedures
for this purpose.
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Figure 3: Extremized crowding
distance calculation.

5. ELITIST NON-DOMINATED SORTING
GENETIC ALGORITHM (NSGA-II)

Both EMO procedures proposed here use a specific proce-
dure – elitist non-dominated sorting genetic algorithm (NSGA-
II) [4] – which has lately received a great deal of atten-
tion due to its simplicity, computationally fast approach and
availability of source codes.

5.1 NSGA-II Crowding Distance Calculation
One primary objective of a multi-objective optimization

problem is to preserve diversity along the front. To keep
diversity one needs to measure the density of solutions in a
non-dominated front. The very simple way of doing it is by
clustering using Euclidean distances between solutions, but
the amount of computation required is very large. In the
original NSGA-II this computation is done in a fast man-
ner. Crowding distance is measured by adding objective-
wise normalized difference between two neighboring solu-
tions of a solution i. The extreme solutions are assigned
an arbitrarily large crowding distance. Thereafter, solutions
are sorted from largest crowding distance to lowest and the
required number of solutions are picked from the top of the
sorted list.

6. MODIFICATIONS TO NSGA-II
Though NSGA-II provides importance to the extreme so-

lutions of the non-dominated front, the main emphasis is
placed in maintaining a good diversity of solutions on the
entire front. However, as discussed above, to find the nadir
point we would need to distribute NSGA-II population mem-
bers around the extreme solutions of the non-dominated
front. Thus, for finding the nadir point in a computationally
effective manner, we need to emphasize solutions near ex-
treme non-dominated solutions more than that is currently
provided by the NSGA-II procedure. To implement such a
concept, the crowding distance calculation is modified here.

6.1 Worst Crowded NSGA-II
Since the worst objective values for the Pareto-optimal so-

lutions constitute the nadir point, we employ a crowded dis-
tance scheme which emphasizes the worst objective values
front-wise. Solutions on a particular front are first sorted
from minimum to maximum based on each objective (for
minimization problems) and a rank equal to the position of

the solution in the sorted list is assigned. Thereafter, the
maximum rank assigned to a solution due to all objectives
is declared as the crowding distance measure. This way, the
solution with the maximum objective value of any objec-
tive gets the maximum crowded distance. Since the NSGA-
II procedure emphasizes the non-dominated solutions and
solutions having larger crowding distance values, all worst
objective values in every front get emphasized, thereby con-
stituting a process which may help find the nadir point.

6.2 Extremized Crowded NSGA-II
However, such an emphasis to only the worst objective

solutions front-wise may have at least two difficulties: (i)
it may not maintain enough diversity in the subpopulation
near each worst objective vector, which may cause a prema-
ture convergence to a suboptimal solution and (ii) solutions
corresponding to the individual worst objective vectors alone
may not dominate a number of non-Pareto-optimal solu-
tions, thereby finding a non-dominated front with unwanted
solutions. Such a front will then make a wrong estimation
of the nadir point. To avoid both these possibilities, we sug-
gest a different crowding distance measure. Solutions on a
particular front are first sorted from maximum to minimum
based on each objective. A solution closer to either extreme
objective vectors (minimum or maximum objective values)
gets a higher rank compared to that of an intermediate so-
lution. Thus, the extreme two solutions for every objective
get a rank equal to N ′ (number of solutions in the front), the
solutions next to these extreme solutions get a rank (N ′−1)
and so on. Figure 3 shows this rank-assignment procedure.
After a rank is assigned to a solution by each objective,
the maximum value of the assigned ranks is declared as the
crowding distance. The crowding distance values are shown
within brackets in the figure. This procedure emphasizes the
extreme solutions (minimum and maximum) of each objec-
tive and produces a hierarchy by emphasizing the solutions
closer to the extreme solutions.

For two-objective problems and for higher-objective prob-
lems having a one-dimensional Pareto-optimal front (that
is, an M -objective problem having (M − 2) redundant ob-
jectives), this crowding distance assignment is similar to the
worst crowding distance assignment scheme (as the minimum-
rank solution of one objective is the maximum-rank solution
of at least one other objective). However, for problems hav-
ing a large-dimensional Pareto-optimal hyper-surface, the
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effect of extremized crowding is different from that in the
worst crowding scheme. In the three-objective problem shown
in Figure 2, the extremized crowding scheme will not only
emphasize the extreme points A, B, and C, but also solutions
on lines AB, BC, and CA and solutions near them. This
has two advantages: (i) a good diversity of solutions will be
maintained, thereby allowing genetic operators (crossover
and mutation) to find better solutions and not causing a
premature convergence and (ii) the presence of these solu-
tions will reduce the chance of having spurious non-Pareto-
optimal solutions to remain in the best non-dominated front,
thereby causing a reliable (and stable) computation of the
nadir point. Moreover, since the intermediate portion of
the Pareto-optimal region is not emphasized, finding the ex-
treme solutions should be quicker than the original NSGA-
II, especially for problems having a large number of objec-
tives.

6.3 VEGA Based Approach
If thought carefully, the worst crowding distance calcula-

tion method proposed above has a similarity with another
multi-objective GA, known as VEGA (vector evaluated GA)
[14]. In this approach, a GA population is subdivided into
smaller groups equal to the number of objective functions
in each generation. Individuals in the first group are re-
produced based on first objective, second group based on
second objective, and so on. Although the selection oper-
ator of VEGA is restricted to each group, crossover and
mutation operators are applied on the entire population as
usual. Because of the selective search made for each objec-
tive independently to a subpopulation, individuals having
better values of each objective are emphasized. Although
VEGA has a tendency to converge to the extreme solutions
of the Pareto-optimal front, no domination check or no ex-
plicit diversity-preserving mechanism (as they are used in
NSGA-II) is made in VEGA. In this study, we also evaluate
the VEGA approach for estimating the nadir point and com-
pare with the original NSGA-II and with the two proposed
modifications of NSGA-II.

7. TEST PROBLEMS
The algorithms discussed in Section 6 are tested on a num-

ber of test problems starting from two objectives and up to
20 objectives. These test problems are designed in such a
way that the complexity level of convergence and shape of
the Pareto-optimal front can be tuned by using different
parameters and functionals. In these problems, the Pareto-
optimal front can be determined analytically, thereby allow-
ing to compute the true nadir objective vector. Since the
true nadir point is known in these problems, we define the
performance measure of an algorithm by simply computing
the normalized Euclidean difference (D) between the true
nadir point and the obtained nadir point in the objective
space.

D =

vuut MX
i=1

„
znad

i − zest
i

znad
i − z∗

i

«2

, (1)

where znad
i is the true nadir objective value for i-th objective

function, z∗
i is the ideal objective value for i-th objective vec-

tor, and zest
i is the estimated nadir objective value for i-th

objective vector. The estimated nadir objective vector at
any generation is constructed from the solutions of the best

non-dominated front of the population at that generation.
The above performance metric D is computed at each gen-
eration and when a value smaller than a threshold (η = 0.01
used here) is found the simulation is terminated and the al-
gorithm is said to be successful in finding a point close to
the true nadir point.

For an application of the proposed approach to any ar-
bitrary problem, first the ideal point (z∗) and the worst
objective vector (zw) can be computed by minimizing and
maximizing, respectively, each objective function indepen-
dently. Thereafter, the proposed EMO approach can be
applied and the normalized Euclidean distance between the
ideal point and the estimated nadir point can be recorded
with the generation counter:

Normalized Distance =

vuut 1

M

MX
i=1

„
zest

i − z∗
i

zw
i − z∗

i

«2

. (2)

If in a problem, the worst objective vector zw (refer to Fig-
ure 1) is the same as the nadir vector, the above normalized
distance value will be one. For other scenarios, the nor-
malized distance value will be smaller than one. When the
change in this distance value is not significant for a contin-
ual number of generations, the algorithm can be terminated
and the obtained nadir point can be declared.

To understand the efficiency of each of the proposed al-
gorithms, input parameters are kept fixed for a particular
problem. For all problems, we use the SBX crossover with a
probability of 0.9 and polynomial mutation operator with a
probability of 1/n (n is the number of variables) and distri-
bution index of 20 [3]. The population size and distribution
index for crossover are set according to the problem and are
mentioned below. Each algorithm is run 11 times, each time
starting from a different random initial population, however
all algorithms are started with identical initial populations.
The number of generations required to satisfy the termi-
nation criterion (D ≤ η) is noted for each simulation run
and the best, median and worst number of generations are
presented.

7.1 Two-Objective Problems
Actually, the payoff table method can be reliably used to

find the nadir point for a two-objective optimization prob-
lem and there is no need to use an evolutionary approach.
It is the higher-objective problems in which the payoff table
and other suggested methods have difficulties and there is a
strong need for other better methods. However, here we still
apply the proposed EMO procedures to a few two-objective
problems for completeness.

We have chosen five test problems (ZDT1 to ZDT4 and
ZDT6) for performance measure of the proposed algorithms.
Nadir objective vectors for ZDT1, ZDT2 and ZDT4 are
(1, 1)T and that for ZDT3 and ZDT6 are (0.85, 1.0)T and
(1, 0.92)T , respectively. Among them ZDT4 is the most dif-
ficult due to the presence of 99 local non-dominated fronts.

Table 1 shows the number of generations needed to find
a near nadir point (within η = 0.01) by different algo-
rithms. For comparatively easier problems (ZDT1, ZDT2
and ZDT3), we use a crossover index of 2 and for ZDT4
and ZDT6, we use a value of 10. It is clear from the results
that the performances of the worst crowded and extremized
crowded NSGA-II are more or less the same and are slightly
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Table 1: Comparative results for two-objective problems.
Test Pop. Number of generations to reach D ≤ 0.01

Problem size NSGA-II Worst crowd. NSGA-II Extr. crowd. NSGA-II
Best Median Worst Best Median Worst Best Median Worst

ZDT1 100 32 44 80 31 41 45 31 42 48
ZDT2 100 45 56 83 44 72 97 34 67 93
ZDT3 100 33 40 55 33 40 113 28 36 45
ZDT4 100 176 197 257 148 201 224 165 191 219
ZDT6 100 137 151 161 125 130 143 126 132 135

better than the original NSGA-II algorithm for more com-
plex problems, such as ZDT4 and ZDT6.

It is concluded that for two-objective optimization prob-
lems the use of extremized crowding or the worst crowded
approach may not be necessary. The procedure of finding
the complete Pareto-optimal front and then deriving the
nadir point from the front is a computationally viable ap-
proach for two-objective problems, but as discussed earlier,
may be replaced by the conventional pay-off table method.

Before we present the results for problems having many
objectives, let us investigate how the VEGA approach would
fair in estimating the nadir point in the ZDT test problems.
We use VEGA with 500 population members and run it
for 1,000 generations. Even with such a large number of
evaluations, the VEGA approach could not find the nadir
objective vector, as shown in Table 2. The table shows that
there is not much of a reduction in the normalized Euclidean
difference (equation 1) of the estimated nadir point from
the actual one from the initial to the final generation. Be-
cause of it’s inability to solve these two-objective problems
(in which the NSGA-II approach and its modifications per-
formed well), the VEGA approach is not applied for higher-
objective problems.

Table 2: Performance of the VEGA approach in es-
timating the nadir point on ZDT problems.

Test Pop. Difference (D) from true nadir point
problem size Initial pop. Final pop.
ZDT1 500 12.36 7.77
ZDT2 500 6.55 3.48
ZDT3 500 3.17 3.28
ZDT4 500 145.82 149.45
ZDT6 500 9.06 9.34

7.2 Problems with More Objectives
To test the algorithms for three and more objectives, we

choose three DTLZ test problems [6]. These problems are
designed in a manner so that they can be extended to any
number of objectives. Nadir objective vectors of M -objective
DTLZ1, DTLZ2 and DTLZ5 are (0.5, . . . , 0.5)T , (1, . . . , 1)T

and
“
( 1√

2
)M−2, ( 1√

2
)M−2, ( 1√

2
)M−3, ( 1√

2
)M−4, . . . , ( 1√

2
)0

”T

respectively. The variable mapping of third test problem,
DTLZ5, is somewhat modified from the original DTLZ5:

θi =

j π
2
xi, for i = 1,

π
4(1+g′) (1 + 2g′xi) , for i ∈ I = {2, 3, . . . , M − 1},

g(xM) =
P

xi∈xM
100(xi − 0.5)2, g′ = min(0.3, g(xM)),

L ≤ xi ≤ U for i ∈ I, 0 ≤ xi ≤ 1 for i �∈ I.

7.2.1 Three-Objective DTLZ Problems
All three algorithms are run with 100 population mem-

bers for three-objective DTLZ1, DTLZ2 and DTLZ5. For
DTLZ5, we use bounds L = 0.1 and U = 0.9. Table 3 shows
the number of generations needed to find a solution close
to (within a normalized difference of 0.01) the actual nadir
point. It is observed that the worst crowded NSGA-II and
the extremized crowded NSGA-II perform more or less sim-
ilar to each other and are somewhat better than the original
NSGA-II.

7.2.2 Five-Objective DTLZ Problems
Next, we study the performance of all three NSGA-II pro-

cedures on five-objective DTLZ problems. It is now quite
evident from Table 4 that the proposed modifications to the
NSGA-II procedure perform much better than the original
NSGA-II. The best simulation of the original NSGA-II takes
2,342 generations to estimate the nadir point, whereas the
extremized crowded NSGA-II requires only 353 generations
and the worst-crowded NSGA-II requires 611 generations
for the DTLZ1 problem. In the case of DTLZ2 problem,
the minimum number of generations required for the orig-
inal NSGA-II, extremized crowded NSGA-II and the worst
crowded NSGA-II are 650, 94 and 139, respectively. The
median generation counts of the modified NSGA-II methods
for 11 independent runs are also much better than that of
the original NSGA-II. Since the original NSGA-II procedure
attempts to find the entire five-dimensional Pareto-optimal
set properly before a true estimate of the nadir point can
be made, it requires more generations for problems with a
large number of objectives.

The difference between the worst crowded and extremized
crowded NSGA-II methods is also clear from the table. For a
problem having a large number of objectives, the extremized
crowded NSGA-II emphasizes both best and worst extreme
solutions for each objective maintaining an adequate diver-
sity among the population members. The NSGA-II opera-
tors are able to exploit such a diverse population and make
a faster progress towards the extreme Pareto-optimal solu-
tions needed to estimate the nadir point correctly. These
results imply that for a problem having a large number of
objectives, an emphasis for the individual-best solutions (in-
stead of all non-dominated solutions) is a faster approach for
locating the nadir point. Figure 4 shows the convergence
rate for the best runs of three algorithms on DTLZ1.

For the DTLZ5 problem, we change the bounds to L =
0.4 and U = 0.6. Simulation results show that there is
no significant advantage of the proposed modifications, be-
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Table 3: Comparative results for three-objective DTLZ problems.
Test Pop. Number of generations to reach D ≤ 0.01

problem size NSGA-II Worst crowd. NSGA-II Extr. crowd. NSGA-II
Best Median Worst Best Median Worst Best Median Worst

DTLZ1 100 223 366 610 171 282 345 188 265 457
DTLZ2 100 75 111 151 38 47 54 41 49 55
DTLZ5 100 63 80 104 59 74 86 62 73 88

Table 4: Comparative results for five-objective DTLZ problems.
Test Pop. Number of generations to reach D ≤ 0.01

problem size NSGA-II Worst crowd. NSGA-II Extr. crowded NSGA-II
Best Median Worst Best Median Worst Best Median Worst

DTLZ1 100 2,342 3,136 3,714 611 790 1,027 353 584 1,071
DTLZ2 100 650 2,142 5,937 139 166 185 94 114 142
DTLZ5 100 52 66 77 51 66 76 49 61 73

Table 5: Comparative results for 10-objective DTLZ problems.

Test Pop Number of generations to reach D ≤ 0.01
problem size NSGA-II Worst crowd. NSGA-II Extr. crowd. NSGA-II

Best Median Worst Best Median Worst Best Median Worst
DTLZ1 200 17,581 21,484 33,977 1,403 1,760 2,540 1,199 1,371 1,790
DTLZ2 200 – – – 520 823 1,456 388 464 640
DTLZ5 200 45 53 60 43 53 57 45 51 64

cause the five-objective problem degenerates to have a one-
dimensional curve as the Pareto-optimal front and all meth-
ods find it easier to locate the true nadir point quickly.

7.2.3 Ten-Objective DTLZ Problems
Table 5 presents the number of generations required to

find a point close (within η = 0.01) to the nadir point by the
three NSGA-II procedures for 10-objective DTLZ problems.
It is clear that the extremized crowded NSGA-II performs
an order of magnitude better than the original NSGA-II
and is also better than the worst crowded NSGA-II. Both
DTLZ1 and DTLZ2 problems have 10-dimensional Pareto-
optimal fronts and the extremized crowded NSGA-II makes
a good balance of maintaining diversity and emphasizing
worst objective vectors so as to make the nadir point esti-
mation quick. In the case of 10-objective DTLZ2 problem,
the original NSGA-II could not even find the nadir objec-
tive vector after 50,000 generations (and achieved a nor-
malized difference measure (equation 1) of 5.936). Figure 5
shows a typical convergence pattern of the proposed and
original NSGA-II algorithms on 10-objective DTLZ1. The
plots demonstrate that for a large number of generations the
estimated nadir point is away from the true nadir point, but
after some generations (around 1,000 in this problem) the
estimated nadir point comes quickly near the true point. To
understand the dynamics of the movement of the extrem-
ized crowded NSGA-II population with generation counter,
we have counted the number of solutions in the population
which dominate the true nadir point and plotted in Fig-
ures 5. In DTLZ1, it is seen that the first point dominating
the actual nadir point appears in the population at around
750 generations and since then when an adequate number of

such solutions appear in the population, the population very
quickly converges to the correct Pareto-optimal regions for
estimating the nadir point. A similar phenomenon occurs
for the worst crowded NSGA-II, but is not shown here for
brevity. The figure also plots the number of non-dominated
points for the original NSGA-II and a similar dynamics is
observed, with a much delayed convergence.

In case of DTLZ5 problem, we change the bounds to L =
0.45 and U = 0.55. The performance of all three algorithms
are almost the same, due to the reasons outlined in previous
subsection.

7.2.4 15-Objective DTLZ Problems
Next, we apply all three NSGA-II procedures on 15-objective

DTLZ1 and DTLZ2 problems. Table 6 shows number of
generations needed to find a point within a normalized Eu-
clidean difference of 0.01 from the true nadir point with
500 population members. The original NSGA-II simulations
were run for a maximum of 50,000 generations and the best
normalized Euclidean difference measure (equation 1) comes
at 3554.587 and 8.632 (which is much larger than zero) for
DTLZ1 and DTLZ2, respectively, whereas both proposed
modifications of NSGA-II are able to find a good estimate
of the nadir point in a reasonable number of evaluations for
both problems.

7.3 Scale-up Performance
We now compare the overall function evaluations needed

to estimate the nadir point within a normalized difference
measure (equation 1) of 0.01 from the true nadir point for
DTLZ2 test problem by the extremized crowded NSGA-II.
Although we presented the results for problems up to 15
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Figure 4: Performance of three
methods on five-objective DTLZ2.
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Table 6: Results for 15-objective DTLZ problems.

Prob- Number of generations for D ≤ 0.01
lem Worst cwd. NSGA-II Extr. crd. NSGA-II

Best Med. Worst Best Med. Worst
DTLZ1 2,567 3,144 8,645 1,829 2,372 2,841
DTLZ2 988 1,166 1,729 693 858 1,620

objectives in earlier subsections, here we show scale-up per-
formance of the extremized crowded NSGA-II up to 20 ob-
jectives. Figure 6 shows the performance on DTLZ2. Af-
ter 670 million function evaluations, the original NSGA-II
is still not able to come close (reaches a point with a nor-
malized difference of 4.940) to the true nadir point. How-
ever, the extremized crowded NSGA-II takes an average only
429,000 evaluations to reach a point very close (with a nor-
malized difference of 0.01) to the true nadir point. Because
of the computational inefficiencies associated with the orig-
inal NSGA-II approach, we do not perform any simulation
for 15 or more objective DTLZ2 problem.

The nature of the plots for the extremized crowded NSGA-
II is found to be sub-linear on logarithmic axes. This indi-
cates that a lesser than exponential scaling property of the
proposed extremized crowded NSGA-II. It is important to
highlight here that estimating the nadir point requires iden-
tification of the worst objective vector corresponding to the
Pareto-optimal solutions. Since this requires that an evo-
lutionary procedure first puts its population members on
the Pareto-optimal front, an adequate computational effort
must be spent to achieve this task. However, the earlier
tables have indicated that the computational effort needed
with the extremized crowded NSGA-II is much smaller com-
pared to the original NSGA-II, which attempts to find the
entire Pareto-optimal front and then constructs the nadir
point.

8. A 3-OBJECTIVE LINEAR PROBLEM
The following linear problem was found to be difficult for

estimating the nadir point [10]:

Maximize 11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7, (3)

Maximize 11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7,
Maximize 11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7,

Subject to
P7

i=1 xi = 1, xi ≥ 0, i = 1, 2, . . . , 7.

To use an evolutionary optimization procedure, we bound
xi ∈ [0, 1] and perform the following repair mechanism:
xi ← xi/

P7
i=1 xi to make every solution a feasible one.

All three NSGA-II approaches are applied with a standard
parameter setting: population size = 100, crossover proba-
bility = 0.9, crossover index = 10, mutation probability =
1/7, and mutation index = 20. Figure 7 shows the popula-
tions obtained with NSGA-II and the extremized crowded
NSGA-II approaches. The nadir point obtained using both

point
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Figure 7: Distribution of points on linear problem.

approaches is (0, 0, 0)T . It is interesting to note how the
extremized crowded NSGA-II is able to find both minimum
and maximum objective values corresponding to the Pareto-
optimal solutions, the presence of which allows a correct es-
timation of the nadir point.

In Figure 8, we plot the normalized distance metric (equa-
tion 2) versus generation number. In this problem, the ideal
vector is z∗ = (12, 12, 12)T and the worst objective vec-
tor is zw = (−9,−9, 0)T (computed using a single-objective
EA). The true nadir point, the normalized distance measure
is 0.7423. The figure shows that the extremized crowded
NSGA-II steadily reaches this value, whereas the worst crowded
NSGA-II is unable to estimate the nadir vector reliably. In
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the worst crowded NSGA-II, since only worst solutions are
emphasized, a frontier with these solutions allow a number
of non-Pareto-optimal solutions to coexist. The presence of
these spurious solutions makes a wrong estimate of the nadir
point. However, the presence of individual best solutions (as
shown in Figure 7), in addition to the worst Pareto-optimal
solutions, reduce the chance of having spurious solutions,
thereby causing a stable and correct estimation of the nadir
point.
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Figure 8: A quick and stable convergence of extrem-
ized crowded NSGA-II.

9. CONCLUSIONS
In this paper, we have proposed a couple of modifications

to the NSGA-II procedure for estimating the nadir point
in a multi-objective optimization problem. By definition, a
nadir point is constructed with the worst objective values
corresponding to the Pareto-optimal solutions. Since this
requires finding the Pareto-optimal solutions, it is a difficult
task. Both the proposed methodologies emphasize the ex-
treme solutions corresponding to each objective front-wise.
Since intermediate Pareto-optimal solutions are not impor-
tant in this task, both procedures have been found to be
capable of making a quicker estimate of the nadir point than
the original NSGA-II procedure for a number of test prob-
lems having two to 20 objectives (rarely used in EMO liter-
ature). Based on the study, we conclude the following: (i)
Emphasizing both best and worst objective values front-wise
has been found to be a better approach than emphasizing
only the worst objective values front-wise for solving large-
dimensional problems. Since the former approach maintains
a diverse set of solutions near worst front-wise objective val-
ues, the search is better. (ii) The computational effort to
estimate the nadir point has been observed to be much bet-
ter (more than an order of magnitude) for many objectives
than the original NSGA-II procedure. (iii) For a fewer ob-
jectives (up to three-objective) and DTLZ5 problems with a
lower-dimensional Pareto-optimal front, both proposed ap-
proaches have been observed to perform well. The perfor-
mance of original NSGA-II has also been found to be sim-
ilar to the proposed approaches. Thus, for problems hav-
ing small number of objectives (say up to three-objective or
so) and problems having a low-dimensional Pareto-optimal
front, there is no motivation to find the nadir point explic-
itly using the novel evolutionary approaches. The use of
NSGA-II or an equivalent method may be adequate to find
a well-represented set of Pareto-optimal solutions, which can

then be used for a decision-making. However, if the decision-
maker prefers to use an interactive method, the proposed
methodologies can also be used to estimate the nadir point
for the purpose. On the other hand, for many objectives, the
nadir point may be estimated quickly and reliably using the
proposed extremized crowded NSGA-II. Thereafter, a clas-
sical procedure (using both ideal and nadir points) can be
applied interactively with a decision-maker to find a desired
Pareto-optimal solution.
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[13] K. Miettinen, M. M. Mäkelä, and K. Kaario. Experiments
with classification-based scalarizing functions in interactive
multiobjective optimization.

[14] J. D. Schaffer. Multiple objective optimization with vector
evaluated genetic algorithms. In Proceedings of the First
International Conference on Genetic Algorithms, pages
93–100, 1985.

650



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


