
On The Effect of Populations in Evolutionary
Multi-objective Optimization

Oliver Giel
∗

Fachbereich Informatik, Lehrstuhl 2
Universität Dortmund

44221 Dortmund, Germany

oliver.giel@cs.uni-dortmund.de

Per Kristian Lehre
†

Dept. of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway

lehre@idi.ntnu.no

ABSTRACT
Multi-objective evolutionary algorithms (MOEAs) have be-
come increasingly popular as multi-objective problem solv-
ing techniques. An important open problem is to understand
the role of populations in MOEAs. We present a simple bi-
objective problem which emphasizes when populations are
needed. Rigorous runtime analysis point out an exponen-
tial runtime gap between the population-based algorithm
Simple Evolutionary Multi-objective Optimizer (SEMO) and
several single individual-based algorithms on this problem.
This means that among the algorithms considered, only the
population-based MOEA is successful and all other algo-
rithms fail.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures; G.3 [Probability and Statis-
tics]: Probabilistic Algorithms

General Terms
Algorithms, Theory

Keywords
Evolutionary algorithms, multi-objective optimization, run-
time analysis

∗Supported by the German Research Foundation (DFG) as
a part of the collaborative research center “Computational
Intelligence” (SFB 531).
†This work was conducted while visiting Universität Dort-
mund.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
The understanding of the role of populations in single-

objective EAs has been supported by theoretical results [12,
13]. For example, there are problems where reducing the
parent population size by one leads to an exponential in-
crease in the runtime [11].

In a population of a single-objective EA, all individuals
are comparable. This is typically not the case for MOEAs.
Hence, it is not obvious that results for single-objective prob-
lems carry over to MOEAs when applied to a truly multi-
objective problem. The use of populations in multi-objective
EAs is often motivated by the need to find a set of solutions
(the Pareto set) rather than a single optimal solution. How-
ever, it is unclear whether one can achieve the same goal
by restarting a single individual algorithm. Laumanns et
al. [9] prove that some simple population based MOEAs can
slightly outperform a single individual based approach called
ε-constrained method. This result alone is not sufficient to
understand the role of populations in MOEAs since the run-
time gap is rather small, and it gives only little insight into
why the population based approach can be superior. In this
paper, we present a problem where many single individual-
based algorithms, including the ε-constrained method, fail
dramatically. Furthermore, the presented problem has a
structure that can better explain why the individual based
algorithms fail.

This paper is organized as follows. We introduce the
MOEAs considered and the necessary notation in the next
section. The objective function will be presented in Sec-
tion 3. In Sections 4–6, we show that all considered single
individual algorithms fail on this objective function. Finally,
in Section 7, we prove that the SEMO efficiently discovers
all Pareto optimal points in the objective space.

2. PRELIMINARIES

2.1 Notation
We assume that the reader is familiar with the concepts of

multi-objective optimization (see, e. g., [3]). We consider a
binary maximization problem f : {0, 1}n → R

m. For clarity,
we say that a vector b from the objective space R

m weakly
dominates another vector a, denoted a � b, if ai ≤ bi, for
all i. We say b dominates a, denoted a ≺ b, if a � b and
ai < bi for at least one index i. This notation will also
be used for solutions x and y in the search space {0, 1}n.
For example, x � y if and only if f(x) � f(y). If x � y
or y � x then x and y are comparable. The analysis uses

651

local global

weakest RLSweakest (1+1) EAweakest

weak RLSweak (1+1) EAweak

strong RLSstrong (1+1) EAstrong

ε-constr. RLSε-constr. (1+1) EAε-constr.

Table 1: The single individual algorithms considered
according to selection and mutation operator.

standard notation (e.g., O, Ω and Θ) for asymptotic growth
of functions (see, e. g., [2]).

2.2 The Multi-objective EAs
All the single individual multi-objective evolutionary al-

gorithms considered in this paper are instantiations of the
following scheme.

Choose x uniformly from {0, 1}n.
Repeat

Apply mutation to x to obtain x′.
If selection favors x′ over x

then x := x′.

The algorithms differ in the choice of the mutation operator
and in the choice of the selection operator. Two different
mutation operators are considered. The local mutation op-
erator flips a randomly chosen bit of x. The global mutation
operator flips each bit of x independently with probabil-
ity 1/n. In the single-objective case, the objective function f
establishes a total order in the search space and selection fa-
vors x′ over x if f(x′) ≥ f(x). Then, we obtain randomized
local search (RLS) and the (1+1) EA with the local and
global search operator, respectively.

For multi-objective problems, there are several options
when to favor the offspring x′ over the parent x. In this
work, we consider four different selection operators. The
weakest selection operator favors x′ over x if x′ weakly dom-
inates x, or x′ and x are incomparable. The weak selection
operator favors x′ over x if x′ weakly dominates x. The
strong selection operator favors x′ over x if x′ dominates x.
Finally, we define the ε-constraint selection operator for two
criteria problems as follows. (See [9] for the general defini-
tion with m criteria.) If f1(x) < ε, then the operator favors
x′ over x if f1(x

′) ≥ f1(x). If f1(x) ≥ ε, then the operator
favors x′ over x if f1(x

′) ≥ ε and f2(x
′) ≥ f2(x). Informally,

the idea of the ε-constraint selection is to turn the first ob-
jective into a constraint, such that only solutions x with
f1(x) ≥ ε are feasible. So the primary goal is to minimize
the constraint violation and then maximize the function f2.

By the different choices of the mutation and the selec-
tion operators, we obtain eight different single individual
MOEAs as summarized in Table 1. To obtain different
Pareto optimal solutions, a single objective algorithm is
run repeatedly, either sequentially (re-starts) or in parallel
(multi-starts), and the hope is that not all runs will end up
with the same solution. In case of the ε-constraint selection
operator, it is necessary to vary the parameter ε between
runs.

We compare the single individual algorithms with the pop-
ulation based algorithm SEMO which was introduced in [9].
The idea of SEMO is to keep a population of incompara-
ble individuals. In each step, an offspring is produced and

added to the population if it is not dominated by some in-
dividual in the population. Afterwards it may be necessary
to remove individuals from the population that are weakly
dominated by the new individual.

P := {x}, where x is uniformly chosen from {0, 1}n.
Repeat

Choose x uniformly from P .
Apply mutation to x to obtain x′.
If x′ is not dominated by any individual in P

then add x′ to P , and remove all individuals
weakly dominated by x′ from P .

In this paper, local SEMO refers to SEMO with the local
mutation operator and analogously for global SEMO. The
local SEMO and the global SEMO can be considered as
multi-objective counterparts to (single-objective) RLS and
the (1+1) EA, respectively. Both variants of SEMO have
been the subject of theoretical runtime analysis ([6, 9, 10]).

3. THE OBJECTIVE FUNCTION
The idea is to devise an objective function that partitions

the search space into k paths, each leading to some Pareto
optimal solution. The search points on a path form plateaus
such that it is difficult to proceed along a path, i. e., to reach
the next plateau dominating the previous plateau. But there
is always a short distance to another path. The idea is that
the single-objective algorithms will spend most of the time
jumping between paths, instead of improving on a single
path, or they will spend much time to overcome a plateau.
The hope is that SEMO will quickly produce a population
of k individuals, one individual for each path, and these in-
dividuals will advance in parallel to their respective optima.

Let n = k · m and x a bit string of length n. We say that
bit string x is divided into k blocks, where each block has
length m ≥ 2.

Definition 1. (Block Value, Active Block) Given a search
point x ∈ {0, 1}k·m and an integer i, 0 ≤ i ≤ k − 1. Then
the ith block value of x, denoted |x|i, is defined as

|x|i :=

m·(i+1)−1X
j=m·i

xj .

The active block of a search point x is the left-most block
with lowest block value. The number

j := min argmin
0≤i≤k−1

{|x|i}

denotes the active block index.

Table 2 gives examples of block values and active blocks,
where k = 4 and m = 3. The following multi-objective
function is essentially OneMax ([4]) defined on the active
block, weighted differently with respect to each objective as
to create different Pareto optimal solutions.

Definition 2. (Objective Function) For all search points x
the objective function f : {0, 1}n → N × N is defined by

f(x) :=
`
f1(x), f2(x)

´
,

where

f1(x) := 2j·m ·(|x|j+1) and f2(x) := 2(k−j−1)·m ·(|x|j +1)

and j is the active block index of x. The aim is to maxi-
mize f .

652

x |x|0 |x|1 |x|2 |x|3 j f(x)

000 000 000 000 0 0 0 0 0 (1, 512)

111 011 010 001 3 2 1 1 2 (128, 16)

010 111 011 001 1 3 2 1 0 (2, 1024)

111 111 111 111 3 3 3 3 0 (4, 2048)

Table 2: Examples of block values, active blocks (un-
derlined), and objective function values.

The following proposition states that search points with
the same active block index are comparable whereas search
points with distinct block indices are incomparable.

Proposition 1. Let x, y ∈ {0, 1}n be two search points
with active block index i and j, respectively.

1. If and only if i = j, x and y are comparable.

2. Moreover, if i = j, x � y is equivalent to |x|i ≤ |y|j.
Proof. Assume i = j. Then the objective function val-

ues of x and y depend only on |x|i and |y|j , respectively.
Since f1 and f2 are strictly increasing functions, x weakly
dominates y or vice versa. Moreover, |x|i ≤ |y|j is equiv-
alent to f1(x) ≤ f1(y) ∧ f2(x) ≤ f2(y) and the latter is
equivalent to x � y.

It remains to show that if x and y are comparable then
i = j. W. l. o.g. assume x � y. Then, by f1, the assumption
implies 2i·m(|x|i + 1) ≤ 2j·m(|y|j + 1). This is equivalent to

|x|i ≤ 2(j−i)·m(|y|j +1)−1. For i > j, the right-hand side of
the last inequality is at most 2−m(m + 1)− 1 < 0 as m ≥ 2.
Hence, i > j is impossible. For i < j, considering f2 leads
to the same contradiction.

We can now describe the Pareto front and the Pareto set.

Proposition 2. Let n = m · k. For all integers i, 1 ≤
i ≤ k − 1, define the sets

X∗
0 := {1n}, and

X∗
i :=

˘
x ∈ {0, 1}n

˛̨ |x|i = m − 1,
∀ j, 0 ≤ j < i, |x|j = m, and
∀ j, i < j < k, |x|j ≥ m − 1

¯
.

Furthermore, for all integers i, 1 ≤ i ≤ k − 1, define the
points

F ∗
0 :=

`
m + 1, 2(k−1)·m · (m + 1)

´
, and

F ∗
i :=

`
2i·m · m, 2(k−i−1)·m · m´.

Then the Pareto set X∗ and the Pareto front F ∗ of the bi-
objective function defined in Definition 2 with parameters m
and k are given by

X∗ =
k−1[
i=0

X∗
i and F ∗ =

k−1[
i=0

{F ∗
i }.

Furthermore, the preimage f−1(F ∗
i) is X∗

i .

The proof has been omitted due to space limitations. It
follows from Proposition 2 that the Pareto front has cardi-
nality k.

A popular method to solve a multi-objective problem g =
(g1, . . . , gm) is to solve the single-objective problem g′ :=

P
i wi ·gi instead, where the scalar objective function g′ is a

weighted sum of the original vector valued function g. The
hope is to find different Pareto optima for different param-
eter settings wi > 0. However, it is well-known that such
linear aggregation functions fail for the non-convex parts
of the Pareto front of g. Pareto optimal vectors which
are not located on the convex hull of the solutions in the
objective space cannot be detected for any setting of the
weights. For our bi-objective function f presented in Defini-
tion 2, maximizing w1f1 +w2f2 is equivalent to maximizing
wf1 + (1−w)f2 where w ∈ [0, 1]. As the entire Pareto front
of f is non-convex, any choice of w allows only to detect the
solutions that maximize either f1 or f2. Hence, all methods
that require a convex Pareto front are not applicable to f .

4. WEAK AND STRONG SELECTION
We show that there is a large fraction of the Pareto front

such that, with an overwhelming probability, the algorithms
RLSweak, (1+1) EAweak, RLSstrong, and (1+1) EAstrong have

to be started eΩ(n) times before finding any Pareto optimal
point from this fraction. The next proposition follows di-
rectly from Proposition 1.

Proposition 3. All search points selected by either the
weak selection operator or the strong selection operator have
the same active block index as the initial search point.

The idea behind the following theorem is that when the
block length m is a constant, then the active block index of
the initial search point will be low with high probability.

Theorem 1. Let n = m·k, where m is a constant, and A
is any of the algorithms RLSweak, (1+1) EAweak, RLSstrong,
and (1+1) EAstrong. Then, for all constants α, 0 < α < 1,

there is a subset F ∗
α of the Pareto front F ∗ with cardinality

|F ∗
α | ≥ α|F ∗| − 1 such that the probability that algorithm A

needs less than ec·n runs to find any Pareto optimal point in
F ∗

α is bounded by e−Ω(n), c > 0 a sufficiently small constant.

Proof. Define F ∗
α := ∪k−1

i≥(1−α)k{F ∗
i }, where F ∗

i is as in

Proposition 2. The Pareto front contains k points, and F ∗
α

contains αk elements, so the cardinality of F ∗
α is greater than

α|F ∗|− 1. All search points in the pre-image of F ∗
α have ac-

tive block indices at least (1 − α)k. By Proposition 3, in
order to find a search point with an active block index that
high, the initial search point must have active block index
at least (1 − α)k. To get such a high active block index, it
is necessary that all of the first �(1−α)k blocks have block
value unequal to 0. An upper bound on the probability that
the active block index is higher than (1 − α)k is therefore

(1 − (1/2)m)(1−α)·k = e−Ω(n) as m is a constant and, there-
fore, k = Θ(n). Furthermore, the probability that the event

occurs within ec·n runs is no more than ec·n·e−Ω(n) = e−Ω(n),
for c > 0 a sufficiently small constant.

Both weak and strong selection turn out to be inadequate.
The active block index of the initial search point will almost
always be low, but these selection operators do not allow
changing the active block index in a run. The weakest selec-
tion operator alleviates this problem by allowing to change
the active block index; however, we show in the next section
that this is not sufficient.

653

5. WEAKEST SELECTION
We prove that RLSweakest and the (1+1) EAweakest need

with overwhelming probability an exponential time to find
any Pareto optimal solution. The idea is the following. All
Pareto optimal solutions have at most k 0-bits. We show
that if the number of 0-bits is close to k, it is unlikely to lose
another 0-bit in the next accepted step and it is much more
likely to gain new 0-bits. Thus, there is a strong tendency to
increase the number of 0-bits. To show that the probability
of increasing the number 0-bits is high, we first show that
there are many 1-bits that can be turned into zeroes.

Proposition 4. Let x be any search point with � ≥ m
1-bits. There are � − m 1-bits in x such that flipping any
of these 1-bits produces a search point x′ which is not dom-
inated by x.

Proof. There are at most m 1-bits in the active block
of x. Assume that any of the remaining �−m 1-bits flip. If
the active block index changes, x and x′ are incomparable
(Proposition 1). Otherwise, the active block value remains
unchanged implying that x′ cannot be dominated by x.

5.1 RLS
The analysis of how the number of 0-bits evolves over time

will be based on a simple Markov process also known as the
gambler’s ruin problem. A gambler owns an initial capital
of a dollars and plays against an adversary whose initial
capital is b dollars. The gambler wins and loses a round
with probability p and 1−p, respectively. If he loses a round,
he pays a dollar to the adversary and otherwise receives a
dollar from the adversary. They continue the game until one
player is ruined and the winner is the player who then owns
the combined capital a + b. For a proof of the next theorem
see, e.g., [5] or [1].

Theorem 2. For p �= 1/2, the probability that the gam-
bler wins is (1 − ta)/(1 − ta+b), where t := (1 − p)/p. Con-
sequently, for p > 1/2, this probability is at least 1 − ta.

Theorem 3. For k ≥ 4 and m ≥ 5, the expected time
for RLSweakest to find any Pareto optimal solution is eΩ(n).
Moreover, there are positive constants c and c′ such that the
probability that RLSweakest finds any Pareto optimal solution

in ec′·n runs, each of ec·n steps, is e−Ω(n).

Proof. By Chernoff bounds, the initial search point has
less than n/4 0-bits with an exponentially small probability

of e−Ω(n). We only consider the case where the first search
point has at least n/4 0-bits and wait for the first point in
time where the number of 0-bits is at most n/4. In the fol-
lowing, we consider only situations with at most n/4 0-bits.
Then the number of 1-bits is at least 3n/4 > m and we
can apply Proposition 4. Each mutation step of RLS either
increases or decreases the number of 0-bits by 1, but not
all steps are accepted. The probability that the next step
is accepted and the number of 0-bits increases is at least
(3n/4 − m)/n = 3/4 − 1/k ≥ 2/4. The probability that
the next step is accepted and the number of 0-bits decreases
is at most (n/4)/n ≤ 1/4. Hence, accepted steps increase
and decrease the number of 0-bits with a probability of at
least p := 2/3 and at most 1 − p = 1/3, respectively. We
consider the number of 0-bits as the capital of the gambler
in Theorem 2. Initially, it is �n/4 and the capital of his

opponent is 1. Then the probability that the number of
0-bits increases to �n/4 + 1 before it decreases to 0 is at

least 1 − t�n/4�+1 where t := 1/2. We are interested in the
probability to produce a Pareto optimal point. A Pareto
optimal point has less than k 0-bits. Hence, we consider
the gambler ruined as soon as his capital reaches k dollars.
This is equivalent to reducing his initial capital by k. Since
m ≥ 5, we have k ≤ n/5 and obtain an upper bound of

t�n/4�−k+1 = e−Ω(n) for the probability to reach a Pareto
optimal point before a point with at least n/4 0-bits again.
Hence, we can apply this argument repeatedly such that for
a sufficiently small constant c, ec·n repetitions of the game
are successful with a probability of only e−Ω(n). Taking into
account the probability that the initial step is not as desired
leads to the result that a run of ec·n steps is successful with a
probability of only e−Ω(n) and leads to the claimed expected
runtime.

We now consider independent runs of RLSweakest, i. e., se-
quential runs (restarts) or parallel runs (multi-starts). If

each of ec′·n runs includes up to ec·n steps, the probability

that any of these runs is successful is at most ec′·n ·e−Ω(n) =
e−Ω(n) if c′ > 0 is sufficiently small. Hence, independent
runs of RLSweakest do not help to increase the success prob-
ability substantially.

5.2 (1+1) EA
The global mutation operator of the (1+1) EAweakest may

flip many bits in one step and increase or decrease the num-
ber of 0-bits by large values. Although the probability of a
large change in a single step is rather low, such a step is not
unlikely to happen in a run including exponentially many
steps. Therefore, we have to take large changes into account.
The following drift theorem provides a general technique for
proving exponential lower bounds on the first hitting-time
in Markov processes. It serves as a counterpart to Theo-
rem 2. We apply a result due to [8] that goes back to [7].
Analyzing the proof in [8], it follows immediately that it in-
cludes a stronger result than stated, namely a result on the
success probability to reach a state with certain properties
and not only the expected waiting time. We state this result
in Theorem 4.

Theorem 4. (Drift Theorem) Let X0, X1, X2, . . . be the
random variables describing a Markov process over the state
space S and g : S → R

+
0 a function that assigns to each

state a non-negative real number. Pick two real numbers
a(n) and b(n) which depend on a parameter n such that
0 ≤ a(n) < b(n) holds. Let the random variable T denote
the earliest point in time t ≥ 0 that satisfies g(Xt) ≤ a(n).

If there are constants λ > 0 and D ≥ 1 and a polynomial
p(n) > 0 such that the four conditions

g(X0) ≥ b(n),

b(n) − a(n) = Ω(n),

∀t ≥ 0 : E
`
e−λ(g(Xt+1)−g(Xt))

˛̨
Xt, a(n) < g(Xt) < b(n)

´
≤ 1 − 1/p(n)

∀t ≥ 0 : E
`
e−λ(g(Xt+1)−b(n))

˛̨
Xt, b(n) ≤ g(Xt)

´ ≤ D

hold then for all time bounds B ≥ 0

Prob(T ≤ B) ≤ eλ(a(n)−b(n)) · B · D · p(n).

654

Since λ(a(n) − b(n)) = −Ω(n) and p(n) is a polynomial,
the last bound is exponentially small for B := ec·n if c > 0
is sufficiently small.

Theorem 5. For 4 ≤ k ≤ `(1/10)− ε
´
n, ε < 1/10 a pos-

itive constant, the expected time for the (1+1) EAweakest to

find any Pareto optimal solution is eΩ(n). Moreover, there
are positive constants c and c′ such that the probability that
the (1+1) EAweakest finds any Pareto optimal solution in

ec′·n runs, each of ec·n steps, is e−Ω(n).

Proof. Let the random variable Xt ∈ {0, 1}n denote the
search point of the (1+1) EAweakest at time t ≥ 0 when
applied to f . To apply the above drift theorem, g(Xt) equals
the number of 0-bits of Xt. We choose b(n) := n/10 and
a(n) := k = n/m. By Chernoff bounds, the initial search
point X0 has more than b(n) 0-bits with an overwhelming

probability of 1 − e−Ω(n). Thus, we only consider the case
where b(n) < g(X0) such that the first condition is satisfied.
As k ≤ `(1/10) − ε

´
n, also the second condition is met.

To check the third condition we have to bound

E
`
e−λ(g(Xt+1)−g(Xt))

˛̨
Xt, k < g(Xt) < n/10

´
from above. Let pj(Xt) denote the probability that the
g-value increases by j in the next step when the current
search point is Xt and k < g(Xt) < n/10. Then the above
expectation is bounded from above by

n−g(Xt)X
j:=−g(Xt)

e−λ·j · pj(Xt). (∗)

For j > 0, we only increase the value of the sum (∗) if we
replace pj(Xt) with some lower bound pj independent of Xt

and increase p0(Xt) by Δj := pj(Xt) − pj . For all j ≥ 2,
we choose the trivial lower bounds pj := 0. The probability
p1(Xt) is lower bounded by the probability of the event that
exactly one 1-bit of at least n−b(n)−m ≥ 9n/10−m 1-bits
flip (Proposition 4). Hence, for k ≥ 4,

9n/10 − m

n

`
1 − 1/n

´n−1 ≥ 9

10e
− 1

ke
≥ 2

10

and we can choose p1 := 2/10.
For j < 0, the value of the sum (∗) only increases if we re-

place pj(Xt) by some upper bound pj and decrease p0(Xt)
by Δj := pj − pj(Xt). The probability of decreasing the
g-value by j in the next step is upper bounded by the prob-
ability of the event that at least j 0-bits are turned into
1-bits. Hence,

g(Xt)

j

!
· 1

nj
≤ (n/10)j

j!
· 1

nj
=

1

10jj!

and pj := 1/(10jj!) is a correct upper bound. We now con-
sider the Markov process where all probabilities pj(Xt) are
replaced with our corresponding bounds. If we pessimisti-
cally assume that the g-value, the number of 0-bits can de-
crease by any j > 0 (i. e., also for j > g(Xt)) we only over-
estimate the probability to decrease the g-value. We obtain
a process where the transition probabilities are independent
of the g(X)-value. The new process with

pj := 0, and p−j := 1/(10jj!) for all j ≥ 2,

p−1 := 1/10, p1 := 2/10, and p0 := 1 −
X
j �=0

pj ,

reaches a g-value of at most a(n) only “faster” than the
original process describing the (1+1) EAweakest applied to f .

It now suffices to bound the sum

e−1·λp1 + e−0·λp0 + e1·λp−1 +
X
j≥2

ej·λp−j

=
“
1 − p1 − p−1 −

X
j≥2

p−j

”
+ e−λp1 + eλp−1 +

X
j≥2

ej·λp−j

= 1 − `(1 − e−λ)p1 + (1 − eλ)p−1

´
+
X
j≥2

`
ej·λ − 1

´
p−j

(∗∗)
for an appropriate choice of λ > 0. We choose λ := (1/2) ln 2
and show that the sum (∗∗) is at most 1−α+β for positive
constants α and β, where α > β. For our choice of λ, we
obtain

(1 − e−λ)p1 + (1 − eλ)p−1 =: α >
17

1000

and

X
j≥2

`
ej·λ − 1

´
p−j ≤

X
j≥2

2j/2

10jj!
=
X
j≥2

(
√

2/10)j

j!

= exp(
√

2/10) − 1 −
√

2/10 =: β <
11

1000
.

Hence, the sum (∗∗) is at most 1−δ for a positive constant δ
and we can choose a constant polynomial p(n) := 1/δ.

It remains to check the last condition of Theorem 4. We
bound

E
`
e−λ(g(Xt+1)−n/10))

˛̨
Xt, n/10 ≤ g(Xt)

´
≤ E

`
e−λ(g(Xt+1)−g(Xt))

˛̨
Xt, n/10 ≤ g(Xt)

´
from above and proceed analogously to the case of the third
condition. We bound pj(Xt) by the trivial lower bound pj :=
0, for all positive j. For j negative, the probability pj(Xt) is
upper bounded by the probability of the event that at least
j 1-bits flip. The corresponding probability is at most

n

j

!
· 1

nj
≤ 1

j!
≤
“e

j

”j

.

We consider the process where

pj := 0, and p−j :=
“e

j

”j

, for all j ≥ 1, and

p0 := 1 −
X
j≥1

pj .

Now it suffices to estimate the sum

e−0·λp0 +
X
j≥1

ej·λp−j ≤ 1 +
X
j≥1

2j/2
“e

j

”j

≤ 1 +
X
j≥1

“√2e

j

”j

= O(1) +
X
j≥12

“1

2

”j

= O(1).

Hence the last sum is bounded by some positive constant D.
By Theorem 4, the probability that a state with less than k

0-bits is reached in B := ec·n steps is e−Ω(n) if c is sufficiently
small. Taking into account the probability that the initial
search point has at least n/10 0-bits leads to the success

probability of e−Ω(n) in a run of up to ec·n steps. This re-
sult implies the claimed expected runtime and, by the same

655

arguments as presented at the end of the proof of Theo-

rem 3, a success probability of e−Ω(n) for ec′·n independent
runs.

6. ε-CONSTRAINT SELECTION

Proposition 5. Let n = m · k and let A be any of the
algorithms RLSε-constr. and (1+1) EAε-constr.. For a con-
stant β, 0 < β < 1, define the stochastic process X1, . . . , Xs,
where Xi ∈ {0, 1}(1−β)mk is the (1 − β)mk-bit long suffix
of the search point in step i of algorithm A working on the
objective function defined in Definition 2. Then, given that
the search points in the first s steps of A have active block
indices less than βk and active block values 0, each of the
vectors Xi is uniformly distributed over {0, 1}(1−β)mk.

Proof. The proof is by induction over the number of it-
erations i. The initial search point is sampled uniformly at
random, so the statement trivially holds for the base case
i = 1. Assume that the vectors X1, . . . , Xi are uniformly
distributed over {0, 1}(1−β)mk. Because the active block in-
dex of Xi is less than βk and the active block value is 0,
acceptance of a new search point does not depend on the
(1 − β)mk-bit long suffix of the search point. The global
and the local mutation operator applied to a uniformly dis-
tributed suffix, produces a uniformly distributed suffix. (See
e.g., [4]).

Theorem 6. Let n = m · k, where m ≥ 2 is a constant
and α, 0 < α < 1, is an arbitrary constant. Then there
exist constants c, c′ > 0, and a subset F ∗

α of the Pareto
front F ∗ with cardinality |F ∗

α | ≥ α · |F ∗| such that the proba-

bility that ec′·n runs, each of ec·n steps, of RLSε-constr. or
(1+1) EAε-constr. find any Pareto optimal point of F ∗

α is

e−Ω(n). The parameter setting ε is allowed to change be-
tween runs.

Proof. Define F ∗
α := ∪α·k−1

i=0 {F ∗
i }, where F ∗

i is as in
Proposition 2. We call a run bad when the initial search
point has active block index higher than αk, or has active
block value higher than 0. The probability of the first case
is upper bounded by the probability of the event that all the
first αk blocks have block values different from 0, and the
second case is upper bounded by the probability of the event
that all blocks have block values different from 0. Because
the second event implies the first event, the probability of a
bad run is no more than (1 − (1/2)m)αk = e−Ω(n).

Assume now that the initial search point has active block
index less than αk and active block value 0. No Pareto op-
timal search point has active block value 0 when m ≥ 2. We
lower bound the optimization time by analyzing the time un-
til the search point for the first time has active block value
at least 1. We say that the algorithm is in the constraint-
minimization state when the search point x has function
value f1(x) < ε, and in the maximization state when the
search point x has function value f1(x) ≥ ε. In the maxi-
mization state, a search point x will be replaced by a search
point x′ if and only if f2(x

′) ≥ f2(x) and f1(x
′) ≥ ε. Con-

sequently, the algorithm will never leave the maximization
state once entered, and the active block index can only de-
crease in this state. (See Definition 2.) The maximal active
block index during a run will, therefore, never be higher than
the active block index in the first step after the algorithm
has entered the maximization state. We will show that with

0 αk (k/2)(1 + α) k − 1

| {z }
(k/2)(1−α)

| {z }
(k/2)(1−α)−1

Figure 1: Active block index.

overwhelming probability, the highest active block index will
never be higher than (k/2)(1 + α).

We divide the search point into three parts as shown in
Figure 1. We first divide the string into an αk blocks long
prefix and a (1−α)k blocks long suffix. Then, we divide the
suffix into two almost equally long parts, each approximately
(k/2)(1−α) blocks long. The last part now begins at block
index αk + (k − αk)/2 = (k/2)(1 + α).

Assume first that ε < 2αmk. As long as the algorithm is
in the constraint minimization state, the active block index
is less than αk. (See Definition 2.) Therefore, by Propo-
sition 5, the (1 − α)k blocks long suffix will be uniformly
distributed. Furthermore, in the step when the algorithm
enters the maximization state, the blocks in the interval from
αk to (k/2)(1+α) will also be uniformly distributed. Hence,
the probability that the first search point in the maximiza-
tion state has active block index higher than (k/2)(1+α) is
upper bounded by the probability that all the blocks in the
interval from αk to (k/2)(1 + α) have block values differ-
ent from 0. By the uniform distribution, the probability of
this event is no more than (1 − (1/2)m)(k/2)(1−α) = e−Ω(n).
Therefore, with overwhelming probability, the active block
index during the entire run will be no more than (k/2)(1+α).

We now consider the second case where ε ≥ 2αkm. In
this case, all elements in F ∗

α violate the ε-constraint. If
the active block index becomes higher than αk, none of the
search points in F ∗

α can be found. We optimistically assume
that the active block index during the entire run will never
be higher than αk when ε ≥ 2αkm.

Hence, for both cases, we can now assume that the active
block index is less than (k/2)(1 + α) during the entire run.
So by Proposition 5, the suffix Xi corresponding to the last
(k/2)(1−α)−1 blocks of the search point will be uniformly

distributed over the set {0, 1}m((k/2)(1−α)−1). We say that
the vector Xi is good if all blocks in Xi have block val-
ues different from 0. Because Xi is uniformly distributed,
Prob(“Xi is good”) = (1 − (1/2)m)(k/2)(1−α)−1 = e−Ω(n).
To reach active block value 1 within s steps, at least one of
the variables X1, . . . , Xs must be good. By union bound, the
probability of at least one good variable Xi during a run of
length s := ecn is no more than Prob(∪ecn

i=1“Xi is good”) ≤
ecn · e−Ω(n) = e−Ω(n) for a sufficiently small constant c.

Furthermore, ec′·n runs, each of length ec·n, will be suc-
cessful with probability e−Ω(n) for a sufficiently small con-
stant c′ > 0.

7. SEMO
We prove that within polynomial time, the SEMO popu-

lation covers the entire Pareto front on the problem defined
in Definition 2. The idea is the following. The problem con-
sists of k independent paths, one path for each block, with
Pareto optimal solutions at the end of each path. However,
to progress to a higher level on a path, a large plateau must
be overcome. We show that the individuals in the SEMO

656

P Individual 0 Individual 1 Individual 2 t v

1 00 00 00 01 00 00 01 01 00 2 0

2 01 01 01 01 00 00 01 01 00 0 1

3 01 01 01 11 01 01 01 01 00 1 1

4 01 01 01 11 01 01 11 11 01 2 1

5 11 11 11 11 01 01 11 11 01 0 2

Table 3: Examples of the active path concept.

population will be distributed over these paths, with at most
one individual per path. SEMO will, thereby, optimize the
paths in parallel, such that no gain along any path is lost.
The individuals in the population of SEMO are pairwise
incomparable. Hence, the following proposition is a conse-
quence of Proposition 1.

Proposition 6. For each block index j, 0 ≤ j ≤ k − 1,
a population in SEMO has at most one element with active
block index j.

We introduce a concept called the active path of the popu-
lation to analyze the parallel improvements along each path.
Informally, the active path number corresponds to the active
block index on which SEMO has advanced the most, and the
active path value designates how far on this path SEMO has
advanced.

Definition 3. (Active Path) Let x1, x2, . . . , xr be the in-
dividuals in a SEMO population, and j1, j2, . . . , jr their re-
spective active block indices. Then the active path value v
of a population is the maximal active block value in the
population, i. e.,

v := max
1≤i≤r

{|xi|ji
},

and the active path number t of the population is the highest
active block index among the individuals having active block
value v, i. e.,

t := max
1≤i≤r

{ji | |xi|ji = v}.

(Note that, by Proposition 6, there is only one individual in
the population with active block index t.)

Table 3 gives five examples of active path number and
active path value of a population. Each row describes a
population, and each population has three individuals. The
last two columns in the table give the active path number t
and the active path value v of the corresponding popula-
tion. Additionally, the active path representative in each
population is framed.

When the active path value of a population is m, the pop-
ulation must contain the Pareto optimal solution 1n. After
the Pareto optimal solution 1n has been found, SEMO will
quickly discover the rest of the Pareto front. Our approach
to analyze SEMO, therefore, focuses on the time it takes to
increase the active path value to m.

Proposition 7. The active path value never decreases.
If the active path number decreases then the active path value
increases.

Proof. Suppose that the active path value decreases,
and the old active path was represented by individual x.
Then individual x cannot be member of the new population.
Hence, the new population must contain a new element x′

such that x � x′. Proposition 1 implies that |x|j ≤ |x′|j ,
which contradicts that the active path value decreases.

For the second claim, let the old active path number i be
represented by the search point x. If the active path number
decreases then the new active path must be represented by
the search point x′, having active block index j, 0 ≤ j < i.
By Proposition 1, the search point x will remain in the new
population. The only way the new search point x′ can be
the new active path representative is when x′ has higher
active block value than x. This means that the active path
value must increase.

Proposition 8. The expected time to increase the active
path value is bounded above by the expected time to change
the active path number k times.

Proof. Since there are k different blocks, the maximal
number of times the active path number can increase with-
out being decreased is k − 1. Hence, by Proposition 7, after
k active path number changes, the active path value must
have increased at least once.

Theorem 7. The expected time until the SEMO popula-
tion covers the Pareto front is O(nk2 log m).

Proof. Our analysis will be based on 1-bit-mutations
only. Since the probability that a specified bit flips is at
least 1/n and 1/(en) for the local and the global mutation
operator, respectively, the waiting time for a specific 1-bit-
mutation is only larger for the global SEMO. Consequently,
it suffices to derive upper bounds on the runtime of the
global SEMO.

We divide the optimization process into two consecutive
phases. The first phase begins when the algorithm starts
and ends when the population for the first time contains the
Pareto optimal solution 1n. Thereafter, the second phase
starts and it lasts until the entire Pareto front is covered.

In the first phase, the active path value must be increased
at most m times because an active path value of m implies
that the population includes the individual 1n. By Propo-
sition 8, at most k active path number changes suffice to
increase the active path value once. We call a step success-
ful if

1. the active path number increases, or

2. the active path value increases.

We claim that a step is successful if it first chooses the indi-
vidual x representing the active path (i. e., its active block
index equals the active path number) and then flips one or
more of the 0-bits in the active block to obtain x′. Two
cases must be considered, either x and x′ have the same
active block index, or they do not.

In the case that x and x′ have the same active block index,
then x′ clearly dominates x because x′ has more 1-bits in
its active block. Hence, x′ replaces x in the new population
and the active path value increases.

Now, assume that x and x′ have different active block in-
dices i and j, respectively. We first show that x′ will be
accepted. If the new search point x′ is not accepted, then
there must exist a search point y in the population which

657

strictly dominates x′. Proposition 1 implies that y has active
block index j, and that |x′|j < |y|j . Furthermore, because i
is the active block index in x, and x′ by assumption differs
from x in block i only, we have |x|i ≤ |x|j = |x′|j . However,
the last inequality implies that |x|i < |y|j , which contradicts
that x was the active path representative in the old popula-
tion. The search point x′ will, therefore, be accepted.

If i > j then |x|i < |x|j = |x′|j because i is the active
block index of x, and x and x′ do not differ in block j. The
search point x′ will be the new active path representative
and the active path value increases. Analogously, i < j
implies |x|i ≤ |x|j = |x′|j . Hence, x′ has at least as high
active block value as x, and x′ has higher active block index
than x. The search point x′ will be the new active path
representative and the active path number will increase.

Now we estimate the probability of a successful step. By
Proposition 6, the probability of choosing the individual rep-
resenting the active path is at least 1/k. Given that the ac-
tive block value is v, the probability of flipping at least one
of the m − v 0-bits in the active block of x (and no other
bits) is at least

m − v

n

„
1 − 1

n

«n−(m−v)

≥ m − v

n

„
1 − 1

n

«n−1

≥ (m − v)

en
.

The probability of a successful step, therefore, is at least
(m − v)/(ekn). Using Proposition 8, the expected duration
of the first phase is bounded from above by

m−1X
v=0

k · ekn

(m − v)
= ek2n

mX
v=1

1

v
= O

`
k2n log m

´
.

In the second phase, the population contains the Pareto
optimal solution 1n, and it will never be removed from the
population. Given that there are i remaining points in the
Pareto front to be discovered, the probability of selecting
x = 1n and mutating solely one 1-bit in one of the corre-
sponding i blocks is at least

1

k
· im

n
·
„

1 − 1

n

«n−1

≥ im

ekn
=

i

ek2
.

The expected time to find the at most k − 1 remaining
points in the Pareto front is, therefore, no more than

k−1X
i=1

ek2

i
≤ ek2

kX
i=1

1

i
= O(k2 log k).

Hence, the expected time until SEMO covers the entire
Pareto front is O(k2n log m).

8. CONCLUSION
This paper introduces a simple bi-objective function to

contrast two types of multi-objective EAs: population-based
and single individual-based algorithms. The problem fea-
tures a large number of incomparable search points and
large plateaus. The runtime of the population-based algo-
rithm SEMO is compared with the runtime of nine single
individual-based approaches (eight variants from Table 1
plus the linear aggregation approach in Section 3).

Among the algorithms studied, only the population-based
algorithm SEMO finds the Pareto front in expected poly-
nomial time. All single individual algorithms fail on this
problem because they either too easily accept incomparable
search points, or because they cannot overcome the large

plateaus in the search space. SEMO is efficient on the prob-
lem because the individuals in the population collectively
lead to better solutions, i. e., each individual follows a path
leading to one Pareto optimal solution. The result demon-
strates the importance of populations for certain types of
multi-objective problems.

Our result improves an earlier result in [9] where it is
shown that some simple population-based MOEAs slightly
outperform the ε-constrained method. However, the result
yields only a small polynomial runtime gap. Here, we pro-
vide an exponential gap, proving that even multi-start vari-
ants of a number of single individual-based approaches fail
with overwhelming probability. In contrast, SEMO discov-
ers all Pareto optimal solutions efficiently.

9. REFERENCES
[1] K. L. Chung. Elementary Probability Theory with

Stochastic Processes. Springer, 1974.

[2] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. McGraw Hill, New York,
NY, 2nd edition, 2001.

[3] K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. Wiley, 2001.

[4] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[5] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. Wiley, 1968.

[6] O. Giel. Expected runtimes of a simple multi-objective
evolutionary algorithm. In Proc. of the 2003 Congress
on Evolutionary Computation (CEC ’03), volume 3,
pages 1918–1925. IEEE, 2003.

[7] B. Hajek. Hitting-time and occupation-time bounds
implied by drift analysis with applications. Advances
in Applied Probability, 14:502–525, 1982.

[8] J. He and X. Yao. Drift analysis and average time
complexity of evolutionary algorithms. Artificial
Intelligence, 127:57–85, 2001.

[9] M. Laumanns, L. Thiele, and E. Zitzler. Running time
analysis of multiobjective evolutionary algorithms on
pseudo-boolean functions. IEEE Transactions on
Evolutionary Computation, 8(2):170–182, 2004.

[10] F. Neumann. Expected runtimes of a simple
evolutionary algorithm for the multi-objective
minimum spanning tree problem. In Proc. of the 8th
Conference on Parallel Problem Solving from Nature
(PPSN ’04), volume 3242 of LNCS, pages 80–89.
Springer, 2004.

[11] T. Storch. On the choice of the population size. In
Proc. of the Genetic and Evolutionary Computation
Conference (GECCO ’04), volume 3102 of LNCS,
pages 748–760. Springer, 2004.

[12] C. Witt. Population size vs. runtime of a simple EA.
In Proc. of the 2003 Congress on Evolutionary
Computation (CEC ’03), volume 3, pages 1996–2003.
IEEE Press, 2003.

[13] C. Witt. An analysis of the (μ + 1) EA on simple
pseudo-boolean functions. In Proc. of the Genetic and
Evolutionary Computation Conference (GECCO ’04),
volume 3102 of LNCS, pages 761–773. Springer, 2004.

658

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

