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ABSTRACT
Genetic Algorithm (GA) is known as a potent multiobjec-
tive optimization method, and the effectiveness of hybridiz-
ing it with local search (LS) has recently been reported in
the literature. However, there is a relatively small number
of studies on LS methods for multiobjective function opti-
mization. Although each of the existing LS methods has
some strong points, they have respective drawbacks such as
high computational cost and inefficiency in improving ob-
jective functions. Hence, a more effective and efficient LS
method is being sought, which can be used to enhance the
performance of the hybridization.
Defining Pareto descent directions as descent directions

to which no other descent directions are superior in im-
proving all objective functions, this paper proposes a new
LS method, Pareto Descent Method (PDM), which finds
Pareto descent directions and moves solutions in such di-
rections thereby improving all objective functions simulta-
neously. In the case part or all of them are infeasible, it
finds feasible Pareto descent directions or descent directions
as appropriate. PDM finds these directions by solving lin-
ear programming problems, which is computationally inex-
pensive. Experiments have shown PDM’s superiority over
existing methods.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient meth-
ods; I.2 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multi-objective optimization, Local search, Constraint han-
dling
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1. INTRODUCTION
The problem of simultaneously optimizing multiple con-

flicting objective functions is called multiobjective optimiza-
tion and is encountered in many applications such as design,
control, and systems modeling. If the variables of the ob-
jective functions are real-valued, it is called multiobjective
function optimization, which is dealt with herein.
The objective of multiobjective optimization is to find the

set of Pareto-optimal solutions, to which no other feasible
solutions are superior in all objective functions. One ap-
proach to multiobjective optimization is scalarizing meth-
ods. Scalarizing methods combine objective functions, as
specified by a parameter vector, to form a scalar function,
which is then optimized to give the Pareto-optimal solution
corresponding to that particular parameter vector. Min-
max method and ε-constraint method are a few of such
methods [3]. A set of Pareto-optimal solutions can be ob-
tained by solving the scalar function optimization problems
for various parameter vectors. However, solving constrained
nonlinear scalar optimization problems for obtaining many
Pareto-optimal solutions is computationally prohibitive.
Much attention has recently been paid to Genetic Algo-

rithms (GA) as a promising alternative. It maintains a set
of solutions and converges it progressively toward Pareto-
optimal solutions with relatively small computational cost
[3]. However, there is a report [10] from which it can be in-
ferred that GA may not be suitable for obtaining solutions
of high precision.
In order to avoid such a problem, GA can be hybridized

with local search (LS), and the effectiveness of the hybridiza-
tion has been demonstrated in the literature [6, 7, 9]. LS
methods for multiobjective function optimization such as
Evolution Strategies (ES) [8], Multiobjective Steepest De-
scent Method (MSDM) [4], Combined-Objectives Repeated
Line-search (CORL) [1] have been proposed. However, they
have limitations such as inefficiency (ES), high computa-
tional cost (MSDM), and inability to improve objective func-
tion for solutions on feasible region boundaries (CORL).
Hence, a new LS method that resolves these problems is
been sought.
This paper, assuming that objective functions are differ-

entiable, defines Pareto descent directions as descent direc-
tions to which no other descent directions are superior in
improving all objective functions and proposes a new LS
method, Pareto Descent Method (PDM), which efficiently
finds feasible Pareto descent directions or descent directions
as appropriate in which solutions can be moved to simul-
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taneously improve all objective functions for problems with
arbitrary numbers of variables, objective functions, and con-
straints.
In the ensuing sections, the basics of multiobjective func-

tion optimization are reviewed and some of the existing LS
methods are surveyed, followed by a description of PDM and
experimental results that show PDM’s superiority over the
existing LS methods.

2. MULTIOBJECTIVE OPTIMIZATION AND
LS METHODS

2.1 Multiobjective Optimization

2.1.1 Multiobjective Optimization Problem and Pareto-
optimal Solutions

Let the dimensions of the real-valued variable space and
the objective space be N and M , respectively. Denote a so-
lution by x = (x1, x2, . . . , xN)

T ∈ R
N , the vector of objec-

tive functions by f = (f1, f2, . . . , fM )T , the feasible region
by S ⊂ R

N , and the image of x in the objective space by
f (x) ∈ R

M . Multiobjective function optimization problems
can be formulated as:

Minimize fi(x) (i = 1, 2, . . . , M), subject to x ∈ S.

Its feasible region S is the region which satisfies L con-
straints such as:

gj(x) ≥ 0 (j = 1, 2, . . . , L).

fi and gj are assumed to be differentiable herein.
If the following holds for some solutions x1, x2 ∈ S, x1 is

said to be superior to x2, which is denoted by x1 � x2:

∀i ∈ {1, . . . , M}, fi(x1) ≤ fi(x2)
∧∃i ∈ {1, . . . , M}, fi(x1) < fi(x2).

If there is no feasible solution x′ such that x′ � x, the solu-
tion x is called a Pareto-optimal solution. There are often
multiple Pareto-optimal solutions. If there is no solution
x′ such that x′ � x in the feasible ε-vicinity of a solution
x, x is called a local Pareto-optimal solution. Since this
paper focuses on LS methods, it is henceforth assumed, for
the brevity of discussion, that local Pareto-optimal solutions
that are not Pareto-optimal do not exist.

2.1.2 Descent Directions
Denote by ∇fi(x) (i = 1, 2, . . . , M) the gradients of ob-

jective functions at a solution x. If the following holds for
a direction d = (d1, d2, . . . , dN )

T ∈ R
N , all objective func-

tions can be improved simultaneously by moving x in the
direction d:

d · (−∇fi(x)) ≥ 0 (i = 1, 2, . . . , M). (1)

Descent directions [4] for multiobjective function optimiza-
tion are defined as directions that satisfy Eq. (1). There
are often multiple descent directions. Note that scaling ob-
jective functions does not inherently change multiobjective
optimization problems. In order to remove the influence of
scaling, Eq. (1) can be rewritten as:

d · (−∇̄fi(x)) ≥ 0 (i = 1, 2, . . . , M), (2)

- f2

d

x

- f1

Descent direction set

Figure 1: A descent di-
rection: at a solution x
of a 2-variable-2-objective
problem

Descent direction set

d4

d3d2

d1

x

Pareto descent
direction set

- f1 - f2

Figure 2: Pareto de-
scent directions: at a so-
lution x of a 2-variable-2-
objective problem

where ∇̄fi(x) = ∇fi(x)/||∇fi(x)||. Descent directions, herein,
are defined as directions that satisfy Eq. (2) which is equiv-
alent to Eq. (1). A descent direction for a 2-variable-2-
objective problem is shown in Fig. 1. Note that, since Eq.
(2) is a simultaneous linear inequality, the complete set of
descent directions forms a convex cone pointed at the origin
in the vector space.

2.1.3 Pareto Descent Directions
Not all descent directions are similarly capable of im-

proving all objective functions. Consider descent directions
d1, d2, d3, and d4 of Euclidean norm 1 at a solution x of a 2-
variable-2-objective problem shown in Fig. 2. The following
holds for d1 and d2:

d1 · (−∇̄f1(x)) < d2 · (−∇̄f1(x)),
d1 · (−∇̄f2(x)) < d2 · (−∇̄f2(x)).

Hence, d2 improves each objective function more than d1

does. Similarly, d3 improves each objective function more
than d4 does. Furthermore, there is no descent direction
which can improve each objective function more than d2 or
d3 does. Pareto descent directions1 are defined as descent
directions to which no other descent direction is superior in
improving all objective functions. There are often multiple
Pareto descent directions.
None of Pareto descent directions are better than one an-

other. For example, the following holds for d2 and d3:

d2 · (−∇̄f1(x)) > d3 · (−∇̄f1(x)),
d2 · (−∇̄f2(x)) < d3 · (−∇̄f2(x)).

This means that d2 improves f1 more than d3 does while d3

improves f2 more than d2 does.
A descent direction d is a Pareto descent direction iff d can

be expressed as a convex combination of the steepest descent
directions of objective functions, i.e. there exist αi ≥ 0 (i =
1, 2, . . . , M) such that:

d =

MX

i=1

αi(−∇̄fi(x)). (3)

Since both the complete set of descent directions and all
convex combinations of the steepest descent directions form
convex cones, the union of the two, namely, the complete
set of Pareto descent directions, also forms a convex cone.

1A similar concept has been proposed in [1] as non-
dominated improving directions.
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2.2 Local Search Methods
This section briefly reviews some of the existing LS meth-

ods and mentions their respective advantages and disadvan-
tages.

Evolution Strategies (ES): ES samples a new solution
according to the normal distribution centered at the
previous solution and replaces it with the new solu-
tion if all the objective functions are improved at the
new one. ES may or may not maintain the archive
of the previously visited solutions. ES without the
archive, which is assumed throughout this paper, can
be thought of a local search method. Although the
cost of generating new solutions in ES is small, its per-
formance is sensitive to the standard deviation of the
normal distribution [10], and randomly generating an
improving solution becomes more and more inefficient
as the dimension of the variable space increases.

Note that, if a new solution randomly sampled over
the surface of the small hypersphere centered at the
previous solution is superior to the previous one in
all objective functions, the direction from the previous
solution to the new one is a descent direction. Based
on this consideration, an ES-like simple LS method
that improves a solution in a descent direction found
in this manner can easily be conceived, which herein
is called Random Direction Search (RDS).

Weighted Steepest Descent Method (WSDM):
WSDM combines objective functions as specified by
some convex combination weight w to form a scalar
function and optimizes it with steepest descent method
to move the solution progressively toward the Pareto-
optimal solution corresponding to the weight w. Since
the steepest descent direction of the scalar function is
equivalent to the convex combination of the steepest
descent directions of objective functions with the same
combination weight, WSDM can be thought of as one
of the methods that specify the direction in which a
solution is moved based on the gradients of objective
functions at the solution.

If the Pareto-optimal solutions are non-convex in the
objective space, WSDM is unable to find the solutions
in the non-convex part. Furthermore, WSDM is un-
able to move solutions on a feasible region boundary
if all convex combinations of the steepest descent di-
rections are infeasible.

Multiobjective Steepest Descent Method (MSDM):
MSDM [4] defines the degree of improvement in each
objective function when a solution is moved in a di-
rection as the inner product of the direction and the
steepest descent direction of respective objective func-
tion. MSDM finds the direction that maximizes the
minimum degree of improvement of all objective func-
tions by solving a quadratic programming problem and
moves the solution in that direction [4]. The direction
it finds is a Pareto descent direction. When a solu-
tion is on a feasible region boundary, it incorporates
the boundary information into the quadratic program-
ming problem to exclude infeasible directions.

MSDM finds only a single Pareto descent direction al-
though there are many other such directions. In ad-

dition, when a solution is on a feasible region bound-
ary and there exists a solution in its infeasible vicinity
which further improves all objective functions, MSDM
finds a direction parallel to the boundary, which may
not be properly feasible. Furthermore, MSDM is com-
putationally expensive since a quadratic programming
problem has to be solved to find a single direction.
Two less computationally expensive variants of MSDM
are suggested in [4]. However, they do not necessarily
find Pareto descent directions.

Combined Objectives Repeated Line-search (CORL):
CORL utilizes the gradients of objective functions and
analytically calculates the vectors that generate the
convex cone of Pareto descent directions or descent di-
rections [1]. It is computationally inexpensive.

Although CORL is guaranteed to find the complete set
of Pareto descent directions on 2-objective problems, it
may not find these directions on problems with more
than 2 objectives, as explained in the appendix. In
that case, CORL is expected to perform poorly. Fur-
thermore, CORL may not be able to move a solution
on a feasible region boundary when all Pareto descent
directions are infeasible yet some descent directions are
feasible.

Hence, it can be concluded that, although each of the
existing methods has certain strong points, they have their
respective drawbacks.

3. PARETO DESCENT METHOD
This section presents a new LS method, Pareto Descent

Method (PDM), that finds, at a relatively small computa-
tional cost, a set of Pareto descent directions for solutions
inside feasible regions and a set of feasible Pareto descent
directions or descent directions as appropriate for solutions
on feasible region boundaries and moves the solutions in
these directions, thereby efficiently improving all objective
functions simultaneously.

3.1 Overview
Consider the problem of finding a direction in a convex

cone which is defined by a simultaneous linear inequality
and pointed at the origin in the vector space, as shown in
Fig. 3. Suppose that imposing a linear constraint on the
convex cone gives a convex polyhedron which has the origin
as one of its vertices. The vertices of the convex polyhedron
can be obtained by solving the linear programming prob-
lems corresponding to the convex polyhedron. Note that
the vectors from the origin to the vertices of the convex
polyhedron other than the origin represent directions in the
convex cone. The property of convex cone ensures that any
convex combinations of these vectors are also in the convex
cone.
The set of convex combination weight with which the

steepest descent directions of objective functions are com-
bined to give a Pareto descent direction forms a convex cone
pointed at the origin as explained in Subsection 3.2. The set
of descent directions also forms a convex cone pointed at the
origin. Hence, the above-mentioned method can be used for
finding both a set of Pareto descent directions and a set of
descent directions.
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Convex cone
pointed
at the origin

Additional
linear
constraint

Figure 3: Convex polyhedron defined by a convex
cone pointing at the origin and an additional linear
constraint: The circles denote the vertices of the con-
vex polyhedron other than the origin, and the arrows
the vectors from the origin to these vertices.
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- f1 - f2

x

- f1

- f2

(1)

x

(2)

(3)

- f1

- f2

Descent directions
Pareto descent directions
Directions PDM finds

Feasible region boundary

Figure 4: Directions that PDM finds: PDM finds
appropriate feasible directions for line search in ac-
cordance with the feasibility of Pareto descent direc-
tions and descent directions

When a solution is on a feasible region boundary, part
of Pareto descent directions or descent directions may be
infeasible, as in the cases shown in Fig. 4(1) and Fig. 4(2).
These infeasible directions can be excluded by incorporating
the boundary information into the direction calculation as
done in [4].
Since finding a direction requires some computation, it is

reasonable to move the solution in that direction until just
before any of the objective functions deteriorate or any of
the constraints are violated.
If no feasible descent directions can be found as in the case

shown in Fig. 4(3), the above-mentioned method can detect
it, thereby providing a test of (local) Pareto-optimality.
The details of the proposed algorithm are elucidated in

the following subsections, followed by the flowchart of the
whole algorithm.

3.2 Finding Pareto Descent Directions at So-
lutions inside Feasible Regions

Recall that Pareto descent directions satisfy Eq. (2) and
can be expressed as Eq. (3). Substituting Eq. (3) into Eq.
(2) gives:

MX

i=1

αiβij ≥ 0 (j = 1, 2, . . . , M), (4)

where βij = ∇̄fi(x) · ∇̄fj(x). This is a simultaneous linear
inequality of combination weights αi ≥ 0 (i = 1, 2, . . . , M).

Since all constant terms are 0, the weight vector ¸ satisfying
the inequality forms a convex cone pointed at the origin.
Suppose imposing the following linear constraint:

MX

i=1

αi ≤ 1. (5)

The set of ¸ satisfying all linear inequalities forms a con-
vex polyhedron having the origin as one of its vertices. For
each k ∈ {1, 2, . . . , M}, consider solving the following linear
programming problem of finding ¸ that maximizes αk:

Maximize αk

subject to
PM

i=1 αiβij ≥ 0 (j = 1, 2, . . . , M),
PM

i=1 αi ≤ 1, and αi ≥ 0 (i = 1, 2, . . . , M).

(6)

This linear programming problem has an obvious feasible
solution ¸ = 0 for artibrary βij . If ¸ = 0, the convex
combination of the steepest descent directions of objective
functions does not represent a direction. Hence the obvious
solution ¸ = 0 has to be separated. Since αk is maximized,PM

i=1 αi = 1 holds if some ¸ �= 0 exist. Therefore, if the so-
lution to the linear programming problem is ¸ = 0, Pareto
descent directions do not exist, and neither do descent di-
rections. On the other hand, if the solution is ¸ �= 0, the
steepest descent directions combined with the weight ¸ gives
a Pareto descent direction. Since Pareto descent directions
form a convex cone, convex combinations of thus found M
Pareto descent directions are also Pareto descent directions.
For solutions inside feasible regions, there exist Pareto

descent directions unless they are (locally) Pareto-optimal.
The above-mentioned method can test the existence of such
directions when solving the linear programming problem.
Thus, it provides a test of (local) Pareto-optimality.

3.3 Finding Pareto Descent Directions at So-
lutions on Feasible Region Boundaries

If a solution is on a feasible region boundary and part of
its Pareto descent directions are infeasible as shown in Fig.
4(1), some of the directions found with the method described
in the previous subsection may be infeasible, which may
undermine the efficiency of searching. Therefore, for such a
solution, it is desirable to exclude infeasible directions.
Suppose that the active constraint gj(x) ≥ 0 is linear.

The inequality can be transformed into the Hessian nor-
mal form nj · x ≥ lj , where nj is a unit vector and lj is
a real value, which reveals that nj is the normal vector to
the boundary [5]. Infeasible directions can be excluded by
adding the following linear constraint to the linear program-
ming problem in Eq. (6):

d · nj ≥ 0.

If the solution is on the boundary specified by multiple linear
constraints, they can be incorporated all together.
If the constraint gj(x) ≥ 0 is not linear, Taylor expansion

can approximate it with a linear constraint in the vicinity
of x. Hence, nonlinear constraints can also be handled.

3.4 Finding Descent Directions at Solutions on
Feasible Region Boundaries

When a solution is on a feasible region boundary and the
method described in Subsection 3.3 does not find Pareto de-
scent directions, feasible descent directions may still exist,
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as in the case shown in Fig. 4(2). In such a case, it is desir-
able to find feasible descent directions in which the solution
can be moved to improve all objective functions.
Recall that the complete set of descent directions forms

a convex cone pointed at the origin as noted in Subsection
2.1.2. Imposing the following constraint on the set of descent
directions gives a convex polyhedron having the origin as one
of its vertices:

−1 ≤ di ≤ 1 (i = 1, 2, . . . , N). (7)

Solving the following linear programming problem for some
weight vector w = (w1, w2, . . . , wN ) gives one of the vertices
of the convex polyhedron:

Maximize w · d
subject to d · (−∇̄fi(x)) ≥ 0 (i = 1, 2, . . . , M),

−1 ≤ di ≤ 1 (i = 1, 2, . . . , N).
(8)

Since a vertex of the convex polyhedron is either the origin
or a point on the hypercube defined by Eq. (7), whether
d = 0 can easily be tested. If d �= 0, the direction from the
origin to the vertex is a descent direction. If d = 0, it does
not represent a direction and has to be separated. Solv-
ing Eq. (7) for many randomly generated w gives multiple
descent directions. Since descent directions form a convex
cone, convex combinations of thus found directions are also
descent directions. The information of the active feasible re-
gion boundary can also be incorporated into the calculation
as done for finding feasible Pareto descent directions.
Suppose that the solution of the linear programming prob-

lem is d = 0 for some weight w. If there are any vertices of
the convex polyhedron other than the origin, solving the lin-
ear problem with the weight −w gives one of such vertices.
Its contraposition allows for the test of existence of descent
directions, hence the test of (local) Pareto-optimality.

3.5 Stepsize Calculation
Having found a feasible Pareto descent or descent direc-

tion at a solution as described in Subsections 3.2 through
3.4, the distance at which the solution is moved from its
original position has to be determined. Since finding di-
rections entails some computational cost, it is reasonable to
move the solution until just before any of the objective func-
tions deteriorate or any of the constraints are violated. The
same strategy is also employed in [1]. Assuming the local
unimodality of objective functions, golden section method
can be used to determine the distance.

3.6 PDM Algorithm
The proposed LS method, PDM, comprises these compo-

nents described thus far. The algorithm flowchart of PDM
is shown in Fig. 5, in which it is assumed that a solution
can exist either inside the feasible region or on the bound-
ary of it. The algorithm comes to an end when the number
of times direction calculation and line search are conducted
reaches T .

3.7 Computational Complexity
Since the most computationally intense part of PDM is

that of solving linear programming problems for finding di-
rections, the computational complexity of PDM primarily
depends on that of the linear programming solver employed
in PDM. The most commonly used linear programming solver
is simplex method. Although simplex method can require

x is (locally) Pareto-optimal

x is (locally)
P

areto-optim
al

x is inside
feasible
region?

Termination
Condition

t T?
Yes No

Yes NoDescent
directions
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Find Pareto
descent

directions
as described
in Sect. 3.2

Find feasible
Pareto descent

directions
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in Sect. 3.3
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Pareto descent
directions
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Yes No

Output x
and Terminate

t=t+1

Initialize
counter t=0

Initial solution x

Figure 5: Algorithm flowchart of PDM

exponential time in the worst case, it often solves general
linear programming problems quickly in practice [2]. In ad-
dition, there is a class of polynomial-time solvers which is
known as interior-point methods [2]. When such methods
are employed, it can be said that PDM is a polynomial-time
algorithm.
Since PDM finds feasible Pareto descent directions or de-

scent directions as appropriate, the factors that influence
computational complexity of direction calculation in PDM
change accordingly. When PDM finds feasible Pareto de-
scent directions, the computational complexity depends only
on the number of objective functions and the number of ac-
tive constraints, not on the number of variables. However,
when PDM finds feasible descent directions, it depends on
the number of variables as well.

4. EXPERIMENTS

4.1 Overview
This section shows the results of the experiments compar-

ing the performances of PDM, RDS, WSDM, and CORL
and verifying that PDM exhibits favorable behaviors as de-
scribed thus far. MSDM was not included in the comparison
because of its notably high computational cost.
For problems without local Pareto-optimal solutions, it is

desirable for LS methods to move an arbitrary initial so-
lution in the feasible region to one of the Pareto-optimal
solutions. How well this is achieved can be measured by the
squared distance, or error, between the solution and its near-
est Pareto-optimal solution in the variable space. Hence, the
performances of LS methods can be compared by examin-
ing the transition of the mean squared error (MSE) of many
solutions that are initially distributed uniformly at random
across the feasible region as the LS methods are applied to
them.
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In Experiment 1, the LS methods are compared on a 30-
variable-3-objective benchmark problem MED1(e) in order
to investigate the effects of the convexity of the Pareto-
optimal solutions in the objective space. The Pareto-optimal
solutions of MED1(e) can be made convex or non-convex by
adjusting the parameter e. RDS is expected to achieve lim-
ited improvements in objective functions since MED1(e) is
of high dimension and RDS can hardly find even descent
directions. If the Pareto-optimal solutions of MED1(e) are
non-convex in the objective space, WSDM is unable to move
solutions to the Pareto-optimal solutions in the non-convex
part. CORL is expected to achieve limited improvements in
objective functions since it often finds descent directions on
MED1(e), as described in the appendix. PDM is expected
to improve all objective functions efficiently by moving solu-
tions in Pareto descent directions, regardless of the convexity
of the Pareto-optimal solutions in the objective space.
In Experiment 2, the LS methods are compared on a 2-

variable-2-objective benchmark problem MED2 in order to
investigate the effects of feasible region boundaries. When
a solution is on some part of MED2’s feasible region bound-
ary, all steepest descent directions and all Pareto descent
directions are infeasible. Such a solution cannot be moved
any closer to the Pareto-optimal solutions with WSDM and
CORL since the directions they find are all infeasible. How-
ever, PDM can move such solution closer to the Pareto-
optimal solutions by moving it in feasible Pareto descent
direction or descent direction as appropriate. RDS is ex-
pected to perform poorly since it relies on finding descent
directions solely by chance.

4.2 Performance Metrics and Experiment Se-
tups

The LS methods are applied to 104 initial solutions dis-
tributed uniformly at random across the feasible region, and
their performances are compared by examining the transi-
tion of the MSE as the LS methods are applied to them.
Gradients are approximated by forward difference with

the difference of 10−4. Simplex method is used in direc-
tion calculation of PDM. In order for PDM to sufficiently
approximate the complete convex cone of feasible descent
directions, 40 combination weights are randomly drawn for
direction calculation.
All the LS methods employ the same line search method,

golden section method, with the basic search segment length
of 10−2, the maximum number of extension of the segment
of 20, and the number of iteration of 20. A solution is as-
sumed to be on a feasible region boundary if the distance
between them is less than 10−2 × τ 20, where τ is the golden
ratio. In order to offset RDS’s inefficiency of finding descent
directions, up to 104 directions are drawn for one iteration
of RDS to the advantage of the number of function evalua-
tions for finding a direction. If it finds a descent direction,
line search is conducted in that direction. Otherwise, that
particular iteration of RDS is declared unsuccessful. Note
that the numbers of function evaluations PDM, WSDM, and
CORL require for finding a direction are the same.

4.3 Experiment 1: Comparison on a 3-Objective
Problem

4.3.1 Benchmark Problem
The objective functions of the 30-variable-3-objective bench-

mark problem MED(Multiple Euclidean Distances)1(e) are:

fe
11(x) = ||x−c11||e, fe

12(x) = ||x−c12||e, fe
13(x) = ||x−c13||e,

where c11 = (1, 1, 0, . . . , 0), c12 = (0.1, 0, 0, . . . , 0), and c13 =
(0, 0.1, 0, . . . , 0), and the feasible region is [0, 1]2×[−0.5, 0.5]28.
Its Pareto-optimal solutions form a triangle whose vertices
are at c11, c12, and c13. Parameter values e = 2, 0.5 are
used, for which the Pareto-optimal solutions are convex and
non-convex, respectively, in the objective space.

4.3.2 Results and Consideration
Fig. 6 shows the transition of the MSE against the number

of times a direction is found and line search is conducted for
each solution.
On MED1(2), WSDM gave an excellent value and speed

of convergence. Although the convergence speed of PDM
was slower than that of WSDM, its convergence value was
comparable to that of WSDM. CORL performed poorly as
it often finds descent directions on MED1(e). RDS per-
formed worst, since its direction search is inefficient on high
dimensional problems.
On MED1(0.5), WSDM again performed best with re-

spect to both the value and speed of convergence, whereas
the convergence of PDM was slightly slower than that of
WSDM. RDS and CORL performed poorly for the same rea-
sons as they did in MED1(2). Note, however, that WSDM is
not necessarily a suitable LS method. Fig. 7 shows the dis-
tribution of the solutions obtained with PDM and WSDM
projected onto the x1-x2 coordinate. The figure shows that
PDM moved solutions to the whole Pareto-optimal solu-
tions while WSDM moved most of the solutions to either
of c11, c12, or c13 and the remainder to a small number of
Pareto-optimal solutions. This bias is undesirable for the
purpose of multiobjective optimization.
The above consideration reveals that the LS method which

has a good value and speed of convergence and which does
not bias solutions to a limited portion of the Pareto-optimal
solutions is PDM.

4.4 Experiment 2: Comparison on a Problem
Whose Pareto-Optimal Solutions are on its
Feasible Region Boundary

4.4.1 Benchmark Problem
The objective functions of the 2-variable-2-objective bench-

mark problem MED2 are:

f21 = ||x − c21||, f22 = ||x − c22||,
where c21 = (0,−1), c22 = (1,−1), and the feasible region is
[−1, 2]× [0, 1]. Its Pareto-optimal solutions form a straight
line segment connecting (0, 0) and (1, 0), which is on the fea-
sible region boundary. For solutions in the feasible region,
all convex combinations of the steepest descent directions
are Pareto descent directions. These directions are infeasi-
ble for solutions on the x1 axis. Initial solutions in the re-
gion [0, 1]2 can be moved to the Pareto-optimal solutions by
moving them in Pareto descent directions. However, those
in the other feasible region may have to be moved in fea-
sible descent directions as well in order for them to reach
the Pareto-optimal solutions. These two regions are named
Region A and Region B, respectively, and are shown in Fig.
8. PDM, WSDM, and CORL exhibit identical behaviors for
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Figure 6: Transition of MSE on MED1(e) in Exper-
iment 1
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The solutions are projected onto the x1-x2 coordinate.
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Figure 8: Pareto-optimal solutions, Region A, and
Region B of MED2: The thin lines are the contours
of the objective functions

initial solutions in Region A. However, they behave differ-
ently for initial solutions in Region B: PDM moves solutions
in feasible descent directions when all Pareto descent direc-
tions become infeasible, whereas WSDM and CORL stag-
nate once the solutions reach the x1 axis.

4.4.2 Results and Consideration
Fig. 9 shows the transition of the MSE for initial solutions

in Region A and Region B against the number of times a
direction is found and line search is conducted for each so-
lution.
For initial solutions in Region A, PDM,WSDM, and CORL

performed equally well regarding the value and speed of
convergence. For those in Region B, PDM improved MSE
steadily by moving solutions in feasible descent directions
when all Pareto descent directions are infeasible. On the
contrary, WSDM and CORL stagnated due to their inability
to move solutions once they reach the x1 axis and all Pareto
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Figure 10: Distribution of the solutions obtained by
applying PDM and WSDM to initial solutions in
Region B of MED2 in Experiment 2

descent directions become infeasible. RDS performed poorly
in both regions due to the inefficiency of its direction search.
Fig. 10 shows the distribution of the solutions obtained

with PDM and WSDM that were initially located in Region
B. The figure shows that PDM moved the solutions to the
Pareto-optimal solutions, whereas WSDM moved them to
the x1 axis but not any closer to the Pareto-optimal solu-
tions.
Hence, it has been verified that PDM efficiently improve

all objective functions simultaneously by moving them in
feasible Pareto descent directions or descent directions as
appropriate for solutions inside feasible regions and on the
boundaries of them.

5. CONCLUSION
Based on the observation of the LS methods known in the

multiobjective function optimization literature and on the
consideration of Pareto descent directions, this paper clar-
ified the requirements for LS methods to achieve high effi-
ciency and effectiveness: the ability to find Pareto descent
directions for solutions inside feasible regions and feasible
Pareto descent directions or descent directions for those on
feasible region boundaries on problems with arbitrary num-
bers of variables, objectives, and constraints at a relatively
small computational cost. This paper proposed a new LS
method, PDM, which meets these requirements. It also pro-
vides a test of (local) Pareto-optimality, which is another
advantage of PDM.
Two experiments were conducted, which verified that PDM

exhibits the expected favorable behaviors and achieves effi-
cient improvements of all objective functions for solutions
both inside the feasible region and on the boundary of it on
2- and 3-objective problems.
GA is known as a potent global optimization method for
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its ability to overcome local Pareto-optimal solutions by
maintaining a set of solutions during the course of its search.
However, a recently published paper [10] showed some ex-
perimental results from which it can be inferred that GA
may not be suitable for obtaining solutions of high precision
for multiobjective function optimization. One remedy for
this is its hybridization with an LS method, such as PDM.
We are planning to investigate how the performance of the
hybridization is affected by the particular LS method chosen
for the hybridization and the way in which GA and LS are
hybridized.
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APPENDIX
CORL was proposed as a method that analytically finds
the vectors that generate the complete set of Pareto de-
scent directions and moves solutions in these directions [1].
Although CORL is guaranteed to find Pareto descent di-
rections on 2-objective problems, it may not find them on
problems with more than 2 objectives. For example, at a
solution x of a 3-variable-3-objective problem shown in Fig.
11, the vectors that CORL calculates are d1, d2, and d3.
However, d2 and d3 are not Pareto descent directions and
their convex combination may not be a Pareto descent di-
rection.
In this situation, PDM finds the Pareto descent direc-

tions denoted by the cross-hatched area in Fig. 11. Note
that PDM does not necessarily find the entire Pareto de-
scent directions for problems with more than 2 objectives.
However, PDM is guaranteed to find a multiple of Pareto
descent directions with relatively small computational cost,
as opposed to CORL which may not find such directions and
MSDM which finds only a single such direction by solving a
quadratic programming problem.
The situation shown in Fig. 11 often occurs on the 3-

objective benchmark problem MED1(e), and CORL is ex-
pected to perform poorly when applied to this problem,
which was confirmed by Experiment 1 in Section 4.3.
The frequency with which the situation shown in Fig. 11

occurs increases in general as the number of objective func-
tions increases. Therefore, the larger the number of ob-
jective functions, the more likely CORL finds descent direc-
tions instead of Pareto descent directions and, hence, poorer
CORL’s performance. We have verified this through exper-
iments conducted on the benchmark problem SPH [10] with
various number of objective functions.
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