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ABSTRACT
Hybridization with local search (LS) is known to enhance
the performance of genetic algorithms (GA) in single objec-
tive optimization and have also been studied in the multiob-
jective combinatorial optimization literature. In most such
studies, LS is applied to the solutions of each generation
of GA, which is the scheme called “GA with LS” herein.
Another scheme, in which LS is applied to the solutions ob-
tained with GA, has also been studied, which is called “GA
then LS” herein. It seems there is no consensus in the liter-
ature as to which scheme is better, let alone the reasoning
for it. The situation in the multiobjective function opti-
mization literature is even more unclear since the number of
such studies in the field has been small.

This paper, assuming that objective functions are differen-
tiable, reveals the reasons why GA is not suitable for obtain-
ing solutions of high precision, thereby justifying hybridiza-
tion of GA and LS. It also suggests that the hybridization
scheme which maximally exploits both GA and LS is GA
then LS. Experiments conducted on many benchmark prob-
lems verified our claims.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
The problem of simultaneously optimizing multiple con-

flicting objectives is called multiobjective optimization. The
objective of multiobjective optimization is to find a set of
Pareto-optimal solutions, which are the solutions to which
no other feasible solutions are superior in all objective func-
tions.

Genetic algorithms (GA) have been shown to be effective
in solving multiobjective optimization problems and have
been studied extensively [3]. GA maintains a set of solutions
and converges it progressively toward Pareto-optimal solu-
tions, exploiting the information about the objective func-
tion landscapes that the set of solutions carry with them.

Hybridization with local search (LS) is known to enhance
the performance of GA in single objective optimization. As-
suming that the same is true for multiobjective optimization,
the hybridization has also been applied to multiobjective
optimization [13]. In most of such studies, LS is applied
to the solutions of each generation of GA. There have been
a relatively small number of such studies for multiobjec-
tive function optimization whose variables are real-valued.
Bosman et al. [1] propose an LS method called Combined
Objectives Repeated Line-search (CORL) for multiobjective
function optimization and conduct experiments comparing
GA and GA with LS on the ZDT benchmark problems [18,
3]. They conclude that it seems LS contributes marginally
to enhancing the performance of GA. However, we believe
that it is too early to dismiss the effectiveness of hybridiza-
tion because the benchmark problems on which the exper-
iments were conducted are rather peculiar with respect to
the landscapes of the objective functions, shapes of their
Pareto-optimal solutions, and their constraints.

Assuming that objective functions are differentiable, this
paper presents the reasons why GA is not suitable for ob-
taining solutions of high precision in multiobjective function
optimization, which justifies the hybridization of GA and
LS. It then suggests that the hybridization scheme which
maximally exploits the advantages of both GA and LS is
GA then LS, which is the hybridization scheme in which LS
is applied to solutions obtained with GA. These claims are
verified through experiments on various benchmark prob-
lems.

Section 2 reviews the basics of multiobjective optimization
and surveys the studies of hybridization. Section 3 exam-
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ines the behaviors of GA that is idiosyncratic to multiobjec-
tive function optimization and explains the reasons why it is
hard for GA to find solutions of high precision, and the hy-
bridization scheme which maximally exploits the advantages
of both GA and LS is GA then LS. Section 4 presents the
experimental results confirming these claims, and Section 5
concludes this paper.

2. MULTIOBJECTIVE OPTIMIZATION AND
EXISTING APPROACHES

2.1 Multiobjective Optimization
Let the dimensions of the real-valued variable space and

the objective space be N and M , respectively. Denote a so-
lution by x = (x1, x2, . . . , xN)T ∈ R

N , the vector of objec-
tive functions by f = (f1, f2, . . . , fM )T , the feasible region
by S ⊂ R

N , and the image of x in the objective space by
f (x) ∈ R

M . Multiobjective function optimization problems
can be formulated as:

Minimize fi(x) (i = 1, 2, . . . , M), subject to x ∈ S.

fi are assumed to be differentiable herein.
If the following holds for some solutions x1, x2 ∈ S, x1 is

said to be superior to x2, which is denoted by x1 � x2:

∀i ∈ {1, . . . , M}, fi(x1) ≤ fi(x2)
∧∃i ∈ {1, . . . , M}, fi(x1) < fi(x2).

If there is no feasible solution x′ such that x′ � x, the
solution x is called a Pareto-optimal solution. There are
often multiple Pareto-optimal solutions. If there is no so-
lution x′ such that x′ � x in the feasible ε-vicinity of a
solution x, x is called a local Pareto-optimal solution. Local
Pareto-optimal solutions henceforth denote those that are
not Pareto-optimal.

The objective of multiobjective optimization is to find
a set of solutions that approximates Pareto-optimal solu-
tions. Hence, the performances of multiobjective optimiza-
tion methods are evaluated based on how well the solutions
obtained with them approximate Pareto-optimal solutions.
Specifically, they are evaluated with respect to proximity
and diversity of the solutions obtained with them, often in
the objective space [3, 13]

Proximity consists of two components: Overcoming of lo-
cal Pareto-optimal solutions, which means that solutions are
not trapped around local Pareto-optimal solutions, and high
precision, which means that the distances between solutions
and Pareto-optimal solutions are small.

Diversity consists of two components [3, 13]: Extent, which
means that solutions are extended toward the periphery
of Pareto-optimal solutions, and distribution, which means
that solutions are distributed uniformly across Pareto-optimal
solutions.

2.2 Directions Defined by the Gradients of Ob-
jective Functions

Denote by ∇fi(x) (i = 1, 2, . . . , M) the gradients of ob-
jective functions at a solution x. Descent directions [9] are
defined as directions that satisfy Eq. (1).

d · (−∇̄fi(x)) ≥ 0 (i = 1, 2, . . . , M), (1)

where ∇̄fi(x) = ∇fi(x)/||∇fi(x)||. There are often multi-
ple descent directions.

Pareto descent directions are defined as descent directions
to which no other descent directions are superior in improv-
ing all objective functions [9]. A descent direction d is a
Pareto descent direction iff d can be expressed as a convex
combination of the steepest descent directions of objective
functions. There are often multiple Pareto descent direc-
tions.

Ascent directions are defined as directions in which solu-
tions can be moved to worsen all objective functions and are
exactly the opposite to descent directions.

2.3 Existing Approaches

2.3.1 Genetic Algorithm
GA maintains a set of solutions and efficiently converges

it progressively toward Pareto-optimal solutions [3]. GA
consists mainly of the following two components.

Crossover operator: A crossover operator generates new
offspring solutions from parent solutions that are expected
to be superior to those of the current generation. Older
crossover operators represent variables with bitstrings, which
limits the achievable precision of solutions. Modern crossover
operators such as SBX [5], UNDX [16], SPX [10], and PCX
[4] represent variables explicitly as real-valued, and they
have proven to be effective in enhancing precision.

Selection operator: A selection operator consists of mat-
ing selection and survival selection [19]. Mating selection
determines which solutions to participate in crossover, and
survival selection determines which solutions are to be dis-
carded and which solutions are to be carried over to the next
generation.
Survival selection is considered to be particularly impor-
tant in multiobjective optimization. The components that
are considered to be crucial in designing high performance
survival selection such as NSGA-II [6] and SPEA2 [19] are
ranking and niching. Ranking ranks solutions according to
how good the solutions are with respect to other solutions
and assign fitness to these solutions based on their ranks.
Since solutions around local Pareto-optimal solutions are
inferior to those around Pareto-optimal solutions, ranking
can remove the former. Hence, ranking plays a crucial role
in overcoming local Pareto-optimal solutions.
When it is necessary to determine which solutions are to be
discarded among those with the same fitness, niching culls
those in the area in the objective space or variable space
where solutions are concentrated. An appropriate niching is
expected to bring about solutions that are distributed uni-
formly over the whole Pareto-optimal solutions. Therefore,
niching plays an important role in obtaining diverse solu-
tions.

Based on the above-mentioned design of GA, it is rea-
sonable to assume that GA allows for overcoming of local
Pareto-optimal solutions and obtaining diverse solutions. It
is often assumed, in addition, that GA with an appropriate
crossover operator and selection operator finds solutions of
high precision [2]. However, it is not immediately apparent
whether that is the case.

In fact, it can be inferred that it is not the case from
some recent papers. For one thing, the failure of Evolu-
tion Strategies (ES) in obtaining solutions of high precision
demonstrated in [14] can reasonably be extended to GA.
In addition, defining deterioration as the situation in which
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some of the solutions of a generation are inferior to some
solutions of the previous generations, Laumanns et al. [15]
have confirmed that deterioration occurs when NSGA-II is
applied to multiobjective combinatorial optimization prob-
lems, which translates to the failure of GA in obtaining so-
lutions of high precision.

2.3.2 Hybridization of GA and LS
Hybridization with LS is known to enhance the perfor-

mance of GA in single objective optimization [1], and it has
been applied to multiobjective optimization, chiefly to mul-
tiobjective combinatorial optimization [13]. In most such
studies, LS is applied to the solutions of each generation of
GA, which is called “GA with LS” herein. The effectiveness
of GA with LS has been demonstrated in many papers such
as [11].

There is another scheme in which LS is applied to so-
lutions obtained with GA, which is called “GA then LS”
herein. The number of studies of GA then LS is very lim-
ited, and they give conflicting results: Talbi et al. [17] con-
clude that LS contributes marginally to enhancing the per-
formance of GA, and Goel et al. [8] conclude that GA then
LS performs better than GA with LS. However, despite the
conclusion of [8], its experimental results show that some so-
lutions obtained with GA with LS are actually better than
those obtained with GA then LS. Hence neither scheme can
be declared better than the other.

For multiobjective function optimization, there are much
fewer studies of hybridization to date [1]. For one thing,
Bosman et al. [1] propose an LS method called Combined-
Objectives Repeated Linesearch (CORL) and compare the
performances of GA and GA with LS using CORL. How-
ever, they came to a rather disappointing conclusion that
LS contributes little to enhancing the performance of GA
and it may even obstruct GA.

In summary, although the effectiveness of hybridization of
GA and LS has been empirically demonstrated, there needs
to be more studies as to which hybridization scheme is better
and the reasoning behind it, particularly for multiobjective
function optimization.

3. THE BEHAVIORS OF GA AND LS

3.1 The Behaviors of GA
As described in Subsection 2.3.1, GA has the abilities to

overcome local Pareto-optimal solutions and to obtain di-
verse solutions, by design. Therefore, we henceforth focus
on assessing GA’s ability to obtain solutions of high pre-
cision. In order to investigate it, it is henceforth assumed
that domination relation among offspring solutions can be
ignored, and the increase or decrease of objective functions
can be estimated with the gradients of respective objective
functions.

In assessing GA’s ability to obtain solutions of high pre-
cision, it is essential to examine how GA operates during
the later phase of its search. During the later phase of the
search, it is likely that most solutions are of the best rank
and the number of these solutions are likely to exceed the
population size [3]. Therefore, during that phase, ranking
basically discards offspring solutions in the ascent directions
of any of the parent solutions, and niching culls solutions in
concetrated areas among those which survived ranking. In
the following, the reasons why these ranking and niching

c1

x2 x1

c2

- f1

- f2

- f1

- f2 Pareto-optimal
solutions

Ascent 
directions

Figure 1: Paret descent directions, descent direc-
tions, and ascent directions at solutions far from
and near the Pareto-optimal solutions: Ascent di-
rectios are a little less than half of all directions for
solutions far from the Pareto-optimal solutions, such
as x1, and limited for those near the Pareto-optimal
solutions, such as x2.

Parent solutions

Pareto-optimal
solutions

Region in which
offspring solutions
survive ranking

x1

x2

Figure 2: Region in the variable space in which off-
spring solutions survive ranking in the case parent
solutions are near Pareto-optimal solutions: As par-
ent solutions approach the Pareto-optimal solutions,
more offspring solutions farther from the Pareto-
optimal solutions survive ranking.

can prevent solutions from approaching Pareto-optimal so-
lutions are discussed.

The effects of ranking in the later phase of GA’s
search: Since ranking basically discards offspring solutions
in the ascent directions of parent solutions, it is crucial to
examine how ascent directions of a solution change as it ap-
proaches the Pareto-optimal solutions.
Consider the solutions x1 and x2 of a 2-variable-2-objective
problem shown in Fig. 1. For solutions far from the Pareto-
optimal solutions such as x1, ascent directions are a little
less than half of all directions [2]. On the other hand, for so-
lutions near the Pareto-optimal solutions such as x2, ascent
directions are limited [2]. The ascent directions decreases as
the solution approaches the Pareto-optimal solutions.
During the later phase of GA’s search, the parent solutions
are generally near the Pareto-optimal solutions, as depicted
in Fig. 2. Since the ascent directions of these parent solu-
tions are limited, ranking discards offspring solutions in the
limited ascent directions. The region in which offspring so-
lutions survive ranking when parent solutions are near the
Pareto-optimal solutions are shown in Fig. 2. The figure
shows that not only the offspring solutions nearer to the
Pareto-optimal solutions than the parent solutions survive
ranking, but also those farther from the Pareto-optimal so-
lutions do. Note that the offspring solutions nearer to the
Pareto-optimal solutions and parent solutions are concen-
trated around the Pareto-optimal solutions while those far-
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ther from the Pareto-optimal solutions are sparse1, and the
same is expected to be true in the objective space.

The effects of niching in the later phase of GA’s
search: Consider applying niching to solutions which sur-
vived ranking in the later phase of GA’s search. Since par-
ent solutions and some offspring solutions are concentrated
around Pareto-optimal solutions, they are more likely to be
removed in niching. On the other hand, since offspring solu-
tions far from Pareto-optimal solutions are sparse, they are
less likely to removed in niching. Therefore, although solul-
tions which survived ranking may be close to the Pareto-
optimal solutions on average, niching can push them back
away from the Pareto-optimal solutions on average.

Therefore, solutions after survival selection, on average,
do not move closer to Pareto-optimal solutions during the
later phase of GA’s search, which means that it is difficult
to obtain solutions of high precision with GA.

3.2 The Behaviors of LS
Suppose that solutions have already overcome local Pareto-

optimal solutions with the help of some global optimization
method such as GA. Solutions can be moved steadily closer
to Pareto-optimal solutions by LS methods that move them
in descent directions. Therefore, LS is suitable for obtain-
ing solutions of high precision. However, LS itself is unable
to overcome local Pareto-optimal solutions or bring about
diverse solutions.

When choosing an LS method for hybridization with GA,
it is desirable to choose one that moves solutions in feasible
Pareto descent directions or descent directions, as appro-
priate, thereby efficiently improving all objective functions
simultaneously. A recently proposed LS method, Pareto De-
scent Method (PDM) [9], meets these requirements and is
one appropriate choice for hybridization. An overview of
PDM is given in the appendix.

3.3 The Behaviors of Hybridized GA
Considerations given in Subsection 3.1 and 3.2 imply that

GA and LS are complementary to each other in multiobjec-
tive function optimization, which translates to the justifica-
tion for hybridization of GA and LS. As mentioned earlier,
there are two hybridization schemes: “GA with LS” which
applies LS to solutions of each generation of GA and “GA
then LS” which applies LS to solutions obtained with GA.
The expected behaviors of these hybridization schemes are
described below.

GA with LS: LS can be applied to solutions either before
or after survival selection. Suppose applying LS to solutions
before survival selection. It is computationally prohibitive to
apply LS to all solutions since the number of solutions before
survival selection is large. Therefore, LS has to be applied
to some portion of the solutions, resulting in the situation
described in Subsection 3.1 in which some solutions are con-
centrated around Pareto-optimal solutions while others are
away from them. Hence, the effects of LS are cancelled by
the following survival selection. For this reason, LS is hence-
forth assumed to be applied after survival selection.
In the earlier phase of search of GA with LS, LS can ac-

1When Pareto-optimal solutions are on feasible region
boundaries, it is not that ascent directions are limited.
Hence, the situation described in the text is less likely to
occur.

celerate the search of GA by driving solutions closer to (lo-
cal) Pareto-optimal solutions. At the same time, LS may
trap solutions around local Pareto-optimal solutions, which
may not be resolved by ranking when complex local Pareto-
optimal solutions exist.
Suppose that local Pareto-optimal solutions have been over-
come and solutions are near Pareto-optimal solutions in the
later phase. If the crossover operator generates solutions
that are farther from the Pareto optimal solutions than the
parent solutions, the situation described in Subsection 3.1
occurs and hence refining of the solutions stagnates.

GA then LS: It has been demonstrated in many earlier
studies that GA overcomes local Pareto-optimal solutions
and finds diverse solutions, which carries over directly to
the first phase of GA then LS. In the second phase, LS
refines the solutions obtained with GA thereby achieving
high precision. There might be a concern as to whether LS
may negatively influence the diversity of solutions that have
already been achieved with GA. Suppose choosing an LS
method that moves solutions in Pareto descent directions for
hybridization. Since Pareto descent directions are directions
to which no other directions are superior in improving all
objective functions, the solutions are expected to be moved
almost perpendicularly to the curves or surfaces that Pareto-
optimal solutions constitute. Therefore, when such an LS
method is employed, LS does not negatively influence the
diversity.

Recommendation of GA then LS: Although GA with
LS is expected to outperform GA on problems without lo-
cal Pareto-optimal solutions, it may suffer from the conflict
between LS and survival selection, which undermines the
precision of solutions. In addition, LS may inadvertently
drive solutions toward local Pareto-optimal solutions. By
contrast, GA with LS can overcome local Pareto-optimal
solutions with GA and refine solutions with LS, without suf-
fering from the conflict between LS and survival selection.
Hence, the hybridization scheme which maximally exploits
the advantages of both GA and LS is GA then LS.

4. EXPERIMENTS

4.1 Aims and Experiment Setups
Subsection 3.1 and 3.2 argued that GA is not suitable for

obtaining solutions of high precision, and Subsection 3.3 de-
scribed the expected behaviors of GA with LS and GA then
LS. This section verifies these claims through 2 experiments.

Experiment 1 compares GA and LS on benchmark prob-
lems without local Pareto-optimal solutions and verifies that
GA is not suitable for obtaining solutions of high precision
compared to LS. Experiment 2 compares GA, GA with LS,
and GA then LS on various benchmark problems and verifies
that GA then LS performs the best overall.

4.1.1 Benchmark Problems
Experiments are conducted on the following benchmark

problems.
BNH [3] 2-variable-2-objective. Has no local Pareto-optimal
solutions. The Pareto-optimal solutions form a kinked line
segment in the variable space and part of it is on the feasible
region boundary.
SPH-(3,30) [14, 19] 30-variable-3-objective. Has no local
Pareto-optimal solutions. The Pareto-optimal solutions are
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on a plane in the variable space and convex in the objective
space.
MED1(0.5) [9] 30-variable-3-objective. Has no local Pareto-
optimal solutions. The Pareto-optimal solutions are on a
plane in the variable space and non-convex in the objective
space.
POL [3] 2-variable-2-objective. Has local Pareto-optimal
solutions. The Pareto-optimal solutions form two lines in
the variable space with part of it on the feasible region
boundary.
FON30 [3] 30-variable-2-objective. Has no local Pareto-
optimal solutions. The Pareto-optimal solutions form a straight
line segment in the variable space and is non-convex in the
objective space.
KUR, KUR30 [3] 3- and 30-variable-2-objective, respec-
tively. Has local Pareto-optimal solutions. The Pareto-
optimal solutions form complex line segments, most of which
are generally parallel to some axes of the variables.

4.1.2 Performance Metrics
Two commonly used performance metrics, generational

distance (GD) and D1R, are used and these metrics are av-
eraged over 10 trials.

GD is defined as the mean of the distances from each solu-
tion to its nearest Pareto-optimal solution in the normalized
objective space [3]. The smaller GD is, the nearer the solu-
tions are to the Pareto-optimal solutions on average. Hence,
GD measures proximity.

D1R is defined as the mean of the distances from each
Pareto-optimal solution to its nearest solution in the nor-
malized objective space [12]. The smaller D1R is, the bet-
ter Pareto-optimal solutions are approximated. Hence, D1R
measures both proximity and diversity.

Note that the Pareto-optimal solutions are necessary for
evaluating GD and D1R. It is customary to run GA with
a larger population size and with more generations and as-
sume the solutions obtained with the GA are Pareto-optimal.
The same strategy is employed for the experiments in this
paper.

4.1.3 Experiment Setups
For each trial, the same initial solutions are used for all

methods. The population size of GA is 100. 50 pairs of
parent solutions are chosen for mating in each generation.
20 offspring solutions are generated for each pair since pre-
liminary experiments revealed that increasing the number
generally improved precision.

Crossover operator: Preliminary experiments compar-
ing crossover operators SBX, UNDX, SPX, and PCX com-
bined with modified SPEA2, which will be explained shortly,
showed that the best performing crossover operator is problem-
specific. However, since UNDX exhibited relatively good
performance for many problems, UNDX with its parame-
ter values as suggested in [16] is used in the experiments.
Since UNDX, SPX, and PCX have similar design principles,
the tendency exhibited in the results of experiments using
UNDX is expected to be observed when using SPX or PCX
as well.

Selection operator: NSGA-II [6] and SPEA2 [19] are
known to exhibit good performances. However, it has been
demonstrated in [7] that SPEA2 finds more uniformly dis-
tributed solutions than NSGA-II does. However, the orig-

inal SPEA2 requires substantial computation and memory
space, and it often runs out of memory. Therefore, modi-
fied SPEA2, which approximates crowdedness around a so-
lution with the Euclidean distance between the solution and
the other solution nearest to it in the normalized objective
space, is used in the experiments. Since NSGA-II, SPEA2,
and modified SPEA2 all have the ranking and niching mech-
anisms described in Subsection 2.3.1, the tendency exhibited
in the results of experiments using modified SPEA2 are ex-
pected to be observed when using NSGA-II or SPEA2 as
well.

Local search: Pareto descent method (PDM) is used. Gra-
dients are approximated by forward difference with the dif-
ference of 10−4. In order for PDM to sufficiently approx-
imate the complete convex cone of feasible descent direc-
tions, 40 combination weights are randomly drawn for the
direction calculation. For line search, golden section method
is used, with the basic search segment length of 10−2, the
maximum number of extension of the segment of 20, and the
number of iteration of 20. A solution is assumed to be on a
feasible region boundary if the distance between them is less
than 10−2×τ 20, where τ is the golden ratio. In GA with LS,
one iteration of LS is applied to each solution after survival
selection. In GA then LS, GA is overtaken by LS when half
of the total number of function evaluations is spent on GA.

4.2 Experiment 1: Results and Discussion
For problems without local Pareto-optimal solutions, over-

coming of local Pareto-optimal solutions is unnecessary. There-
fore, comparing GA and LS on such problems reveals which
is suitable for obtaining solutions of high precision. Exper-
iment 1 verifies that GA is not suitable for obtaining solu-
tions of high precision compared to LS by comparing GA
and LS on BNH, SPH-(3,30), and MED1(0.5).

The transitions of GD and D1R as GA and LS are ap-
plied to these benchmark problems are shown in Fig. 3 and
4, respectively. LS performed better than GA regarding
GD on all benchmark problems. On the other hand, LS
performed no better than GA regarding D1R. Therefore, it
has been confirmed that good proximity, which in this case
is high precision, is better achieved by LS than GA while
good diversity is better achieved by GA. Hence, GA and LS
are complementary to each other in multiobjective function
optimization, which justifies hybridization of GA and LS.

4.3 Experiment 2: Results and Discussion
Experiment 2 verifies that GA then LS outperforms GA

and GA with LS by comparing them on various benchmark
problems.

The transitions of GD when GA, GA with LS, and GA
then LS are applied to the benchmark problems are shown
in Fig. 5. The transitions of D1R are omitted since all meth-
ods exhibited similar behaviors regarding D1R. The results
regarding GD can be classified in the following three cases:

GA then LS � GA with LS � GA: This relationship
was observed on BNH and SPH-(3,30). GA with LS per-
formed worse than GA then LS because refinement by LS
is hindered by survival selection as explained in Subsection
3.3.

GA then LS ∼ GA with LS � GA: This relationship was
observed on FON30 and KUR. GA then LS and GA with LS
performed equally well on FON30 since its Pareto-optimal
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Pareto-optimal solutions

 0.001

 0.01

 0.1

 0  0.5  1  1.5  2  2.5

D
1R

Function evaluation (x100,000)

GA

LS

BNH: 2-var.-2-obj.

 0.01

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5

D
1R

Function evaluation (x100,000)

GA LS

SPH-(3,30): 30-var.-3-obj.

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5

D
1R

Function evaluation (x100,000)

GA

LS

MED1(0.5): 30-var.-3-obj.

Figure 4: Transitions of D1R when GA and local search are applied to benchmark problems without local
Pareto-optimal solutions

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0  0.5  1  1.5  2  2.5

G
D

Function evaluation (x100,000)

GA with LS

GA then LSGA

BNH: 2-var.-2-obj.

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5

G
D

Function evaluation (x100,000)

GA then LS

GA with LSGA

POL: 2-var.-2-obj.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5

G
D

Function evaluation (x100,000)

GA with LS

GA then LSGA

KUR: 3-var.-2-obj.

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.5  1  1.5  2  2.5

G
D

Function evaluation (x100,000)

GA with LS

GA then LSGA

FON30: 30-var.-2-obj.

 0.01

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5

G
D

Function evaluation (x100,000)

GA then LS

GA

GA with LS

KUR30: 30-var.-2-obj.

 0.001

 0.01

 0.1

 1

 10

 0  0.5  1  1.5  2  2.5

G
D

Function evaluation (x100,000)

GA with LS

GA then LSGA

SPH-(3,30): 30-var.-3-obj.

Figure 5: Transition of GD when GA, GA with LS, and GA then LS are applied to various benchmark
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solutions form a straight line segment, and crossover opera-
tors such as UNDX, SPX, and PCX are unlikely to generate
offspring solutions that are farther from the Pareto-optimal
solutions than parent solutions. Although KUR has local
Pareto-optimal solutions, GA with LS and GA then LS per-
formed equally well since ranking removed solutions which
LS trapped around local Pareto-optimal solutions, thereby
overcoming local Pareto-optimal solutions, as described in
Subsection 3.3.

GA then LS � GA � GA with LS: This relationship
was observed on KUR30 and POL. GD of GA with LS is
worse than that of GA since KUR30 and POL have rather
complex local Pareto-optimal solutions, and ranking failed
to remove solutions trapped around local Pareto-optimal so-
lutions. GA then LS performed best overall.

4.4 Additional Discussion
On the whole : Experiments have confirmed that GA is
not suitable for obtaining solutions of high precision. They
have also confirmed that, although GA with LS often out-
performs GA, it may perform worse than GA on problems
with complex local Pareto-optimal solutions. It was also
confirmed that GA then LS performs best overall by further
improving GD after GA is taken over, and diversity achieved
by GA is not worsened by the following LS. Hence, it has
been verified that the hybridization scheme which maximally
exploits the advantages of both GA and LS is GA then LS.

The timing with which GA is taken over by LS in
GA then LS: In order to save the number of function eval-
uations spent on GA, it is probably the best to switch from
GA to LS just after GA overcomes local Pareto-optimal solu-
tions. Since there is generally no way of knowing when local
Pareto-optimal solutions are overcome, it seems the when to
switch from GA to LS has to be specified by the user. How-
ever, the above experimental results showed that GA and LS
converged GD with similar speeds. Hence, switching from
GA to LS after half of the total function evaluations are
spent on GA is one reasonable choice.

5. CONCLUSION
Although hybridization of GA and LS has been studied

extensively in the past, the reasoning behind the hybridiza-
tion and which hybridization scheme to be employed have
been unclear. Assuming the differentiability of objective
functions, this paper described the reasons why GA is not
suitable for obtaining solutions of high precision for mul-
tiobjective function optimization, which translates to the
necessity of such hybridization of GA and LS. This paper
also argued that GA with LS may not be able to overcome
local Pareto-optimal solutions on problems with complex lo-
cal Pareto-optimal solutions and that GA then LS is the hy-
bridization scheme which maximally exploits the advantages
of both GA and LS. These claims have been verified through
experiments conducted on various benchmark problems.

We reckon that it is crucial to use effective constraint-
handling mechanisms in order to further improve the per-
formance of GA and its hybridization with LS. In particu-
lar, for problems on which almost all the solutions GA gen-
erates violate constraints, such constraint-handling mecha-
nisms are indispensable. Although some effective constraint-
handling mechanisms have already been proposed, we are
planning to investigate what are the intrinsic requirements

for constraint-handling mechanisms to be effective, which
may help us design even more effective constraint-handling
methods or improve existing methods.
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APPENDIX
A. AN OVERVIEW OF PARETO DESCENT

METHOD
Pareto Descent Method (PDM) finds feasible Pareto de-

scent directions or descent directions as appropriate to effi-
ciently improve all objective functions simultaneously. PDM
finds these directions by solving linear programming prob-
lems. Therefore, it is computationally inexpensive. Another
advantage of PDM is that it provides a test of (local) Pareto-
optimality.

The algorithm flowchart of PDM is shown in Fig. 6, in
which it is assumed that a solution can exist either inside

x is (locally) Pareto-optimal
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Figure 6: Algorithm flowchart of PDM
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Figure 7: Directions that PDM finds: PDM finds ap-
propriate directions in accordance with the feasibility
of Pareto descent directions and descent directions

the feasible region or on the boundary of it. The algorithm
comes to an end when the number of times direction cal-
culation and line search are conducted reaches T . Possible
relationships among Pareto descent directions, descent di-
rections, and a feasible region boundary for a solution on
the boundary are shown in Fig. 7. PDM identifies these
cases and appropriately handles each case. When an appro-
priate direction is found, PDM moves the solution in thus
found direction until just before any of the objective func-
tions deteriorate or any of the constraints are violated.
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