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ABSTRACT
This paper presents a new multi-objective evolutionary al-
gorithm (MOEA) based on differential evolution and rough
sets theory. The proposed approach adopts an external
archive in order to retain the nondominated solutions found
during the evolutionary process. Additionally, the approach
also incorporates the concept of paε-dominance to get a good
distribution of the solutions retained. The main idea of the
approach is to use differential evolution (DE) as our main
search engine, trying to translate its good convergence prop-
erties exhibited in single-objective optimization to the multi-
objective case. Rough sets theory is adopted in a second
stage of the search in order to improve the spread of the non-
dominated solutions that have been found so far. Our hy-
brid approach is validated using standard test functions and
metrics commonly adopted in the specialized literature. Our
results are compared with respect to the NSGA-II, which is
a MOEA representative of the state-of-the-art in the area.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

Keywords
Multi-objective optimization, differential evolution, rough
sets theory, hybrid algorithms

1. INTRODUCTION
Most real-world problems involve the simultaneous opti-

mization of two or more (often conflicting) objectives. The
solution of such problems (called “multi-objective”) is dif-
ferent from that of a single-objective optimization prob-
lem. The main difference is that multi-objective optimiza-
tion problems normally have not one but a set of solutions
which are all equally good.
In the past, a wide variety of MOEAs have been reported

in the specialized literature [3]. However, from the several
types of MOEAs currently available, relatively few adopt
DE [19] as their main search engine. The main motivation
for using DE as a search engine is its proved success as a
(single-objective) optimizer in continuous search problems
within the last few years [16]. DE has shown to be not only
very effective as a global optimizer, but also very robust,
producing in many cases a minimum variability of results
from one run to another. However, when extended to multi-
objective problems, DE tends to be very good for coarse op-
timization, but not so efficient for fine-grain optimization.
In other words, it can converge relatively fast to the vicinity
of the true Pareto front of a problem, but may take a lot
of computational effort to actually reach such front. On the
other hand, rough sets theory can be useful at finding solu-
tions within the neighborhood of a reference set. Thus, our
motivation for combining it with DE relies on the potential
of rough sets theory as a local optimizer that can improve
the approximation of the Pareto front produced by a DE-
based MOEA. Our main research goal is to use this hybrid
approach to reduce the total number of fitness function eval-
uations. As we will see later on, our hybrid approach only
performs 3000 fitness function evaluations while still pro-
ducing reasonably good approximations of the true Pareto
fronts of a wide variety of test functions (27 test functions
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were adopted for the experimental study reported in this
paper, although only 9 of them were included due to space
limitations). As far as we know, this is the lowest number of
fitness function evaluations ever reported for any DE-based
MOEA that relies on Pareto ranking. There is only one
MOEA that uses a lower number of fitness function eval-
uations [10], although it is not designed to solve a generic
MOP but only some special cases where evaluations are very
expensive (computationally speaking).

2. DIFFERENTIAL EVOLUTION
Differential Evolution [19] is a relatively recent heuristic

designed to optimize problems over continuous domains. In
DE, each decision variable is represented in the chromosome
by a real number. As in any other evolutionary algorithm,
the initial population of DE is randomly generated, and then
evaluated. After that, the selection process takes place.
During the selection stage, three parents are chosen and

they generate a single offspring which competes with a par-
ent to determine who passes to the following generation. DE
generates a single offspring (instead of two as a genetic algo-
rithm) by adding the weighted difference vector between two
parents to a third parent. In the context of single-objective
optimization, if the resulting vector yields a lower objective
function value than a predetermined population member,
the newly generated vector replaces the vector with respect
to which it was compared. In addition, the best parameter
vector Xbest,G is evaluated for every generation G in order
to keep track of the progress that is made during the mini-
mization process. More formally, the process is described as
follows:
For each vector −−→xi,G; i = 0, 1, 2, . . . , N − 1., a trial vector−→v is generated using:

−→v = −−−→xr1,G + F · (−−−→xr2,G −−−−→xr3,G)

with r1, r2, r3 ∈ [0, N − 1], integer and mutually different,
and F > 0. The integers r1, r2 and r3 are randomly chosen
from the interval [0, N − 1] and are different from i. F is a
real and constant factor which controls the amplification of
the differential variation (−−−→xr2,G −−−−→xr3,G).

3. ROUGH SETS THEORY
Rough sets theory is a new mathematical approach to im-

perfect knowledge. The problem of imperfect knowledge has
been tackled for a long time by philosophers, logicians and
mathematicians. Recently, it also became a crucial issue for
computer scientists, particularly in the area of artificial in-
telligence (AI). There are many approaches to the problem
of how to understand and manipulate imperfect knowledge.
The most used one is the fuzzy set theory proposed by Lotfi
Zadeh [21]. Rough sets theory was proposed by Pawlak [15],
and presents another attempt to this problem. Rough sets
theory has been used by many researchers and practitioners
all over the world and has been adopted in many interesting
applications. The rough sets approach seems to be of funda-
mental importance to AI and cognitive sciences, especially
in the areas of machine learning, knowledge acquisition, de-
cision analysis, knowledge discovery from databases, expert
systems, inductive reasoning and pattern recognition.
Let’s assume that we are given a set of objects U called

the universe and an indiscernibility relation R ⊆ U × U ,
representing our lack of knowledge about elements of U (in

our case, R is simply an equivalence relation based on a grid
over the feasible set; this is, just a division of the feasible set
in (hyper)-rectangles). Let X be a subset of U . We want
to characterize the set X with respect to R. The way rough
sets theory expresses vagueness is employing a boundary
region of the set X. If the boundary region of a set is empty
it means that the set is crisp; otherwise, the set is rough
(inexact). A nonempty boundary region of a set means that
our knowledge about the set is not enough to define the set
precisely. Then, each element in U is classified as certainly
inside X if it belongs to the lower approximation or partially
(probably) inside X if it belongs to the upper approximation.
The boundary is the difference of these two sets, and the
bigger the boundary the worse the knowledge we have of set
X. On the other hand, the more precise is the grid implicity
used to define the indiscernibility relation R, the smaller the
boundary regions are. But, the more precise is the grid, the
bigger the number of elements in U , and then, the more
complex the problem becomes. What we want to do know
is to use a rough sets approach to approximate the Pareto
optimal set of a multi-objective problem. To this aim, we
must design a grid and decide which elements of U (that
we will call atoms and will be just rectangular portions of
decision variable space) are inside the Pareto optimal set
and which are not. Once we have the efficient atoms, we
will intensify the search over these atoms. Note however,
that at this point we will face the following problem:

• The more precise the grid is, the higher its computa-
tional cost to manage it.

• The less precise the grid is, the less knowledge we get
about the Pareto optimal set.

In this paper, we will describe how to generate a grid
representing a good balance for these two aspects: in other
words, a grid that is not too expensive (computationally
speaking) but that offers a reasonably good knowledge about
the Pareto optimal set. Once this grid is available, it be-
comes relatively straightforward to generate more points on
the efficient atoms, as these atoms are built in decision vari-
able space.

4. PARETO-ADAPTIVE ε-DOMINANCE
One of the concepts that has raised more interest within

evolutionary multiobjective optimization in the last few years
is, with no doubt, the use of relaxed forms of Pareto domi-
nance that allow us to control the convergence of a MOEA.
From such relaxed forms of dominance, ε-dominance [12] is
certainly the most popular. ε-dominance has been mainly
used as an archiving strategy in which one can regulate the
resolution at which our approximation of the Pareto front
will be generated. This allows us to accelerate convergence
(if a very coarse resolution is sufficient) or to improve the
quality of our approximation (if we can afford the extra com-
putational cost). However, ε-dominance has certain draw-
backs and limitations [7].
In order to overcome some of these limitations, the con-

cept of paε-dominance was proposed in [7]. Briefly, the main
difference is that in paε-dominance the hyper-grid generated
adapts the sizes of the boxes to certain geometrical charac-
teristics of the Pareto front (e.g., almost horizontal or verti-
cal portions of the Pareto front) as to increase the number
of solutions retained in the grid. This scheme maintains the
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good properties of ε-dominance but improves on its main
weaknesses. In order to do this, it considers not only a differ-
ent ε for each objective but also the vector ε = (ε1, ε2, ..., εm)
associated to each f = (f1,f2, ..., fm) ∈ R

m depending on
the geometrical characteristics of the Pareto front. This is,
the scheme considers different intensities of dominance for
each objective according to the position of each point along
the Pareto front. Then, the size of the boxes is adapted
depending on the portion of the Pareto front that is being
covered.
Each Pareto front (that we will assume normalized : 0 ≤

fi ≤ 1 for any i) will be associated to one curve of the
following family

{xp + yp = 1 : 0 ≤ x, y ≤ 1, 0 < p <∞} .
for bi-objective optimization problems, or

{xp + yp + zp = 1 : 0 ≤ x, y, z ≤ 1, 0 < p <∞}
for three-dimensional problems. These families have the fol-
lowing property: For p > 1, the curve (or surface) is concave
and the bigger the p value the longer the almost horizontal
(and almost vertical) parts of the front; and, for p < 1, the
curve (surface) is convex and the lower the p value the longer
the almost horizontal (and almost vertical) stretches in the
front. Finally, for p = 1 we get the linear front x + y = 1
and this approach exactly matches ε-dominance.
In order to decide the value of p, it is required to have

an initial approximation of the Pareto front, denoted by F .
This approximation will determine which value of p fits bet-
ter to our front. This is, it uses F to be a model in which the
p-curve should fit. Evidently, the number of nondominated
points included in F is critical for the final performance of
the approach, because if the value of p is not appropriate,
then the grid will not work properly and a much lower num-
ber of solutions than expected will be retained. Obviously,
the higher the number of nondominated points in F , the bet-
ter performance of the grid generated. On the other hand, if
we want to maintain the diversity properties of ε-dominance,
we should generate the first grid as early as possible.
To compute the value of p, it is required to determine

the area (hypervolume) under the polygonal line (surface)
formed by points in F . Once this area is known, we esti-
mate the value of p ∈ (0,+∞) by means of an interpolation
process. We choose p when the area under xp + yp = 1 is as
similar to the hypervolume as desired (this precision is set
beforehand). Once the p value is estimated and the number
T of desired points in the grid is known, we compute the
sizes of the boxes for each objective i ∈ {1, 2, ..., m}, this is,
the vector εi =

`
εi1, ε

i
2, ..., ε

i
T

´
, using geometric sequences.

5. PREVIOUS RELATED WORK
There have been several recent proposals to extend Differ-

ential Evolution to multi-objective optimization. The most
representative of them are briefly described next:

• PDE [1]: It handles only one (main) population. Re-
production is undertaken only among nondominated
solutions, and offspring are placed into the population
if they dominate the main parent. A distance metric
relationship is used to maintain diversity.

• PDEA [13]: It combines DE with key elements from
the NSGA-II [5] such as its nondominated sorting and
ranking selection procedure.

• MODE [20]: It uses a variant of the original DE,
in which the best individual is adopted to create the
offspring. Also, the authors adopt (µ + λ) selection,
Pareto ranking and crowding distance in order to pro-
duce and maintain well-distributed solutions.

• DE for MO Optimization [2]: This algorithm uses
the single-objective DE strategy with an aggregating
function to solve bi-objective problems. A single opti-
mal solution is obtained after N iterations using both
a Penalty Function Method and the Weighing Factor
Method [4] to optimize a single value.

• VEDE [14]: It is a parallel, multipopulation DE ap-
proach, which is based on the Vector Evaluated Ge-
netic Algorithm (VEGA) [18].

• GDE [11]: GDE extends the selection operator of the
basic DE algorithm in order to be able to handle con-
strained multi-objective optimization problems. The
authors report that the performance of GDE is similar
to the NSGA-II, but they claim that their approach
requires a lower CPU time.

• NSDE [8]: It is a simple modification to the NSGA-II
[5] where the real-coded crossover and mutation opera-
tors of the NSGA-II are replaced with the DE scheme.

• DEMO [17]: It combines the advantages of DE with
the mechanisms of Pareto-based ranking and crowding
distances sorting. In DEMO, the newly created can-
didates immediately take part in the creation of the
subsequent candidates.

None of the DE-based MOEAs reported so far in the spe-
cialized literature that have been tested with standard test
functions and metrics perform less than 20000 fitness func-
tion evaluations. In fact, some of them perform over 50000
fitness function evaluations in test problems of high dimen-
sionality such as the ZDT functions of 30 decision variables
adopted in this paper.

6. OUR PROPOSED APPROACH
Our proposed approach, called DEMORS (Differential Evo-

lution for Multiobjective Optimization with Random Sets),
is divided in two different phases, and each of them con-
sumes a fixed number of fitness function evaluations.
During Phase I, our DE-based MOEA is applied for 2000

fitness function evaluations. During Phase II, a local search
procedure based on rough sets theory is applied for 1000 fit-
ness function evaluations, in order to improve the solutions
produced at the previous phase. These two values (2000
and 1000 fitness function evaluations, which correspond to
a balance of 65%-35%) were empirically derived after an ex-
haustive number of experiments. Each of these two phases
is described next in more detail.

6.1 Phase I : Use of Differential Evolution
The pseudo-code of our proposed DE-based MOEA is

shown in Algorithm 1. Our approach keeps three popu-
lations: the main population (which is used to select the
parents), a secondary (external) population, which is used
to retain the nondominated solutions found and a third pop-
ulation that retains dominated solutions removed from the
second population.
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Algorithm 1 Algorithm of the Phase I

1: Initialize vectors of the population P
2: Evaluate the cost of each vector
3: for i = 0 to G do
4: repeat
5: Select (randomly) three different vectors
6: Perform crossover using DE scheme
7: Perform mutation
8: Evaluate objective values
9: if offspring is better than main parent then
10: replace it on population
11: end if
12: until population is completed
13: Identify nondominated solutions in population
14: Add nondominated solutions into secondary popula-

tion
15: Add dominated solutions into third population
16: end for

First, we randomly generate 25 individuals, and use them
to generate 25 offspring. Phase I has two selection mecha-
nisms that are activated based on the total number of gener-
ations and a parameter called sel2 ∈ [0, 1], which regulates
the selection pressure. For example, if sel2 = 0.6 and the
total number of generations is Gmax = 200, this means that
during the first 120 generations (60% of Gmax), a random
selection will be adopted, and during the last 80 genera-
tions an elitist selection will be adopted. In both selections
(random and elitist), a single parent is selected as reference.
This parent is used to compare the offspring generated by
the three different parents. This mechanism guarantees that
all the parents of the main population will be reference par-
ents for only one time during the generating process. Both
types of selection are described next:

1. Random Selection: 3 different parents are randomly
selected from the main population.

2. Elitist Selection: 3 different parents are selected
from the secondary population. It is required that
these 3 parents are close from each other. If no set
of 3 individuals exists that fulfills this requirement,
then a set of 3 individuals is randomly selected from
the secondary population. The expression adopted to
determine closeness is the following:

fclose =

qPF UN
i=0 (Xi,max −Xi,min)

2

2F UN

where:
FUN = number of objective functions
Xi,max = upper bound of the i-th objective function
in the secondary population
Xi,min = lower bound of the i-th objective function in
the secondary population

Recombination in Phase I is performed using the following
procedure: For each parent vector −→pi ; i = 0, 1, 2, . . . , P − 1

(P = population), the offspring vector
−→
h is generated as:

(x ∈ U(0, 1))

hj = pr1,j + F · (pr2,j − pr3,j), if x < pc;
hj = pref,j , otherwise.

(1)

where: j = 0, 1, 2, . . . , var − 1 (var = number of decision
variables for each solution vector). pc = crossover proba-
bility, pr1, pr2, pr3 ∈ [0, P − 1], are integers and mutually
different, and F > 0. Integers r1, r2 and r3 are the indexes
of the selected parents randomly chosen from the interval
[0, N − 1] and ref is the index of the reference parent. F is
a real and constant factor which controls the amplification
of the differential variation pr2,j − pr3,j .
Differential evolution does not use an specific mutation

operator, since such operator is somehow embedded within
its recombination operator. However, in multi-objective op-
timization problems, we found it necessary to provide an
additional mutation operator in order to allow a better ex-
ploration of the search space. We adopted uniform mutation
for that sake.
Once a child has been generated, it is compared with re-

spect to the reference parent, against which it competes in
order to determine who passes to the following generation.
The rules of comparison between a child and its parent are
the following:

• if parent dominates child, the parent is chosen

• if child dominates parent, the child is chosen

• if both are nondominated with respect to each other,
perform a flip (0.5) to determine who passes to the
following generation.

As indicated before, our proposed approach uses an exter-
nal archive (also called secondary population). In order to
include a solution into this archive, it is compared with re-
spect to each member already contained in the archive using
the paε-dominance grid [7]. Any member that is removed
from the secondary population is included in the third pop-
ulation.
The paε-dominance grid is created once we obtain 100

nondominated solutions. If Phase I is not able to find at
least 100 nondominated solutions, then the grid is created
until Phase II (if during this second phase it is possible to
find at least 100 nondominated solutions). The minimum
number of nondominated solutions needed to create the grid
is critical in several aspects:

• If we create the grid with just a few points, then the
performance of the grid may significantly degrade.

• Once we create the grid, the number of points in this
second population decreases a lot, and we have to en-
sure a minimum number of points that will be used by
the Phase II.

• The behavior of the Phase II is a lot better if the grid
was created during Phase I, since this ensures that
the secondary population has a good distribution of
solutions.

An exhaustive set of experiments undertaken by the au-
thors indicated that 100 points was a good compromise to
cover the three aspects indicated above.
The third population stores the dominated points needed

for the Phase II. Every removed point from the secondary
population is a candidate to be included in the third popu-
lation. This is, this third population is also managed as a
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Pareto front, and a point is finally included in this popula-
tion if it is not dominated in this set and any point domi-
nated by this new candidate is removed from the set. As it
is done with the second population, if this third population
reaches a size of 100 points, a paε-dominance grid will be
created in order to manage them and ensure a good distri-
bution of points.

6.2 Phase II : Local Search using Rough Sets
Upon termination of Phase I (2000 fitness function eval-

uations), we start Phase II, which departs from the non-
dominated set generated in Phase I (ES). This set is con-
tained within the secondary population. We also have the
dominated set (DS), which is contained within the third
population. It is worth remarking that ES can simply be a
list of solutions or a paε-dominance grid, depending on the
moment at which the grid is created (if Phase I generated
more than 100 nondominated solutions, then the grid will
be built during that phase). This, however, does not imply
any difference in the way in which the Phase II works. The
pseudo-code of phase II is shown in Algorithm 1.

Algorithm 2 Algorithm of the Phase II

1: ES ← nondominated set generated by Phase I
2: DS ← dominated set generated by Phase I
3: eval ← 0
4: repeat
5: Items ← NumEff points ∈ ES &NumDom points

∈ DS
6: Range Initialization
7: Compute Atoms
8: for i ← 0, Offspring do
9: eval ← eval + 1
10: ES ← Offspring generated
11: Add Offspring into ES set
12: end for
13: until 1000 < eval

¿From the set ES we choose NumEff points previously
unselected. If we do not have enough unselected points,
we choose the rest randomly from the set ES. Next, we
choose from the set DS NumDom points previously un-
selected (and in the same way if we do not have enough
unselected points, we complete them in a random fashion).
These points will be used to approximate the boundary be-
tween the Pareto front and the rest of the feasible set in
decision variable space. What we want to do now is to in-
tensify the search in the area where the nondominated points
reside, and refuse finding more points in the area where the
dominated points reside. For this purpose, we store these
points in the set Items and perform a rough sets iteration:

1. Range Initialization: For each decision variable i,
we compute and sort (from the smallest to the highest)
the different values it takes in the set Items. Then,
for each decision variable i, we have a set of Rangei

values, and combining all these sets we have a (non-
uniform) grid in decision variable space.

2. Compute Atoms: We compute NumEff rectan-
gular atoms centered in the NumEff efficient points
selected. To build a rectangular atom associated to
a nondominated point xe ∈ Items we compute the

following upper and lower bounds for each decision
variable i:

• Lower Bound i: Middle point between xe
i and the

previous value in the set Rangei.

• Upper Bound i: Middle point between xe
i and the

following value in the set Rangei.

In both cases, if there are no previous or subsequent
values in Rangei, we consider the absolute lower or
upper bound of variable i. This setting lets the method
to explore close to the feasible set boundaries.

3. Generate Offspring: Inside each atom we randomly
generate Offspring new points. Each of these points
is sent to the set ES (that, as mentioned, can be a
paε-dominance grid) to check if it must be included
as a new nondominated point following the procedure
shown in [7]. If any point in ES is dominated by this
new point, it is sent to the set DS.

Offspring are generated randomly inside each efficient atom
as the key point of the process is the fact that these atoms
are located in the most promising areas and then there’s no
need to design an strategy to decide where to generate this
offspring inside the atom. On the other hand, we ensure
some diversity by using this random feature. This process
is applied during 1000 fitness function evaluations, i.e., until
1000 new individuals are generated.

7. COMPUTATIONAL EXPERIMENTS
In order to validate our proposed approach, our results are

compared with respect to those generated by the NSGA-II
[5], which is a MOEA representative of the state-of-the-art
in the area. The first phase of our approach uses three
parameters: crossover probability (Pc), elitism (sel2) and
population size (Pop). On the other hand, the second phase
uses three more parameters: number of points randomly
generated inside each atom (Offspring), number of atoms
per generations (NumEff) and the number of dominated
points considered to generate the atoms (NumDom). Fi-
nally, the minimum number of nondominated points needed
to generate the paε-dominance grid is set to 100 for all prob-
lems.
Our approach was validated using 27 test problems, but

due to space constraints, only 9 were included in this paper:
5 problems from the ZDT set [22] and 4 from the DTLZ
set [6]. In all cases, the parameters of our approach were set
as follows: Pc = 0.3, sel2 = 0.1, Pop = 25, Offspring = 1,
NumEff = 2 and NumDom = 10. The NSGA-II was
used with the following parameters: crossover rate = 0.9,
mutation rate = 1/num var (num var = number of decision
variables), ηc = 15, ηm = 20, population size = 100 and
maximum number of generations = 30. The population size
of the NSGA-II is the same as the size of the grid of our
approach, in order to allow a fair comparison of results, and
both approaches adopted real-numbers encoding and per-
formed 3000 fitness function evaluations per run.
In order to allow a quantitative comparison of results, we

adopted the three following performance measures:

Size of the space covered (SSC): This metric was pro-
posed by Zitzler and Thiele [23], and it measures the
hypervolume of the portion of the objective space that
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is dominated by the set, which is to be maximized. In
other words, SSC measures the volume of the dom-
inated points. Hence, the larger the SSC value, the
better.

Unary additive epsilon indicator (I1
ε+): The epsilon in-

dicator family has been introduced by Zitzler et al.
[24] and comprises a multiplicative and additive ver-
sion. Due to the fact that the additive version of ε-
dominance has been implemented in the hybrid algo-
rithm, we decided to use the unary additive epsilon
indicator (I1

ε+) as well. The unary additive epsilon in-
dicator of an approximation set A (I1

ε+(A)) gives the
minimum factor ε by which each point in the real front
can be added such that the resulting transformed ap-
proximation set is dominated by A:

I1
ε+(A) = infε∈R{∀z2 ∈ R\∃z1 ∈ A : z2

i ≤ z1
i + ε ∀i}.

I1
ε+(A) is to be minimized and a value smaller than 0
implies that A strictly dominates the real front R.

Standard Deviation of Crowding Distances (SDC):
In order to measure the spread of the approximation
set A, we compute the standard deviation of the crowd-
ing distance of each point in A:

SDC =

vuut 1

|A|
|A|X
i=1

(di − di)2

where di is the crowding distance of the i − th point
in A (see [4] for more details of this distance) and di

is the mean value of all di. Nevertheless, other types
of measures could be used for di. Now, 0 ≤ SDC ≤
∞ and the lower the value of SDC, the better the
distribution of vectors in A. A perfect distribution,
that is SDC = 0, means that di is constant for all i.

8. DISCUSSION OF RESULTS
Table 1 shows a summary of our results. For each test

problem, we performed 30 independent runs per algorithm.
The results reported in Table 1 are the mean values for each
of the three performance measures and the standard devia-
tion of the 30 runs performed. The best mean values in each
case are shown in boldface in Table 1. It can be clearly
seen in Table 1 that our DEMORS produced the best mean
values in most cases. Regarding SSC, there was only one
case in which the NSGA-II outperformed our approach. Re-
garding the unary additive epsilon indicator, our DEMORS
outperformed the NSGA-II in all cases.
Finally, with respect to SDC, the NSGA-II outperformed

our approach only in two cases. This is certainly remarkable
if we consider the fact that the SDC metric relies on the be-
havior of the crowded comparison operator of the NSGA-II.
Thus, it was expected that the NSGA-II would be favored
by this performance measure. The graphical results shown
in Figures 1 and 2 serve to reinforce our argument of the
superiority of the results obtained by our DEMORS. These
plots correspond to the run in the mean value with respect to
the unary additive epsilon indicator. In all the bi-objective
optimization problems, the true Pareto front (obtained by
enumeration) is shown with a continuous line and the ap-
proximation obtained by each algorithm is shown with black
circles.

In Figures 1 and 2, we can clearly see that in problems
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6, the NSGA-II is very
far from the true Pareto front, whereas our DEMORS has
already converged to the true Pareto front after only 3000
fitness function evaluations. This behavior is less evident
in the plots corresponding to DTLZ1, DTLZ2, DTLZ3 and
DTLZ4, mainly due to the difficulties of displaying the re-
sults in 3 dimensions. However, our DEMORS also outper-
forms the NSGA-II in the DTLZ test problems. The spread
of solutions of our DEMORS is evidently not the best pos-
sible, but we argue that this is a good trade-off (and the
performance measures back up this statement) if we con-
sider the low computational cost achieved. Evidently, qual-
ity of the spread of solutions is sacrificed at the expense of
reducing the computational cost required to obtain a good
approximation of the Pareto front.
Our results indicate that the NSGA-II, despite being a

highly competitive MOEA is not able to converge to the true
Pareto front in most of the test problems adopted when per-
forming only 3000 fitness function evaluations. If allowed a
higher number of evaluations, the NSGA-II would certainly
produce a very good (and well-distributed) approximation
of the Pareto front. However, our aim was precisely to pro-
vide an alternative approach that could require a lower num-
ber of evaluations than a state-of-the-art MOEA while still
providing a highly competitive performance. Such an ap-
proach could be useful in real-world applications with ob-
jective functions requiring a very high evaluation cost (com-
putationally speaking).

9. CONCLUSIONS AND FUTURE WORK
We have presented a new hybrid between a MOEA based

on differential evolution and a local search mechanism based
on rough sets theory. The proposed approach was found to
provide very competitive results in a variety of test prob-
lems, despite the fact that it performed only 3000 fitness
function evaluations. This is remarkable if we consider that
some of the test problems adopted have up to 30 decision
variables and that no other MOEA had previously reported
results for such a low number of fitness function evaluations
as the one used in this paper.
Our comparison of results indicates that our approach

clearly outperforms the NSGA-II, which is one of the most
competitive MOEAs known to date. These results, although
preliminary, seem to indicate that our approach could be a
viable alternative for real-world applications in which each
evaluation of the fitness function is very expensive (com-
putationally speaking). In such applications, we can afford
sacrificing a good distribution of solutions for the sake of
obtaining a reasonably good approximation of the Pareto
front with a low number of evaluations.
As part of our future work, we intend to improve the per-

formance of the differential evolution algorithm adopted, by
exploring alternative differential evolution models and oper-
ators. Additionally, we aim to test our algorithm in some
real-world problem to see if the good performance that it
has shown with the benchmark adopted in this paper can be
extrapolated to a practical application. Finally, we are also
interested in coupling the local search mechanisms described
in this paper to different search engines. Particularly, we are
interested in exploring a hybridization with particle swarm
optimization [9], which has also been found to be a very
effective search engine in multiobjective optimization.
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SSC I1
ε+ SDC

Function DEMORS NSGA-II DEMORS NSGA-II DEMORS NSGA-II
Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ

ZDT1 0.8544 0.0057 0.6524 0.0198 0.0248 0.0117 0.1850 0.0208 0.0363 0.0228 0.0506 0.0103
ZDT2 0.7398 0.0262 0.4524 0.0392 0.0519 0.0694 0.4210 0.0656 0.0508 0.0381 0.1594 0.0414
ZDT3 0.81 0.0019 0.6827 0.0220 0.0197 0.0123 0.1409 0.0189 0.0684 0.0096 0.0726 0.0050
ZDT4 0.9915 0.0027 0.8658 0.0286 0.0033 0.0027 0.1370 0.0297 0.0146 0.0227 0.1285 0.0710
ZDT6 0.92 0.0051 0.4541 0.0324 0.0066 0.0060 0.4379 0.0411 0.0458 0.0566 0.2117 0.0918

DTLZ1 0.9959 0.0017 0.9938 0.0007 0.0501 0.0115 0.0897 0.0113 0.0202 0.0130 0.0498 0.0189
DTLZ2 0.8727 0.0037 0.8949 0.0054 0.0792 0.0091 0.0831 0.0177 0.0316 0.0162 0.0086 0.0007
DTLZ3 0.9943 0.0026 0.9908 0.0017 0.0770 0.0208 0.1329 0.0163 0.0345 0.0523 0.0558 0.0142
DTLZ4 0.9276 0.1152 0.8760 0.0354 0.1165 0.1625 0.2501 0.0461 0.0511 0.0690 0.0417 0.0205

Table 1: Comparison of results between our approach (called DEMORS) and the NSGA-II for the nine test
problems adopted. The best values are in boldface. σ refers to the standard deviation over the 30 runs
performed.
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Figure 1: Pareto fronts generated by DEMORS and NSGA-II for ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 and
DTLZ1
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Figure 2: Pareto fronts generated by DEMORS and NSGA-II for DTLZ2, DTLZ3 and DTLZ4
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