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ABSTRACT
The field of Differential Evolution (DE) has demonstrated
important advantages in single objective optimization. To
date, no previous research has explored how the unique char-
acteristics of DE can be applied to multi-objective opti-
mization. This paper explains and demonstrates how DE
can provide advantages in multi-objective optimization us-
ing directional information. We present three novel DE vari-
ants for multi-objective optimization, and a report of their
performance on four multi-objective problems with differ-
ent characteristics. The DE variants are compared with the
NSGA-II (Non-dominated Sorting Genetic Algorithm). The
results suggest that directional information yields improve-
ments in convergence speed and spread of solutions.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization

General Terms
Algorithms

Keywords
Differential Evolution, Multi-objective Optimization

1. INTRODUCTION
DE is a population based optimization algorithm, which

has globally and locally correlated step-sizes. The step-sizes
self-adapt over time in relation to the location of the popu-
lation of individuals in the search space. This results in an
extremely efficient search. DE is also invariant under a rota-
tion transformation of the decision space [15]. As a result, it
can manage problems with non-separable parameters. Many
real-world problems have such parameter interactions, and
are not aligned with the principle coordinate system in the
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decision space [18]. This makes DE an ideal choice for such
problems. Evolutionary Strategies have these properties as
well, but unlike DE, have to learn the optimal step sizes and
the correlation matrix for aligning offspring in the search
space. This can be computationally expensive as the di-
mensionality of the decision space grows [15]. DE doesn’t
have to learn these properties because they are a property
of the differential calculation.
DE has been successfully applied to multi-objective prob-

lems, but the application of the actual DE scheme in these
cases has been the same as it has been for single objective
problems, without leveraging aspects of the multi-objective
domain [6, 1, 4, 3, 2, 22, 10, 16]. For instance, with an
evolutionary multi-objective algorithm, we are interested in
finding a diverse set of non-dominated solutions as close to
the Pareto-optimal solutions as possible. With a single ob-
jective evolutionary algorithm, we are primarily concerned
with finding a single global optimum. The multi-objective
problem introduces more complexity to the optimization
procedure, because one must find a set of well distributed
non-dominated solutions close to the Pareto-optimal front.
This presents a challenge for a multi-objective algorithm be-
cause it must converge to the Pareto-optimal region, and
also maintain diverse solutions.
In this paper, we have proposed three new schemes for

DE, which incorporate directional information. They have
demonstrated improved performance over a basic DE algo-
rithm on four multi-objective test problems. These new ap-
proaches to DE incorporate directional information by se-
lecting parents for the DE calculation according to two mea-
sures. These measures are the ranking of individuals within
a population by a non-dominated sorting procedure, and a
crowding distance calculation which measures the closeness
of individuals to each other in the objective space. The rank-
ing of individuals provides an indication as to what direc-
tion the search should head in, and the crowding distances
suggest what direction is suitable in order to maintain di-
versity. This provides the directional information to the
proposed DE algorithms that will be discussed shortly. Just
like DE, the new approaches can be applied to a wide class
of problems, and provide a very simple way to direct the
search towards the Pareto-optimal set, while also maintain-
ing a diverse set of non-dominated solutions. Previous work
has also reported on the use of directional information in a
multi-objective evolutionary optimization algorithm [5]. It
demonstrated that directional information can improve the
performance of an optimization procedure. The estimation
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based approach demonstrated in [5] is limited to differen-
tiable optimization problems. The proposed directional in-
formation DE approaches in this paper have no such limita-
tions.
In the following section we introduce multi-objective op-

timization, and discuss DE and previous work in the area
of DE multi-objective optimization. In Section 3 we will in-
troduce the proposed multi-objective DE Algorithm which
incorporates directional information and discuss the moti-
vation for this approach. The experiments, problems, and
parameter settings are described in Section 4, followed by a
description of the evaluation criteria in Section 5. Finally,
a discussion of the results and concluding remarks are pre-
sented in Section 6.

2. BACKGROUND
In this section we will first introduce multi-objective op-

timization, and the concept of non-domination. This is fol-
lowed by a description of DE and its application to multi-
objective problems.

2.1 Multi-objective Optimization
Multi-objective optimization deals with optimization prob-

lems which are formulated with some or possibly all of the
objective functions in conflict with each other. Such prob-
lems can be formulated as a vector of objective functions
f(x) = (f1(x), f2(x), .., fm(x)) subject to a vector of in-
put parameters x = (x1, x2, ..., xd), where m is the number
of objectives, and d is the number of parameters. Multi-
objective problems have a set of trade-off solutions, where
a solution may be better on objective f1 but worse on ob-
jective f2, whilst other solutions may be worse on objective
f1 but better on objective f2. Evolutionary multi-objective
(EMO) optimization is typically concerned with finding a
diverse set of solutions, which is close to the Pareto-optimal
solution set. The Pareto-optimal set is the set of solutions
which are globally non-dominated with respect to all other
feasible solutions.
The criteria for evaluating the performance of a multi-

objective evolutionary algorithm are different from those for
assessing the performance of single objective algorithms. In
this study the non-dominated solution sets resulting from
a run of an EMO algorithm are assessed with a metric de-
scribed in Section 5. This metric can be used to provide an
indication of the convergence to the Pareto-optimal set, as
well as the diversity of the non-dominated solution set.

2.2 Differential Evolution
DE is a population-based direct-search algorithm for global

optimization [14]. It has demonstrated its robustness and
power in a variety of applications, such as neural network
learning [9], IIR-filter design [19], and the optimization of
aerodynamic shapes [17]. It has a number of important char-
acteristics which make it attractive as a global optimization
technique, and the reader is referred to [15] for an excellent
introduction to DE which covers this in more detail.
DE differs from other EAs in the mutation and recom-

bination phase. Unlike stochastic techniques such as Ge-
netic Algorithms and Evolutionary Strategies, where per-
turbation occurs in accordance with a random quantity, DE
uses weighted differences between decision space vectors to
perturb the population.

The DE outlined in Algorithm 1 was adapted for our pur-
poses because it was deemed to be the most suitable, al-
though a large variety of DE approaches exist. Firstly, it
has the property of rotational invariance, and secondly it
provides two differentials, which are K(xr3,G − xi,G) and
F (xr1,G − xr2,G). The differentials can be conveniently
adapted for generating vectors which point towards the Pareto-
optimal set, and generating a diverse set of solutions. This
will be elaborated upon further in Section 3.

Algorithm 1 Differential Evolution

Step 1. i = 1
Step 2. Randomly select r1, r2, r3 ∈ {1, 2, · · · , N} such
that r1 �= r2 �= r3 �= i where i is the index of the currently
selected individual in the population.
Step 3. Generate an offspring ui,G+1 from the selected
parents xr3,G, xr1,G, and xr2,G and current individual xi,G

at generation G, using ui,G+1 = xi,G + K(xr3,G − xi,G) +
F (xr1,G − xr2,G) where K and F are control parameters.
Step 4. i = i+ 1
Step 5. Repeat from step 2 if the desired number of off-
spring has not been reached and i �= N .

In the basic DE scheme (Algorithm 1), the population is
typically randomly initialised within the parameter bounds
for each decision variable. At each generation G, the popu-
lation undergoes perturbation. The first step initialises the
index, i, of the current individual xi,G, to 1. The second
step involves three unique individuals denoted by x, with
population indices r1, r2, and r3, being randomly selected
from a population of size N . The coefficient K is responsible
for the level of combination that occurs between xr3,G and
the current individual xi,G. The coefficient F is responsible
for scaling the step size resulting from the vector subtraction
xr1,G−xr2,G. At the third step these individuals participate
in a vector calculation to generate an offspring, ui,G+1, for
the following generation, G+ 1.
Typically in the single-objective case, if the new individual

ui,G+1, evaluates better than the currently selected individ-
ual xi,G, then the current individual is replaced with the
new one. At the fifth step, a condition is checked to deter-
mine if the algorithm should continue to iterate over i from 1
to N , in order to generate the required number of offspring.
In the multi-objective DE case, individuals cannot directly
replace the parents without either a dominance comparison
with the current parent, or a sort of all the offspring with
all the parents, with respect to their dominance levels.

2.2.1 Multi-objective Differential Evolution
DE has been applied within a variety of multi-objective

algorithms in order to solve multi-objective optimization
problems. One of the first applications was to tune a fuzzy
controller for the automatic operation of a train, although
the cost function transformed the objectives of punctual-
ity, comfort, and energy usage into the degenerate case of
a single objective [6]. The Pareto Differential Evolution-
ary Algorithm (PDE) uses non-dominated solutions for re-
production, and places offspring back into the population if
they dominate the current parent [4]. This PDE was also
extended into a variant with self-adaptive crossover and mu-
tation [2]. Multi-objective DE has also been applied to min-
imize the error and the number of hidden units in neural
network training. The resulting Pareto-optimal set is the
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tradeoff between these two objectives [1]. Another approach
involving Pareto-optimal based evaluation has also been ap-
plied to an Enterprise Planning problem with the two objec-
tives of cycle time and cost [22]. Preliminary work has also
reported on the behaviour of a non-dominated sorting DE
multi-objective algorithm [10], demonstrating its potential
worth as a rotationally invariant optimizer for problems with
non-separable parameters. The use of DE on non-separable
multi-objective problems has also been reported in [16].

3. DIRECTIONAL INFORMATION
There are two desirable features of any population based

multi-objective optimization procedure. Firstly, it must find
a non-dominated solution set which dominates much of the
feasible region of the search space and is close to the Pareto-
optimal set, and secondly, it must maintain a diverse non-
dominated solution set. Successful algorithms, such as the
NSGA-II, address these two criteria by ranking solutions
in terms of non-domination, and providing each individual
with a crowding distance metric which measures how much
each individual contributes to diversity within a dominance
rank. For the purposes of this study, we have employed
NSGA-II as the basis of each of the algorithms we have pro-
posed. Our directional information DE schemes incorporate
the NSGA-II measures of dominance ranking and crowding
distance in order to achieve suitable directions for guiding
the search.

3.1 The Proposed Framework
Before we describe our approach, it is necessary to de-

scribe the NSGA-II [8], which is the basis of the DE vari-
ants incorporating directional information. In each of these
variants we have replaced the crossover operation within the
NSGA-II with a DE operation.
The NSGA-II produces N offspring from a parent popula-

tion of size N. The combined population of size 2N is sorted
into separate non-domination levels. Individuals are selected
from this combined population to be inserted into the new
population, based on their non-domination level and how
closely individuals are crowded together. If there are more
individuals in the last front than there are slots remaining in
the new population of size N, a diversity preserving mech-
anism is used. Individuals from this last front are placed
in the new population based on how much they contribute
to diversity in that front. The algorithm then iterates un-
til a termination condition is met (In our application, the
maximum number of generations is the specified termina-
tion criteria). The NSGA-II uses a real-coded crossover and
mutation operator but in the proposed variants, these oper-
ators were replaced with a DE scheme.
In the NSGA-II we do not know which individuals are

better until all candidates are sorted and assigned a crowd-
ing distance and non-domination level. Parents are selected
for mating using a tournament selection operator which uses
the rank and crowding distance of individuals. Within the
NSGA-II framework, the DE variants are used to generate N
offspring from the selected parents. The offspring individu-
als are then evaluated on the objective functions. Following
this, they are combined with the parent generation. The
combined population is then sorted into dominance ranks,
as was mentioned previously. Each individual also has a
crowding distance associated with it.

Pareto-optimal set in the decision space

a

b

c

ed

f

Candidate xr3
Current individual xi

Figure 1: The current individual, f , is ranked worse
than the candidates for xr3,G labelled c, d, and e.
The resulting vectors are used to generate offspring
in the direction of better ranked solutions.

3.2 Directional Convergence
It is possible to efficiently converge towards the Pareto-

optimal set by calculating a differential which creates a vec-
tor that will point in the general direction of the Pareto-
optimal set, and contribute to the DE calculation. In the
basic DE scheme, which does not incorporate such direc-

Algorithm 2 NSDE-DC

Step 1. i = 1
Step 2. If there exists an r1 and r2 such that r1 �= r2 �= i,
where r1, r2 ∈ {1, 2, · · · , N}, select xr1,G and xr2,G for the
Differential Evolution calculation. If there exists an r3 such
that the rank of xr3,G is less than the rank of xi,G, and
r3 �= r2 �= r1 �= i, where r3 ∈ {1, 2, · · · , N}, select xr3,G for
the DE calculation. i is the index of the currently selected
individual in the population.
Step 3-5 Same as Algorithm 1.

tional information, the vector generated can produce off-
spring which are dominated by individuals in the current
population. This can occur because the generated vector
could point towards the Pareto-optimal set, or away from
the Pareto-optimal set. This wastes valuable objective func-
tion evaluations.
Figure 1 shows a number of individuals in the decision

space. Individuals c, d, and e are candidates for xr3,G,
and are ranked better than the current individual f . As
a result of this, the calculation K(xr3,G − xi,G) generates
convergence vectors which point towards regions where bet-
ter ranked individuals are located. K is a scaling factor
controlling the magnitude of the convergence vector. This
figure details how vectors can be suitably generated in order
to point towards the Pareto-optimal set.
The procedure of the NSDE-DC (Non-dominated Sort-

ing Differential Evolution with Directional Convergence) ap-
proach is outlined in Algorithm 2. It is similar to the basic
DE scheme previously described, except there are further
constraints on the selection of the parent individuals. In
later generations, when the entire population is of the same
rank, there is no difference with the basic DE scheme.

3.3 Directional Spread
Directional information for generating offspring along a

non-dominated front is possible from the NSDE-DS (Non-
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Candidate xr1 and xr2

fa

b

c

d e

Pareto-optimal set in the decision space

Current individual xi

Candidate xr1 and xr2

Figure 2: Individuals a and b are of the same rank.
Individuals c, d, and e are of the same rank as well.
The vectors resulting from taking the difference of
individuals of the same rank helps to spread off-
spring solutions.

Algorithm 3 NSDE-DS

Step 1. i = 1
Step 2. If there exists an r1 and r2 such that the ranks of
xr1,G and xr2,G are equal, and r1 �= r2 �= i, where r1, r2 ∈
{1, 2, · · · , N}, select xr1,G and xr2,G for the DE calculation.
If there exists an r3 such that r3 �= r2 �= r1 �= i, where r3 ∈
{1, 2, · · · , N}, select xr3,G for the DE calculation. i is the
index of the currently selected individual in the population.
Step 3-5 Same as Algorithm 1.

dominated Sorting Differential Evolution with Directional
Spread) variant. The algorithm attempts to select xr1,G

and xr2,G from the same rank. The differential spread vec-
tor resulting from F (xr1,G−xr2,G), should contribute to the
generation of offspring which are spread out across a non-
dominated front. Figure 2 shows individuals a and b, which
are of the same rank. Individuals c, d, and e are also of an
equal, but different rank. Either group can contribute can-
didates for xr1,G and xr2,G. F is a scaling factor responsible
for controlling the magnitude of the spread vectors which are
generated.
This component of the DE calculation should in principle

help to maintain diversity in the population. In later gener-
ations, when the entire population is of the same rank, there
is no difference with the basic DE scheme.
The NSDE-DS is also similar to the basic DE approach

except for a number of constraints similar to those associated
with the NSDE-DC. The procedure for generating offspring
from the mating pool is described in Algorithm 3.

3.4 Directional Convergence and Spread
The NSDE-DCS combines both of the features of the

NSDE-DC and NSDE-DS variants. Figure 3 shows the pos-
sible offspring vectors that could be generated from the cur-
rent individual f , and the parent candidates, a, b, c, d, and
e. From this plot, it is apparent that offspring solutions have
a good spread and coverage, and are located in regions of
the search space which are in the general direction of the
Pareto-optimal set.
As in the previous variants, this is a constrained version

of the basic DE scheme described in Section 1. The steps
described in Algorithm 4 are followed in order to generate a
candidate offspring.

Pareto-optimal set in the decision space

a

b

c

d e

f

Figure 3: Offspring candidates are generated which
are the result of the addition of spread and conver-
gence vectors, to the current individual f .

Algorithm 4 NSDE-DCS

Step 1. i = 1
Step 2. If there exists an r1 and r2 such that the ranks
of xr1,G and xr2,G are equal, and r1 �= r2 �= i, where
r1, r2 ∈ {1, 2, · · · , N}, select xr1,G and xr2,G for the DE
calculation. If there exists an r3 such that the rank of xr3,G

is less than the rank of xi,G, and r3 �= r2 �= r1 �= i, where
r3 ∈ {1, 2, · · · , N}, select xr3,G for the DE calculation. i is
the index of the currently selected individual in the popula-
tion.
Step 3-5 Same as Algorithm 1.

4. EXPERIMENTS
A population size of 100 individuals was used for each of

the algorithms on each of the test problems. For the DE
variants, F was set to 0.8 and K was set to 0.4. Suggestions
from the literature helped guide our choice of parameter val-
ues for the DE variants [15]. As well as the new DE variants
incorporating directional information, an implementation of
a basic DE with non-dominated sorting (NSDE) [10] is also
evaluated for comparative purposes. A mutation rate of 0.1
and crossover rate of 0.9 were also used with the NSGA-II1.
ηc and ηm are parameters within the NSGA-II which control
the distribution of the crossover and mutation probabilities
and were assigned values of 10 and 50 respectively.
Experiments were conducted on four test problems. These

test problems are described in more detail in [11]. The prob-
lems are 10-dimensional in the decision space. Problem R1
is unimodal, originally proposed by Deb [7]. Problem R2 is
discontinuous, Problem R3 has a non-uniform mapping be-
tween the decision and objective space. Problem R4 is based
upon the Schwefel function and is highly deceptive. A new
random uniform rotation matrix was generated for each run
of each algorithm. These matrices were used to rotate each
of the problems in the decision space so that there is no
bias for any particular coordinate system [11]. Such a rota-
tion introduces non-separability between decision variables.
Each algorithm was run 50 times on each test problem.

1The variant of NSGA-II used in this study is the origi-
nal NSGA-II available from the Kanpur Genetic Algorithms
Laboratory site at http://www.iitk.ac.in/kangal/. It
formed the basis of the DE variants studied.
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5. EVALUATION CRITERIA
The set of solutions generated by a multi-objective evo-

lutionary algorithm cannot be evaluated with respect to a
single measure of performance. For instance, one algorithm
may generate a set of solutions which covers the Pareto-
optimal solutions well, but has slightly worse convergence
to the Pareto-optimal solutions compared with another set
which has slightly worse coverage of the Pareto-optimal so-
lutions. A large number of performance metrics have been
proposed in the literature, and the reader is referred to a
recent comparative survey [24].
In the assessment of the non-dominated sets generated

by the algorithms investigated, the Generational Distance
metric proposed by [21] is used. This metric, in Equation
(1) and (2), measures the average distance of the solutions
in the non-dominated solution set Q, to a Pareto-optimal set
P ∗ (Figure 4(a)). The set P ∗ is a sample of 500 uniformly
spaced Pareto-optimal solutions in the objective space. f

∗(k)
j

is the j-th objective function value of the k-th member of

the Pareto-optimal set, P ∗, and f
(i)
j is the j-th objective

function value of the i-th member of the set, Q.

GD(Q, P ∗) =

|Q|X
i=1

di

|Q| (1)

where, di =
|P∗|
min
k=1

vuut
mX

j=1

(f
(i)
j − f

∗(k)
j )2 (2)

One of the motivations for using this metric, is that it has
the elegant property of being able to measure convergence
to the Pareto-optimal set, as well as the coverage of a non-
dominated solution set over the Pareto-optimal set on the
same scale [12]. This can be achieved by swapping the order
in which one measures distances between the two sets. With
the metric in Equation (3) and (4), we measure the average
distance of the solutions in the Pareto-optimal set P ∗, to
a non-dominated solution set Q. f

(k)
j is the j-th objective

function value of the k-th member of the non-dominated
set, Q, and f

∗(i)
j is the j-th objective function value of the

i-th member of the Pareto-optimal set, P ∗. Figure 4(a)
demonstrates a relatively good convergence of Q towards
P ∗ with respect to the GD(Q, P ∗) metric, where as Fig-
ure 4(b), which shows the same points in Q, suggests a poor
coverage by set Q over P ∗ with respect to the GD(P ∗, Q)
metric. If both measures approach 0 it suggests that the
non-dominated set has both a good coverage and conver-
gence to the Pareto-optimal set.

GD(P ∗, Q) =

|P∗|X
i=1

di

|P ∗| (3)

where, di =
|Q|
min
k=1

vuut
mX

j=1

(f
∗(i)
j − f

(k)
j )2 (4)

6. DISCUSSION AND CONCLUSION
As shown in Figure 6 and 7, at least one of the DE vari-

ants incorporating directional information has superior per-
formance to the baseline Differential Evolution algorithm

f1

f2

(a) (b)

f1

f2

d1

d2 d2

d4
d5

d3d3

d1

d6

∈ Q

∈ P ∗ ∈ P ∗

∈ Q

Figure 4: (a) GD(Q, P ∗) is a measure of convergence
of set Q towards set P ∗. (b) GD(P ∗, Q) gives a larger
value than GD(Q, P ∗) because it considers the cov-
erage of the set Q over the set P ∗ in this specific
example.

(NSDE). Secondly, all of the directional information DE ap-
proaches outperformed the NSGA-II, with respect to speed
of convergence, and spread of solutions across the Pareto-
optimal set.
The variant incorporating directional spread information

(NSDE-DS) had similar performance with respect to con-
vergence and diversity, to the variant incorporating both di-
rectional spread and convergence information (NSDE-DCS).
The variant that incorporates only convergence information
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Figure 5: Average number of individuals in the best
ranked front averaged over 50 runs over a period of
300 Generations (30,000 problem evaluations).

(NSDE-DC) had marginally better performance over the
baseline NSDE. This suggests that directional spread infor-
mation plays a larger role in improving the speed of conver-
gence towards the Pareto-optimal set than directional con-
vergence information, while also maintaining a high quality
of diverse solutions which cover the Pareto-optimal set.
Although the algorithms that do not emphasize conver-

gence or spread generate offspring which contribute to con-
vergence and spread, they do so less efficiently than those
incorporating the directional information.
Figure 5 shows the average number of individuals in the

best ranked front over the generations. This figure shows
that the best DE variants also maintain the largest number
of individuals in the best ranked front. The plot presented
in Figure 5 for problem R1 was consistently observed for
the other problems as well, with the variants incorporating
directional spread maintaining the largest number of indi-
viduals in the best ranked front.
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It may seem non-intuitive that directional information
associated with spread can also improve convergence, but
there is actually a straight-forward reason for this. If more
individuals are maintained along a non-dominated front,
there are more regions of the space where new, dominant
solutions can be discovered [20].
There are a number of areas which are being considered

for further study, such as directing the search towards less
crowded regions, and other approaches to incorporating di-
rectional information. These preliminary results present
compelling evidence for the utility of a directional informa-
tion approach for multi-objective optimization, which can
be simply implemented using DE.
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