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ABSTRACT
On-Line Analytical Processing (OLAP) tools are frequently used
in business, science and health to extract useful knowledge from
massive databases. An important and hard optimization problem in
OLAP data warehouses is the view selection problem, consisting
of selecting a set of aggregate views of the data for speeding up
future query processing. A common variant of the view selection
problem addressed in the literature minimizes the sum of mainte-
nance cost and query time on the view set. Converting what is
inherently an optimization problem with multiple conflicting ob-
jectives into one with a single objective ignores the need and value
of a variety of solutions offering various levels of trade-off between
the objectives. We apply two non-elitist multiobjective evolution-
ary algorithms (MOEAs) to view selection under a size constraint.
Our emphasis is to determine the suitability of the combination of
MOEAs with constraint handling to the view selection problem,
compared to a widely used greedy algorithm. We observe that the
evolutionary process mimics that of the greedy in terms of the con-
vergence process in the population. The MOEAs are competitive
with the greedy on a variety of problem instances, often finding
solutions dominating it in a reasonable amount of time.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Data
warehouse and repository; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

General Terms: Performance

Keywords
multiobjective optimization, genetic algorithms, data warehousing,
OLAP, view selection, multiobjective evolutionary optimization

1. INTRODUCTION
Decision makers are increasingly using data warehousing and

On-Line Analytical Processing (OLAP) tools to extract useful knowl-
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edge from data created in the operation of enterprises. OLAP queries
usually involve aggregation, which is achieved by the GROUP-BY
clause in the Structured Query Language (SQL). Since the results
of some OLAP queries are so expensive to compute, aggregate
views of the data are often pre-computed and stored in order to
speed up future query processing. Ideally all views would be pre-
computed and made available for answering aggregate queries, but
realistically there are constraints on which views can be material-
ized ahead of time such as the size of the materialized view set or
the time it takes for updates to be applied to it.

The problem of choosing a set of views for materialization is
known as the View Selection Problem. In the view selection prob-
lem one wishes to select a set of views for materialization which
minimizes one or more objectives, possibly subject to one or more
constraints. Many variants of the view selection problem have been
studied for example: i) minimizing the query cost of a materialized
view set subject to a storage size constraint [12, 22, 15, 21, 3], ii)
minimizing query cost and maintenance cost of a materialized view
set [2, 9, 27, 14, 26, 24, 25, 30, 28, 11], and iii) minimizing query
cost under a maintenance cost constraint [20, 19, 15, 29, 10].

Since the result of OLAP queries can be critical in supporting de-
cisions, their information must be as up to date as possible. For this
reason the maintenance cost of the selected view set is an important
property, and minimizing maintenance cost allows the view set to
be updated with minimal disruption to the system. This objective,
as well as a possible storage space limitation on the set of mate-
rialized views, is in conflict with the desire to respond to queries
as quickly as possible. All of the studies cited above which mini-
mize query and maintenance cost in fact minimize a linear combi-
nation of the two objectives, attempting to provide a solution with
the smallest total overall cost. Whether this solution is the best
overall solution, or whether a best overall solution even exists de-
pends on the meaning of the quantities expressed by the objectives
and their relative scale, and requires the trade-off between the ob-
jectives to be known a priori in order to choose appropriate con-
stants in front of each objective. Failure to find good constants may
cause an algorithm minimizing overall cost to in fact minimize the
more expensive of the two objectives without regard to the other,
defeating the very purpose of considering both objectives in the
first place. Also at hand is the issue of comparability of solutions.
For example algorithms A and B might find solutions X and Y
which have vastly different query and maintenance costs but very
similar overall costs. The measure of overall cost fails to capture
the difference of these solutions.

We take an approach to view selection which, surprisingly, we
cannot find record of being attempted before. We apply Multiob-
jective Evolutionary Algorithms (MOEAs) to minimize both query
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and maintenance costs under a size constraint, providing a vari-
ety of solutions which offer various levels of trade-off between the
objectives. One solution is said to dominate another when it is
favourable in both objectives. The output from a multiobjective ge-
netic algorithm is a set of solutions, none of which dominates any
of the others. This way an administrator can select an appropri-
ate view set from the possible solutions without needing to make
assumptions about the trade-off between maintenance and query
cost, avoiding the problems of linearly combining the objectives as
outlined above.

We apply two well established non-elitist MOEAs to view se-
lection, Horn et. al.’s Niched Pareto Genetic Algorithm (NPGA)
[13], and Fonseca and Fleming’s Multiobjective Genetic Algorithm
(MOGA) [7]. Since our problem is constrained, we also experiment
with two methods for handling constraints. One method treats the
constraint like an objective, and redefines dominance for infeasible
solutions. The other allows infeasible solutions in the population,
but implements a stochastic repair mechanism which converts them
into feasible solutions for fitness calculation. For comparison we
also apply the popular greedy Benefit Per Unit Space (BPUS) algo-
rithm for view selection whose performance is well known and is
documented in [12, 11].

Our results indicate that MOEAs are competitive against the greedy
approach across a variety of problem instances ranging in size and
skew. The MOEAs often find solutions which dominate the greedy
algorithm, although the gap closes with larger problem sizes. Both
MOEAs perform nearly the same for all problem instances except
the highly skewed, where MOGA outperforms NPGA. We also
find MOGA generally maintains better diversity than NPGA, and
that the constraint handling method of repairing infeasible solutions
tends to cause the population to drift up toward the middle of the
pareto-front.

The rest of this paper is organized as follows. Section 2 gives a
more detailed formulation of the view selection problem, as well
as a brief review of previous approaches. Section 3 describes con-
strained multiobjective optimization, the two algorithms which are
implemented, and the methods for handling constraints. Section
4 presents our experimental results comparing the MOEAs and the
BPUS heuristic on some real and synthetic data sets, while our con-
clusions are given in Section 5.

2. THE VIEW SELECTION PROBLEM
A typical data warehouse stores its information according to a

star schema having a central fact table with d feature attributes (di-
mensions), and some number of measure attributes. The dimen-
sions of the fact table have a foreign-key/primary-key relationship
with the dimension tables which store the details about each value
for a dimension. Queries to the data warehouse request aggregated
measures from the perspective of some subset of the dimensions of
the joined fact and dimension tables. The aggregated table from
which a query’s results are collected is called a view, and is iden-
tified by the dimensions chosen from the fact table, as well as the
corresponding attributes in the dimension tables which determine
the level of hierarchy. For example the time dimension may have
attributes day, week, month and year which define a hierarchy. If
the number of hierarchal levels of dimension i is Hi, then the total
number of possible views is

Qd
i=1(2

Hi + 1).
Harinarayan et. al. introduced the data cube lattice in [12], which

expresses the relationship between views as a partial order (directed
acyclic graph). Each view is a node, and corresponds to an answer
to a particular aggregate query. There is a path from a view v1

to a view v2 in the lattice if queries on v2 can be answered also
using v1. For example a query grouping on the dimensions prod-

uct and customer can be answered by aggregating the results of a
query grouping on product, customer, and time (provided that the
selected dimensions in this view are at the same or higher levels of
their respective hierarchies), although it will likely be more expen-
sive than if the query were answered directly on the time, customer
view. Assuming equally fast indices on all views, for each q there is
a corresponding view which can be used to answer q the cheapest.

The view selection problem using a directed acyclic graph can
be formally defined as follows. For each view v, we have some
estimate of the number of records rv in v, and the frequency of
queries fv on v. As in most previous studies, we adopt the linear
cost model presented in [12], where the cost of answering a query
on a view v is rv . The cost q(v, M) of answering aggregate queries
on view v using a materialized view set M is equal to the number
of records in the smallest view in M which is an ancestor of v in
the data cube lattice. The overall query time using M is a weighted
sum of these terms

Q(M) =
X

v

fvq(v, M),

and the size S(M) of M is simply the sum of the sizes of each of
the views in M . Our constraint is that S(M) ≤ Smax for some
maximum size Smax. The maintenance cost m(v, M) of a materi-
alized view v in M is modeled based on a cost which is assigned to
every edge (v1, v2) in the lattice, representing the cost of maintain-
ing v2 using updates from v1. The maintenance cost m(v, M) of
a materialized view v is the sum of the costs on the cheapest path
from a materialized ancestor of v. Each node v also has an update
frequency gv , and the total update cost for a set of materialized
views M is

U(M) =
X
v∈M

gvm(v, M).

This modeling of maintenance cost is the same as in [10, 20, 15,
29], however, some studies [2, 14, 30, 28] assume that m(v, M) is
part of the input to the problem. We experiment with maintenance
cost calculated according to a more specific, but simplified model in
[15]. For v ∈M , m(v, M) is equal to the number of changes in v’s
smallest materialized ancestor, which we express as a fixed percent-
age of its size. For example Figure 1 shows a data cube lattice for a
database with non-hierarchal dimensions product, customer, time,
with 8 views (one for each subset of the dimensions) and their asso-
ciated sizes. If the selected view set is M = {pct, ct} (drawn with
dashed lines), the probability of queries on all views is an equally
likely 1/8, and 10% of updates to each view propagate to its de-
scendents, then Q(M) = 4(1/8)(1000) + 4(1/8)(600) = 800
(since queries on the views pct, pc, pt and p are answered on the
pct view at cost 1000, and queries on ct, c, t and none are an-
swered on ct at cost 600), and U(M) = 100 + 100 = 200 (100
updates applied to pct which also propagate to ct). If the c or t
views were materialized they could be updated at an additonal cost
of 10 each, since they only need the changes from ct, however if
p were materialized its update cost would be 100 since it must be
updated from the changes to pct.

2.1 Previous Approaches
Numerous solutions have been proposed to the view selection

problem on data cubes. The first is a greedy algorithm called Bene-
fit Per Unit Space (BPUS) presented by Harinarayan et. al. in [12].
At each greedy step, it chooses the view to add to the current so-
lution based on maximizing the improvement in objective function
it provides per unit of space it consumes. For example, when the
objective is to minimize the sum Q(M)+U(M), the view v added
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Figure 1: Example data cube lattice for a data warehouse with
the non-hierarchal dimensions product, customer, and time. As-
sociated with each view is its size in rows.

to the current solution M at each step is the one for which

(Q(M) + U(M))− (Q(M ∪ {v}) + U(M ∪ {v}))
rv

is maximal. BPUS has been proven to find a solution within 63%
of the optimal. In [11] the same heuristic was extended to mini-
mize the sum of query and maintenance cost in AND-OR/DAGs
(a more flexible model for data cubes), as well as an algorithm
given to include selection of indexes. In [2], the sum of query and
maintenance cost are minimized in a data cube lattice with respect
to a fixed set of queries. Shukla et. al. give a heuristic minimiz-
ing query cost in [22] which is asymptotically faster than that of
[12], but achieves the same solution only under certain conditions.
In [27] a greedy algorithm for minimizing the sum of query and
update cost is given under a different modeling than that of [12].
Gupta gives the first solution to the view selection problem mini-
mizing query cost under a maintenance cost constraint in [10]. In
[1] Agrawal et. al. present a tool and algorithms for selecting a set
of views based on a cost metric involving query cost, maintenance
cost, index construction and other factors. In [20], Liang et. al.
follow up on Gupta’s work in [10] by giving two algorithms min-
imizing query cost under a maintenance cost constraint. Nadeau
and Teorey give a greedy algorithm minimizing query cost under a
space constraint which is polynomial in the number of dimensions
[21]. Kalnis et. al. use randomized algorithms to search the solu-
tion space of view sets in [15], achieving reasonable solutions more
quickly than some systematic alternatives.

Genetic algorithms were applied to view selection in [30, 19, 29].
In [30] a simple GA is used to perform view selection in Multiple
View Processing Plans (MVPPs)1 minimizing the sum of query and
maintenance cost with no constraints. Their algorithm is compared
against a systematic approach, and they find that the solution found
by the GA is better, although the algorithm takes about 100 times
longer to run. In [19] genetic algorithms are applied to minimize
query cost under a maintenance cost constraint in randomly gen-
erated OR-DAGs (data cubes), with the constraint being enforced
via a penalty function applied to the fitness of infeasible solutions.
They compare their GAs to an exhaustive method and find their
solution to be much faster and reliably fall within 10% of the opti-
mal solution. However their experiments involve only a very small
number (5 to 20) of views, where as in practice data warehouses
may have a very large number (hundreds or thousands) of possi-
ble views. In [29] query cost is minimized under a maintenance

1An MVPP is an alternate way to data cubes of specifying the rela-
tionship between a fixed set of queries and the tables in a relational
database.

cost constraint in data cube lattices. They handle constraints via a
stochastic ranking procedure, where during population sorting, fea-
sible solutions are compared by objective value, and infeasible (one
or both) solutions are compared either according to objective value
or a penalty function. They compare their GA to the approach in
[19], the optimal A*-Heuristic presented in [10] and an exhaustive
algorithm. They find that their algorithm finds solutions very close
to the optimal in a fraction of the time. Their algorithm finds so-
lutions much better than that of [19], although it takes significantly
longer to run. Their experiments are also on small lattices with no
more than 256 views (8 non-hierarchal dimensions).

3. CONSTRAINED MULTIOBJECTIVE GE-
NETIC ALGORITHMS

A multiobjective optimization algorithm should learn to solve
different sub-problems of the overall problem. The solution there-
fore takes the form of a set of individuals known as the pareto-
optimal front, where for each member there is no other individual
which is preferable in all objectives. A major challenge in MOEAs
is maintaining a diverse set of individuals which spans the pareto-
optimal front, while exploiting those individuals to push the front
in the direction of better objective values. The MOEAs we apply to
view selection are similar in that an individual’s chance of survival
and of being selected for recombination depend on the number of
individuals dominating it in the current population and the num-
ber of individuals in the population which are close in objective
space, hence encouraging both diversity and forward progress to
the pareto-optimal front.

Two well established MOEAs are considered: Horn et. al.’s
Niched Pareto Genetic Algorithm (NPGA) [13], and Fonseca and
Fleming’s Multiobjective Genetic Algorithm (MOGA) [7], both in-
stances of a non-elitist MOEA. MOGA assigns fitnesses to individ-
uals on the basis of how many individuals dominate them and how
many individuals have similar fitnesses. NPGA does not assign
fitness, instead, replacement and selection of parents for recombi-
nation is based on a stochastic binary tournament whose outcome is
based on the dominance relation and phenotypic similarity. Many
developments in MOEAs taken place since the proposal of these
algorithms, however our interest lies in addressing the combination
of these tried and tested MOEAs with constraints on the application
domain of the view selection problem. To our knowledge, MOEAs
have not been applied to view selection before, and our application
of them also aims to gain more insight to the nature of the problem
itself.

3.1 MOGA
Fitness calculation in MOGA involves finding the number of in-

dividuals in the population P which dominate each individual a.
Adding 1 to this value gives the rank of a. The ranks are then in-
terpolated from best to worst, so that a gets a fitness f ′(a) which
is proportional to its rank and the sum of the ranks of all individ-
uals in P (with higher fitnesses being better). The fitness of each
individual is then shared so that

f(a) =
f ′(a)P

b∈P sh(d(a, b))
(1)

where d(a, b) is the euclidean distance in objective space between
a and b, and sh is a sharing function. For efficiency we use a linear
interpolation, and the triangular sharing function [6]

sh(d) =

j
1− (d/σniche)

2 if d ≤ σniche

0 otherwise
.
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σniche defines the niche radius, a parameter which is set on the ba-
sis of an estimate of the minimal desired phenotypical distance be-
tween individuals. Once the fitnesses have been calculated, any de-
sired selection mechanism may be used (e.g. tournament, roulette
wheel). We use roulette wheel selection, and replacement is done
by keeping the |P | fittest individuals. The entire MOGA algorithm
is described in Algorithm 1.

Algorithm 1 MOGA replacement as applied here to view selection.
Input: Generation i population Pi

Output: Generation i + 1 population Pi+1

1: for all a ∈ Pi do
2: Compute f(a) according to Equation 1
3: end for
4: O ← ∅ // Set of offspring
5: while |O| < |P | do
6: Apply roulette wheel selection to select two individuals a

and b from Pi

7: Apply uniform crossover or mutation to a and b to create
offspring a′ and b′

8: O ← O ∪ {a′, b′}
9: end while

10: Pi+1 ← the fittest |Pi| individuals from Pi ∪O

3.2 NPGA
NPGA performs a dominance based tournament selection when

choosing individuals for recombination, and when filling the new
population, avoiding explicit fitness assignment. To decide a tour-
nament between individuals a and b, a comparison set containing
tdom individuals is chosen from the population (if the tournament
is selecting parents for recombination), or from the partially filled
next population (if the tournament is selecting individuals from the
parents and offspring to replace the current population). The tour-
nament will prefer the individual which is not dominated by any
of the individuals in the comparison set. If either both a and b are
dominated by an individual in the comparison set, or both a and b
are not dominated by any members of the comparison set, then the
tournament prefers the individual which has a smaller number of
members of the comparison set within a σniche radius of it (called
equivalence class sharing). This process is outlined in Algorithm
2.

Algorithm 2 NPGA recombination and replacement.
Input: Generation i population Pi

Output: Generation i + 1 population Pi+1

1: O ← ∅ // Set of offspring
2: while |O| < |P | do
3: Select two individuals a and b from Pi using NPGA tourna-

ment selection as described at the start of Section 3.2
4: Apply uniform crossover or mutation to a and b to create

offspring a′ and b′

5: O ← O ∪ {a′, b′}
6: end while
7: Pi+1 ← ∅
8: while |Pi+1| < |P | do
9: Select two individuals a and b from Pi∪O using NPGA tour-

nament selection where the comparison set is chosen from
Pi+1 if possible.

10: Pi+1 ← Pi+1 ∪ {a, b}
11: end while

Choosing the comparison set from the currently filled next pop-

ulation is called continuously updated sharing [8]. It is utilized
to enforce non-dominance and phenotypic diversity with respect
to the generation being formed. Adjusting tdom allows the domi-
nation pressure to be controlled. A larger value will give a better
approximation of the niche sizes of a and b, as well as increase the
chances that there are individuals in the comparison set which do
not dominate a and b, making the tournament rely more on niche
sizes. A smaller value will increase the chance that only one of
a or b is dominated by a member of the comparison set, but will
give poorer niche size estimates. Choosing a value too small will
increase the probability that neither a nor b is dominated, and give
poorer niche size estimates.

3.3 Constraints
When handling constraints, our general strategy is not to search

too far from the fringe of infeasibility, since the constraints are usu-
ally in conflict with some of the objectives and we do not want to
preclude solutions which favour these objectives. In our case the
size constraint is in conflict with the query cost objective, and our
strategy should explore view sets which are nearly full as much as
it explores view sets which are nearly empty.

There are several possible ways with which constraints can be
handled in MOEAs [6].

1. Make the constraint value into an objective, and adjust the
definition of dominance so that an infeasible individual is
always dominated by a feasible one.

2. Allow infeasible individuals, but implement a repair mecha-
nism which converts an infeasible individual into one which
is feasible when performing fitness calculation.

3. Do not allow infeasible individuals by repairing those which
result from recombination operations.

4. Re-trying any recombination operation which results in an
infeasible individual until a feasible one is generated.

5. Choose a representation or decoder function which cannot
represent infeasible individuals.

6. Apply a penalty function to the fitness of individuals that vi-
olate the constraint.

We desire to have some infeasible solutions in the population based
on the possibility that they may produce fit, feasible offspring. For
this reason as well as those in the following discussion we choose
the first two methods. With the first method, the pressure for in-
dividuals to be non-dominated also controls the pressure for them
to be feasible. This allows us to control how thoroughly we ex-
plore near the fringe of infeasibility. By not considering the third
objective in determining dominance of feasible individuals we do
not care how close an individual is to being infeasible so long as
it is feasible. However dominance is redefined for infeasible so-
lutions to be based solely on the constraint objective, encouraging
individuals which are nearer to being feasible. This is of benefit be-
cause we use uniform mutation and crossover, where the offspring
are more likely to be feasible if the parents are feasible or close to
feasible. For the second method we repair an infeasible individual
by randomly removing views until it is feasible. The third method
is similar except it will never re-combine infeasible individuals (as
we would like to do). Method 4 will not either, but guarantees that
feasible individuals are a representation of their parents (where as
stochastic repair causes a loss of information about an individual’s
parents). The fifth is not chosen since it would certainly involve
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a more complicated cost function and genotype, threatening effi-
ciency. The sixth is similar to the first except it is still possible for
an infeasible solution to dominate a feasible one, and it furthermore
adds to the burden of tuning the algorithms.

4. EXPERIMENTAL EVALUATION
We experimentally evaluate both algorithms and constraint han-

dling mechanisms whilst providing a comparison to the BPUS ap-
proximation algorithm presented in [12, 11] and as summarized in
Section 2.1. We implemented the MOEAs in C++ using the Evolv-
ing Objects library [17], and BPUS in C. All experiments are run
on a 1400 MHz AMD Athlon XP processor with 256 MB main
memory running Fedora Core 3 and gcc/g++ version 3.4.2. The
primary goal of the experiments is to determine the suitability and
gain an understanding of the search characteristics of each algo-
rithm/constraint handling mechanism for varying instances of the
view selection problem as affected by dimensionality, and data and
query skew. The comparison with BPUS was in order to provide
a more absolute sense of where the genetic algorithms’ solutions
lie in the objective space, since BPUS guarantees a solution within
63% of the optimal. An exhaustive approach to find the pareto-
optimal front would be ideal, but infeasible due to the large search

space of size 22d

. Our secondary concern is scalability to larger
dimensionality in terms of both running time and solution quality.
Since each algorithm has search parameters we are also concerned
with the sensitivity of each algorithm to these parameters, and give
guidelines for choosing appropriate values.

4.1 Problem Instances
We use a total of 5 different data sets, an 8 dimensional data set

of world hydrological data, and the four synthetic data sets for each
combination of 10 or 12 dimensions with skewed or uniform view
size distributions. All data sets have no dimension hierarchies. We
estimate view sizes using the formula of [23], which takes as in-
put the number of rows and cardinality of each dimension. The
world hydrological data set (hereafter referred to as world) has
124676620 rows and moderate dimension cardinality variance. The
10 and 12 dimensional data sets each have 50 million rows. The
view size distributions for these data sets are described as follows:

• The uniform view size distribution has all dimension cardi-
nalities equal to 100, and further requires that a view is at
most 90% the size of its smallest parent. This ensures a nice
steady decrease in view size with the number of grouping
attributes, and no variance in size of views with the same
number of grouping attributes.

• The 2-pow view size distribution has the cardinality of di-
mension i equal to 2i, resulting in highly skewed view sizes.

We use a total of three different query distributions ranging in skew:

• The uniform query distribution has each query equally likely.

• The gaussian query distribution has queries distributed ac-
cording to a gaussian curve over the number of grouping at-
tributes, with a mean of d/2 and variance of 1.

• The focus query distribution, similar to the “hot regions” of
[16], uniformly distributes 90% of the query distribution to a
set of 10% of the views with less than d/3 grouping attributes
selected at random. The other 10% of the query distribution
is uniformly distributed to the other 90% of the views.

The focus distribution represents an extreme query skew, and is
expected to be a reasonable scenario since: (1) users generally want
a visual representation of their queries, which is more easily done
in lower dimensions and (2) many of the views are likely to be
uninteresting, with a select few combinations of dimensions being
of the most importance. In all experiments we fix gv , the frequency
of updates on view v, to 0.01 for all v. The cost of maintaining a
view v1 using updates from one of its ancestors v2 is equal to 10%
of the size of v2, representing 10% of the updates to each view
propagating to its children. These parameters were chosen to give
an equal balance in update and query costs, since too much of an
imbalance causes BPUS to optimize one of the two objectives and
would make for a poor comparison. Smax is fixed at 10% of the
size of the total data cube lattice.

In all of the experiments we fix the probability of crossover/mutation
at 0.6/0.4 respectively. The mutation operation has a 2% chance of
changing each gene in an individual. In order to represent view sets
as bit strings, views are ordered by the value of a binary code of
length d indicating the grouping dimensions of each view. For this
reason we use uniform crossover, since slicing a genotype in half
does not correspond to a natural partition of views in the lattice.

4.2 Experimental Results
We compare the algorithms and constraint handling mechanisms

on a selection of the available data sets. The number of generations
and population size was 75, 100, and 150 respectively for the world,
10D, and 12D data sets. These values were chosen to capture a suf-
ficient variety in the individuals relative to the problem size, and to
provide reasonable run times, although these values do not repre-
sent the point at which the algorithms lose momentum. BPUS runs
in roughly 0.3, 2.5, and 26 seconds CPU time on our experimental
platform for the world, 10D, and 12D datasets respectively, where
as the MOEAs run in 2 to 4, 12 to 18, and 140 to 165 seconds. A
discussion of the parameters is in Section 4.3 where the effects of
tdom, σniche as well as further general observations are described.

Figure 2 shows a random sample of 25% of the feasible individ-
uals in the final population of each MOEAs, as well as the solu-
tion of BPUS plotted in the objective space for four problem in-
stances. Each run shown is a representative example of multiple
independent runs, where little variance in solutions was observed.
An example initial generation population is shown to serve as an
indicator of how much and in which direction progress has been
made. Not surprisingly, the final generations on the uniform prob-
lem instances (Figures 2-(b) and (c)) are not very distant from the
initial generation in the objective space, illustrating a small differ-
ence in objective values between random and good solutions. For
the highly skewed problem instance in Figure 2-(c) an initial pop-
ulation is not shown, as it is so far away from the final populations
as to force the range of the plot to be much larger, causing a loss in
visible resolution amongst the algorithms. This, being a “harder”
problem instance, is the only one where one of the MOEAs largely
dominates the others. MOGA with objective constraint handling
tends to progress the fastest, likely a result of its strict pressure
on individuals to be non-dominated from fitness calculation and
roulette wheel selection, providing an absolute measure of non-
dominance. NPGA’s tournaments are a relative measure of non-
dominance, only as good as the comparison set chosen. Hence it
may take longer for NPGA to gain momentum away from the initial
population when the comparison sets are random individuals.

Each of the small clusters in the final populations of Figure 2-
(d) is likely a set of individuals which have some large views in
common. The larger views are a sort of coarse tuning (adding a
larger view is equivalent to moving from one cluster to another),
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while the smaller views are the fine tuning of solutions within that
cluster. This is discussed further in Section 4.3. Also in both the
uniform problem instances shown in Figures 2-(b) and (d) the pol-
icy of repairing infeasible solutions has caused both NPGA and
MOGA (NPGA to a greater extent) to favour a lower relative query
time, shifting up and away from the initial population to individu-
als with a larger number of views. This suggests that mutation is
the predominantly successful operation in creating non-dominated
offspring, since the population is initialized so that individuals have
only 10% or 2% (in the 10 and 12 dimensional cases respectively)
of the total number of views, meaning mutation is likely to add
views to them. Notice that in all cases except the high dimensional
(Figure 2-(d)) there are solutions dominating the solution of BPUS.
This suggests that dimensionality has an impact on the performance
of the MOEAs. At the 150th generation the MOEAs still have
enough momentum to creep past BPUS’s solution in less than 50
generations, although for even higher dimensional instances it may
take substantial search time to provide any solutions which com-
pete with BPUS. Another trend in all of the tests shown in Figure 2
is that NPGA spreads out less than MOGA. This can be attributed
to the fact that niching is secondary to domination in its tournament
selection. We observed that 50% to 75% of all NPGA tournaments
were resolved by domination alone, and hence phenotypic diversity
is not frequently considered in NPGA’s selection.

4.3 Tuning and Further Observations
In NPGA, the parameters tdom and σniche are essentially con-

trols which adjust the non-domination pressure, the diversity pres-
sure, and the accuracy of the diversity measure. tdom was adjusted
to maximize the number of distinctions based on dominance, which
we measure. We observed that this was necessary for NPGA to
have sufficient non-domination pressure. However the trade-off is
a lack of diversity in as seen in Figure 2. Neither MOGA nor NPGA
in our application were extremely sensitive to changes in these pa-
rameters, and we found estimating σniche based on the separation
of solutions in the objective space to be sufficient, aiming for a ra-
dius encompassing 10 or fewer solutions.

During the tuning process we also observed that the MOEAs tend
not to spread very far from the region where the initial population
lies, their behaviour is typically to quickly spread out along a front
and then slowly creep forward. It is not obvious from the plots
in Figure 2, but an initial population with even a slightly different
proportion of 1s causes the algorithms to spread out along a dif-
ferent, non-intersecting front. This is because crossover does not
change the number of 1s in the population, and mutation only if it
is successful in producing good offspring. A possible way to alle-
viate this is to start with an initial population with each individual
having different proportions of 1s and 0s, however this may cause
crossover to have difficulty in exploiting good features in a popula-
tion with so much variety.

A further experiment we conducted measures the convergence
in the population based upon the dimensionality of views. At each
generation, we measured the average entropy in the population mem-
bers’ choices for views of each number of dimensions. Entropy
is a measure of disorder, and a lower entropy for k-dimensional
views indicates the population’s tendency to agree on which k-
dimensional views should or should not be selected. Figure 3 shows
some of the results. As can be seen in the highly skewed instance
(Figure 3-(a)), MOGA with objective constraint handling has a
direct correspondence between view dimensionality and entropy,
with higher dimensional views having lower entropy. The popula-
tion agrees to a large extent on which high dimensional views to
include while still maintaining some diversity with respect to the

lower dimensional views. Further, convergence on the high dimen-
sional views occurs earlier than the lower dimensional views, indi-
cating a process of fine and coarse tuning as is observed in BPUS.
On the same problem, NPGA with objective constraint handling
shows little correlation between view dimensionality and entropy,
with a large degree of convergence on all views (Figure 3-(b)).
Compared to the skewed problem in Figure 3-(a), the relationship
between view dimensionality and entropy is weaker for the uni-
form instance in Figure 3-(c). This is reflective of our general re-
sults with the entropy experiments, which show a higher correlation
between view level and convergence for the more skewed instances
than the uniform. We also find that the population tends to converge
more in general when we repair our infeasible solutions, however
this is not shown due to space limitations.

5. CONCLUSIONS
The main contribution of our work is the application of MOEAs

to the view selection problem in OLAP data warehousing. Pre-
vious approaches have linearly combined the multiple objectives
into a single objective, applying heuristics, randomized search, and
GAs to the resulting optimization problem. We have applied two
well established non-elitist MOEAs to view selection: Fonseca and
Fleming’s MOGA [7], and Horn et. al.’s NPGA [13]. An important
constraint in OLAP view selection is on the size of the selected set
of views, and we experiment with two constraint handling methods
in combination with the two MOEAs.

Our experiments on both real and synthetic data sets with vary-
ing distributions show that the MOEAs are very competitive against
the leading greedy algorithm, BPUS [12]. Depending on where the
initial population lies in objective space, the MOEAs were able to
find solutions which dominate that of BPUS on nearly all prob-
lems. The performance gap between BPUS and the MOEAs closes
with increasing problem size. We found the performance of the two
MOEAs to be similar on most problem instances, however MOGA
out-performs NPGA for highly skewed instances. With regards to
the constraint handling techniques, the method of repairing infea-
sible solutions for fitness evaluation tends to cause the population
to drift up towards the middle of the pareto-optimal front, indicat-
ing mutation to be more successful than crossover in producing fit
offspring.

One promising direction for future work is to experiment with
elitist MOEAs, e.g. [18, 5, 4]. An elitist scheme, which partitions
the population based on fitness or non-dominance, has the advan-
tages that the best individuals are given a greater opportunity to
breed with one another, which should allow quicker progress to-
wards the pareto-optimal front.
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