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ABSTRACT
In this article, new variation operators for evolutionary multi-
objective algorithms (EMOA) are proposed. On the basis of
a predator-prey model theoretical considerations as well as
empirical results lead to the development of a new recombi-
nation operator, which improves the approximation of the
set of efficient solutions significantly. Furtheron, it is shown
that applying speciation to the analysed model makes it
possible to handle even more complex problems.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems

General Terms
Experimentation, Algorithm, Theory

Keywords
predator-prey, variation operators, simplex-recombination,
multi-objective optimization

1. INTRODUCTION
The design and analysis of representations and their cor-

responding genetic operators is the normal course of life in
the field of evolutionary computation [2]. Often an adept
combination of all components determines the system’s suc-
cess or failure. This insight is ubiquitous in the case of
single-objective optimization. Today, it is difficult, even for
an interested reader, to keep an overview of existing rep-
resentations and their belonging genetic operators [1]. The
advantages and the necessity of investigation and the design
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of both components for a given heuristic-problem instance,
are almost undisputed [22].

It is, therefore, even more amazing that regarding multi-
objective optimization (MOO), the conceptual approaches
are still mainly concerned with the selection operator. How-
ever, research focusing on the field of variation operators or
representations remain rare, so only a few approaches can be
found in literature: Kursawe examined for example the use
of diploid representations for two-objective test-functions [9]
while Rudolph [15] and Hanne [7] are concerned with the
problem of finding an appropriate controlling mechanism for
the mutation strength in the multi-objective case.

At the same time, as Büche et al. could show [3] for some
state-of-the-art evolutionary multi-objective algorithms
(EMOA), the interaction between selection and search op-
erators is not co-ordinated well enough. They show that the
approximation of the set of efficient solutions cannot be done
with an arbitrary precision. The distance between the true
Pareto-front and the approximated set can be reduced only
by a noticeable rise of the size of the archives - neverthe-
less stagnation occurs. Also existing non-Pareto approaches
seem to be unsuitable for the multi-objective case. Here the
process of adaptation is taken from the single-objective al-
gorithms (ESOA), which is more counter productive than
helpful (see section 2). The consequence is that, depend-
ing on the used strategy, the EMOA approximate either the
middle of the Pareto-front or its extrema, this, however, with
nearly arbitrary precision. Furtheron there is the dilemma
of stagnation with good diversity of the solution set on the
one hand, or arbitrarily exact approximation of few points
with bad diversity on the other hand. We conjecture that
these trade offs can be attributed to the fact that interaction
between the genetic operators cannot be taken over from the
single-objective case and the exclusive change of the selec-
tion operator is not sufficient to meet the requirements of
MOO.

Instead of adapting all genetic operators, like in the single-
objective algorithms, external or internal archives [23], met-
rics as new selection criteria [12] or other even more compli-
cated and time consuming procedures are developed.

If, however, so many additional aids are obviously needed
in order to reach the multi-criterion objectives, the assump-
tions of the standard search operators seem to be insuf-
ficient. We have to put back the tasks of adaptation of
the Pareto-front and the diversity-preserving forces into the
hands of the variation operators.
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Topic of this article is the analysis and development of
variation operators for multi-objective optimization.

For this we will not develop a new EMO-algorithm from
scratch, but start from the predator-prey model of Lau-
manns et al. [10]. We deliberatly decided on this non-Pareto
approach in order to:

• eliminate the influence of the Pareto-based selection
and

• be able to examine the employment of the different
search operators in a much better mode.

In section 2, Laumanns’ predator-prey model is briefly
presented, existing problems are sketched and some exten-
sions are discussed. Subsequently, in section 3 some restric-
tions and modifications are made to the system’s dynamics.
Furthermore, the test suite used is presented and experi-
mental techniques are described in the following section 4.
Having these foundations, we proceed, in section 5, with
some experiments and considerations about the model that
guides us to the necessity of developing a new type of re-
combination in section 6. Thereafter, section 7 displays the
collaboration of the evolution factors and finally leads, in
section 8, to a major, but tantatively simple modification of
Laumanns’ model.

2. BACKGROUND
This section provides a relatively detailed, but necessary

introduction into the predator-prey model of Laumanns et
al. [10] as well as a brief overview of existing extensions.
Some essential problems of this model are outlined which
are the starting point of our investigations.

2.1 Laumanns’ Model
At the beginning we should correct an alleged misunder-

standing. None of the models, which are presented here, can
be considered as co-evolutive. Co-evolution means, the evo-
lution of two or more interdependent species, each adapting
to changes in the other [5]. Since the predators are not sub-
ject to any changes, the definition does not apply. But the
basic idea that individuals interact in time and space within
their own species as well as with other species forms the basis
of Laumanns’ asynchronous spatial structured predator-prey
model (PPM).

On the basis of Figure 1, the principle of the model is to
be described. The “prey” are the usual individuals of the
EMOA representing the possible solutions of the MOO prob-
lem. These prey are placed at vertices of a two-dimensional
toroidal grid as the spatial population structure. The advan-
tages of spatial structured populations are broadly discussed
in [20] and will be omitted here. Due to this population
structure the neighbourhood of a particular grid point is de-
fined in terms of the number of steps taken from that grid
point. All neighbourhoods are of identical size and shape
so that the neighbourhood of every grid point overlaps with
the neighbourhood of the grid points nearby. The upper
picture of Figure 1 illustrates the selection process, which
is done by the predators. The predators move across the
spatial structure according to a random walk. The random
walk function of the predators is realized as a uniformly dis-
tributed random movement in the direct neighbourhood of
the position of a predator. The predator chases the prey
only within its current neighbourhood and according to one
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Figure 1: Schematic representation of the predator-
prey model (selection process and recombination).

of the optimization criteria. Here a linear shape neighbour-
hood with a step size of 1 is depicted. The worst prey within
this neighbourhood is “eaten”. As soon as the grid point for
the prey becomes free, it is refilled by a prey created by
discrete or intermediate recombination of those prey which
are elements of the recombination neighbourhood (see lower
figure). It is important to annotate that the recombina-
tion neighbourhood (RN) and the selection neighbourhood
(SN) do not contain inevitably the same set of prey since
the neighbourhoods are constructed from the predator grid
point or the freed grid point, respectively.

Because there are several predators with different selec-
tion criteria, those prey, which perform good with respect
to all objectives are able to survive and represent the approx-
imated Pareto-set after a while. So far on the philosophy of
this approach, which convinces by its simplicity.

2.2 Problems and Extensions
In the original study two major problems were observed:

Loss of diversity (in Figure 2 (a) a concentration of solutions
around both extrema can be observed for problem F∗

1 from
equation 3) and stagnation of the process of convergence to
the true Pareto-front (b). Thus, in principle this PPM com-
bines the problems of Pareto- and non-Pareto approaches [8].
But it is essential that the results of the preliminary study
could show that only suitable search operators were missing
to develop a simple EMOA.

Nevertheless, only few extensions exist. Deb [4], for exam-
ple, softens the strict one predator to one objective assign-
ment with an individual weighted vector in each predator.
From now on each predator selects the worst prey with re-
spect to the weighted sum of all objectives. This individual
selection allows each predator to steer prey to a specific re-
gion on the Pareto-front. Based on both approaches, Li pro-
posed a real-coded predator-prey (RCPPGA) [11] model. In
his approach he uses a genetic algorithm as the underlying
search heuristic and investigates the two described fitness
assignment methods from Laumanns and Deb. In addition
he uses a dynamic population, where predators as well as
prey are able to move within the structured environment.
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Figure 2: Two problems of PPM: Loss of diversity
(a) and stagnation of convergence to the Pareto-
front (b).

In contrast to the previous two models, recombination takes
place only if two prey individuals are in the same neigh-
bourhood. If a prey has no neighbours, no duplication is
allowed. As concequence Li defines a special migration for
both species to keep the prey population on a predefined
level and prevent extermination. Another model was devel-
oped by Schmitt [17]. Here the steady-state approach of the
PPM was replaced by the well-known controlling mechanism
of the self-adapting ES [18]. In addition, the weighted inter-
mediate recombination operator proposed by Schwefel and
Rudolph [19] was used. These results show that an essential
improvement in convergence is possible without any loss of
good diversity. However, the problem is that many fitness
function evaluations are necessary.

3. MODIFICATIONS: PART I
In the previous section we have shown that the PPM lacks

on a useful controlling mechanism for the mutation strengths
of the model. The problem of self-adaptive control of mu-
tation strength in non-generational models like this is ad-
dressed by [16]. In his article Runarsson proposed a kind
of adaptation mechanism for mutation strength for single-
objective optimization. We will investigate this adaptation
rule for our model.

This heuristic may be seen as a combination of Rechen-
berg’s 1/5-rule [14] and Schwefel’s self-adaptation [18]. Since

it was proposed to realize adaptation of mutation strength
in (1+1)-ES it is able to deal with the lack of birth surplus.
For parallel implementation is based on threads and works
with the available (unblocked) best and worst individual of
the population and blocks them. A variation (depending on
the strategy parameters) of the best individual replaces the
worst one. Furthermore, a reproduction counter (ζ) indi-
cates how often each individual has passed its own genetic
information to a descendent, i.e. how often it was the best
individual and no better descendent has been produced. If ζ
for the best individual becomes greater than a fixed number
of trials, the strategy parameters of the best are mutated
themselves by a weighted average of the mutation strength
of its grandparent. Good step sizes in the near past cannot
be completely wrong in the present.

By using Runarsson’s heuristic some problems occur im-
mediately: because Laumanns’ reproduction works with two
different neighbourhoods the heuristic may fail due to the
often rather different sets of individuals in these neighbour-
hoods. The prey removed by the predator is chosen from
the selection neighbourhood SN while the new prey is com-
posed from individuals out of the reproduction neighbour-
hood RN . Runarssons heuristic replaces the worst individ-
ual of a given surrounding by a variation of the best indi-
vidual out of the same surrounding. If SN �= RN those
individuals from R \ S must be looked upon as being of
uncertain nature and are possibly worse than the removed
individual. A second problem is caused by the fact that
Runarsson’s mechanism is intended to be implemented in a
(1 + 1)-ES which works without recombination. The loss of
recombination as evolution factor, however, is not desirable.

To handle the above problems two modifications are car-
ried out to the model.

1. The selection neighbourhood is regarded as being equal
to the reproduction neighbourhood: SN = RN . By
doing this, there is no more uncertainty about the
quality of the surviving prey from which the new indi-
vidual is created.

2. Additionally, the search operators which are strongly
bound to the selection mechanism of the predators are
divided in two autonomous processes. By introducing
a second group of predators we achieve the indepen-
dent execution of mutation and recombination.

The recombination operators are chosen as in Laumanns’
model. In addition to discrete and intermediate recombi-
nation the weighted intermediate recombination – originally
proposed for ES by Schwefel and Rudolph [19] and adopted
lately by Schmitt et al. [17] with some good results – is
made use of. Hence two parental individuals P1 and P2 are
given with decision vectors in R

n. Furthermore ui ∼ U(0, 1)
with i ∈ {1, . . . , n} denotes a uniform distributed random
number. Then the child C of P1 and P2 is formed by

xC,i = ui · xP1,i + (1− ui) · xP2 ,i (1)

The advantage of this weighted recombination can be illus-
trated on Figure 3. Two parents (P1 and P2), who are to
be recombined, span a rectangle in the search space. In
the case of discrete recombination only the free corners can
be occupied by the offsprings (C1 or C2). By intermediate
recombination only the point C3 can be used. Due to the
uniform distributed random numbers ui all positions in the
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rectangle are possible. This increases the diversity of the
offsprings considerably.

P1

P2

C1

C3

C2

C

Figure 3: Schematic representation of the used re-
combination operators.

4. EXPERIMENTAL SETUP
We will restrict our examination on those test problems

Laumanns et al. used in his work [10]. In addition we will
instantiate a second special version of the multi-sphere prob-
lem F1. The problems F2 and F3 are used to verify proposed
techniques which were developed using F1. All test prob-
lems are defined below:

F1 : R
n → R

m with x ∈ R
n, n, m ∈ N

F1(x) =

0
B@

f1(x)
...

fm(x)

1
CA =

0
B@

(x − c1)
2

...
(x − cm)2

1
CA (2)

F∗
1 (x) =

„
x2

1 + x2
2

(x1 − 2)2 + x2
2

«
(3)

F�
1 (x) =

„
x2

1 + (x2 − 3)2

(x1 − 2)2 + x2
2

«
(4)

The c1, . . . , cm ∈ R
n are constants with ci �= cj for i �= j.

The special problem F∗
1 has constants c1 = 0 and c2 = 2

while F�
1 has constants c1 = 3 and c2 = 2. The Pareto-

front of problem F1 is convex. For the special problems F∗
1

and F�
1 the Pareto-set as well as the Pareto-front can be

analytically determinedand the Pareto-set of both problems
is represented by a line in search space. The solutions of F∗

1

cover the interval x1 ∈ [0, 2] with x2 = 0. Optimal solutions
for F�

1 are given for 0 ≤ t ≤ 2 by x1 = t and x2 = 3 − 3
2 t.

In addition, two further test problems are included here
to ensure comparability to Laumanns works and to vali-
date results with more complex problems later on. Every
component of problem F2 [13] has an infinite number of
maxima and minima. The Pareto-front of this problem is
concave and the Pareto-set is in contrast to the previous
special problems not exactly determinable, even incoherent.

The Pareto-front of problem F3 proposed by Kursawe [9]
has convex as well as concave parts. Like the previous prob-
lem it has a disconnected Pareto-set and is not exactly de-
terminable.

4.1 Performance Metric
A number of performance metrics have been listed in [4]

due to the fact, that a proper comparison of the results of
MOO is a complex issue. In the following we use the hyper–
volume metric (S–metric) [23]. The S–metric calculates a
hyper-volume of a multi-dimensional region enclosed by the

non-dominated set to be assessed, the coordinate axes and
a reference point to measure the diversity and the conver-
gence of the obtained non-dominated set. Depending on the
chosen reference point, two non–dominated sets can have
different relative S–metric values.

The volume of these regions can be compared to the vol-
ume of the region enclosed by the true Pareto-front, the
coordinate axis and the reference point. Let V be the re-
gion of a cuboid then S(V) denotes the volume of this set.

The ratio SR = S(V)
S(VPF )

gives the propotionate coverage of

the true Pareto-front by the approximated solutions. The
volumes of the test problems’ F∗

1 and F�
1 Pareto-fronts are

easily calculated and listed in Table 1.

Table 1: Exact volumes of the regions enclosed by
the Pareto-fronts of F∗

1 and F�
1 with the given ref-

erence point respectively.

test-problem reference point volume

F∗
1 (4.0, 4.0) 13.3̄

F�
1 (13.0, 13.0) 140.83̄

Additionally the Euclidian distance is used to evaluate the
median distance between the approximated solutions and
the Pareto-set for problems F∗

1 and F�
1 .

5. EXPERIMENTS AND CONSIDERATION
First results from experiments with test problem F∗

1 in-
dicate that the step size adaption of Runarsson leads to
a monotonous convergence to the optimal solutions in the
cases of discrete and weighted intermediate recombination.
These results are depicted in Figure 4.

Figure 4: Average distance to the Pareto-set of F∗
1

with 2 predators per criteria where one predator
triggers mutation, another recombination of one of
the three types discrete, intermediate or weighted
intermediate.

Intermediate recombination, however, leads to premature
convergence. Looking at the results of the approximation,
discrete recombination turns out to speed up the loss of di-
versity. At the end of the process the set of optimal solutions
contains just the optima of the single criteria. Surprisingly
the weighted intermediate recombination leads to both good
convergence and a diverse set of solutions as shown in Figure
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5. Additionally Table 2 displays the results of this experi-
ment in detail.

Table 2: Results of the experiment with F∗
1 and

weighted intermediate recombination.

distance to Pareto-set ∼ 10−15

volume S(V) 13.263

ratio SR 0.994725

Because of these results further investigation will be fo-
cused on weighted intermediate recombination.

Although, hitherto, the applied mechanisms worked well
on a very simple test problem, but fail on a problem that
does not possess a Pareto-set parallel to the axes of the
coordinate system. Experiments with problem F�

1 demon-
strate this behavior impressively. As visible in Figure 6, the
approximation of the Pareto-set gets worse proportional to
compromises becoming more balanced.

Figure 5: Approximation of Pareto-set (left) and -
front (right) for problem F∗

1 with 2 predators per cri-
teria where one triggers mutation another weighted
intermediate recombination. Every predator carries
out 80,000 fitness evaluations (FE).

Figure 6: Approximation of Pareto-set (left) and
-front (right) for problem F�

1 with 2 predators
per criteria where one triggers mutation, another
weighted intermediate recombination. Every preda-
tor carries out 80,000 FE.

A likely reason for the observed behavior seems to be the
weighted intermediate recombination mechanism. A descen-
dent of two parents is generated inside the subset of the
search space that is restricted to the square spanned by the
decision vectors of both parents as shown in Figure 7. Obvi-
ously, a descendent is not automatically better than at least

one parent1 . Being created in area A1 or A2 it is worse than
both parents regarding the distance towards the Pareto-set.
Although this problem does not occur while working on the
approximation of axis-parallel Pareto-sets, its effect seems
to grow with increasing inclination of the Pareto-set and
decreasing distance between the parents and the optimal
set. To prove this observation we investigate the influence
of those factors and distinguish two general cases. One case

Figure 7: The weighted intermediate recombination
shown exemplary working on an inclined Pareto-set
in search space.

is represented in Figure 7 and will be analyzed next while
the second case with xP1,1 ≥ xP2,1 needs no more atten-
tion since no deterioration relative to the Pareto-set or the
parents is possible. Furthermore, it may hold w.l.o.g that
xP1,2 ≤ xP2,2 and 0 ≤ α ≤ π/2. For different α similar
considerations can be made, with π ≤ α ≤ 3π/2 even the
same holds.

For the depicted case xP1 ,1 ≤ xP2,1, however, the areas A1

and A2 must be estimated. Area A1 can be easily calculated
through

A1 =
ab

2
=

tan α · (xP2,1 − xP1,1)
2

2
(5)

while for calculation of A2 the distance between the parents
and the Pareto-set is needed. A deterioration relative to
both parents is only possible, if the distance of a possible
descendant to the Pareto-set is greater than the maximum
of the parents distances to the optimal set.

dmax = max{d1, d2}
dm = (xP2 ,2 − xP1 ,2) · cos α − dmax

δ = dm − dmax

With δ it is possible to decide whether A2 exists. For now
we assume A2 may exist, then it is given by

A2 =
1

2
· δ

sin α
· δ

cos α

=
δ2

sin 2α

=
((xP2 ,2 − xP1 ,2) · cos α − 2dmax)2

sin 2α
(6)

1The denomination ’better’ is used here by the meaning of
the quasiordered relation ≤.
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Using the Heavyside function Θ(δ) for case differentiation
we get for the total area Aneg of deterioration with respect
to the Pareto-set

Aneg =
tan α · (xP2 ,1 − xP1 ,1)

2

2

+Θ(δ)

„
((xP2,2 − xP1,2) · cosα − 2dmax)2

sin 2α

«
(7)

To investigate the behavior with increasing convergence
to the Pareto-set, we have to look at equation (7) with de-
creasing distance dmax.

dmax → 0 ⇒ Aneg → (xP2,1 − xP1,1) · (xP2,2 − xP1,2) (8)

Obviously, the probability to generate a better descendant
decreases dependent on dmax. Area Aneg tends to reach
the size of the square spanned by the parents. Near the
Pareto-set a deterioration is almost certain. However, the
size of Aneg and with it the extend of deterioration also
depends on the inclination of the Pareto-set given by α.
These results lead to the development of a recombination
mechanism which is insensible to rotation of the Pareto-set
inside the search space appropriately.

6. MODIFICATIONS PART II:
A ROTATION-INDEPENDENT RECOM-
BINATION

One way to adapt the recombination mechanism to the
position of the Pareto-set in search space may be to learn
about the afore unknown angle α and use it to rotate the
recombination respectively2. However, this approach leads
to at least one more strategy parameter for each individual
and may furthermore fail to approximate Pareto-sets which
are disjoint. In the latter case even more angles (at least one
for every subset) need to be learned. To avoid such problems
we want to focus on utilizing a geometric shape to restrict
reproduction search space.

A most promising shape seems to be the triangle or in
general a n-simplex3. It is easy to see that in a search space
of this shape, spanned by n + 1 parents, a deterioration
relative to those parents is impossible. Though it is easy to
chose a descendent uniformly distributed out of a rectangle,
it is more difficult for simplizia. Based upon barycentric
coordinates Turk [21] showed a method for picking a random
point from a triangle or a tetrahedron. A general technique
to generate a random point in a n-simplex is presented here.
Equivalences and used theorems are proved in [6].

Definition 6.1 (Barycentric Coordinates). Hence
there are (n + 1) vectors p1, . . . , pn+1 in the n-dimensional
space. If p2 − p1 . . . pn+1 − p1 are linearly independent every
point q may be represented as a (n + 1)-tupel of barycentric
coordinates (β1, . . . , βn+1) qualifying q by

q = β1p1 + · · · + βn+1pn+1 and β1 + · · · + βn+1 = 1

The representation of a point P in a 1-simplex, a line be-
tween two points A and B, is essential for the understanding

2For the n-dimensional search space even n − 1 angles have
to be learned.
3A simplex is a n-dimensional polytope with n + 1 points.

Figure 8: Schematic procedure to generate a ran-
dom point in a simplex depicted for a 1-, 2-, and
3-simplex.

of the creation of a random point in a simplex. The set of
points between A and B is given by

[A, B] := {aA + bB|a, b ∈ R+, a + b = 1}.
If we chose a = (1− λ) and b = λ then P ∈ [A, B] results

from

P = (1 − λ)A + λB (9)

The tupel ((1 − λ), λ) yields the barycentric coordinates of
P . This construction procedure can be used in n-simpliza
as well. As depicted in Figure 8 for a triangle, one creates,
starting from a point A, two points P ′ and P ′′ with the same
barycentric coordinates. Finally point P is created on the
line between these new points in an analogous way. For a
tetrahedron a third point P ′′′ is created to form a triangle.
Then P is generated as described before.

The procedure from above can generally be formalized in
an expression which is easy and rather efficient to imple-
ment. The point PnS in an n-simplex is yielded by:

PnS =
n+1X
i=1

 
(1 − λi)

i−1Y
j=0

λj

!
Ai (10)

with λ0 := 1 and λn+1 := 0

The vectors Ai with i = {1, . . . , n + 1} span the sim-
plex. To chose PnS uniformly distributed for every λj ∈
{λ1, . . . , λn} a random number zj ∼ U(0,1) is generated
and applied in:

λj = (zj)
1

(n+1)−j . (11)

The square root until n-th root is taken to weight all por-
tions of the simplex equally.

Figure 9: Approximation of Pareto-set (left) and -
front (right) for problem F�

1 with 2 predators per
criteria where one triggers mutation another the
proposed simplex-recombination. Every predator
carries out 80,000 FE.

To finally prove the operability of the proposed recom-
bination mechanism empirically, we rerun the experiment
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from Figure 6. As shown in Figure 9 the result is much bet-
ter than with weighted intermediate recombination. Table
3 depicts the evaluation of the shown experiment.

Table 3: Results of the experiment with F�
1 and

simplex recombination.

distance to Pareto-set ∼ 10−12

volume S(V) 140.507

ratio SR 0.997685

7. ANALYSING THE INFLUENCE OF EVO-
LUTION FACTORS

The changes based on the previous investigations yield
significantly better results than the original model proposed
by Laumanns [10]. However the impact of mutation and re-
combination has not been examined, yet. Taking advantage
of the detachment of these factors during the inital modifi-
cations we are able to explore the isolated factors’ impact.
By switching off mutation we concentrate on recombination
directly as well as mutation indirectly and their share on
generating a optimal set.

7.1 Influence of recombination
Based on the geometric shape of the recombination mech-

anism the descendent of n + 1 parents is created inside the
convex hull of the parents’ location. Therefore, it may be
considered as an intermediate crossover in the centre of grav-
ity with differently weighted parents. Keeping in mind that
the selection mechanism is strongly bound to the recombi-
nation and that the selection alternately favours only one
criterion and discards those individuals complying to other
criteria, we must assume that in the long term averaged
individuals do better than individuals optimized for one cri-
terion. Additionally, the recombination favours convergence
towards the Pareto-set.

Thus, a long running time creates centred individuals (de-
pending on the ratio of the criteria) as well as solutions
which are near the optimal set as shown in Figure 10 (left).
The real Pareto-set is depicted to illustrate the contraction
of the approximated set.

7.2 Influence of mutation
The main influence of mutation is the gain of new infor-

mation. By adding mutation to the model the position of an
initial population in search space does not determine further
convergence behaviour.

Figure 10 (right) shows the relevance of mutation indi-
rectly by omitting it from the evolutionary process while at
the same time initializing the population ’above’ the Pareto-
set in search space. It is obvious that without mutation the
convergence is limited to the bounds of the area of search
space covered by the initial population. The same behaviour
is found for populations uniformly initialized around the
Pareto-set due to contraction during runtime.

Another effect of the mutation based on Runarssons heuris-
tic [16] and strongly bound to the selection mechanism of
a predator is the tendency to drive the population’s indi-
viduals towards an, at least, local optimum regarding the
criterium which is represented by that predator.

Figure 10: Approximated Pareto-set of F�
1 with only

simplex-recombination initialized uniformly around
the true Pareto-set, with 2 predators per criterium
after 320,000 FE per predator (left) and Pareto-set
of F∗

1 with only weighted intermediate recombina-
tion initialized in [−10, 10] × [0.5, 10] with 2 predators
per criterium and 40, 000 FE per predator (right).

7.3 Interaction of both factors
Since mutation works strongly in opposition to the av-

eraging mechanism of recombination we may consider the
combination of both factors (mutation and recombination)
as a new multi-objective optimization problem. Chosing a
number of recombinating and a number of mutating preda-
tors we obtain a compromise of both diversity and conver-
gence. Finally, the evaluation of an adequate compromise is
left to the decision maker.

However, if we look at the interaction of those factors
we find that these processes can be executed sequentially.
Mutation may start to determine local optima whereupon
recombination creates a diverse set of compromises from the
results.

Although this might work with simple problems like F∗
1

and F�
1 which possess a Pareto-set on a line between the

global optima of two criteria the method will fail on prob-
lems with disjoint subsets of the Pareto-set as F2 and F3.
For those problems, finally, some local optima are yielded
and connected by individuals which do not necessarily rep-
resent valid compromises for the problem.

8. CONCLUSION
Up to now we analyzed Laumanns’ model in detail which

resulted in several changes to it. To achieve convergence to
the optimal solution we introduced a heuristic from Runars-
son that suited perfectly for integration into a parallel sys-
tem with steady state replacement. However, it was in-
tended to work on a (1+1)-ES and, therefore, gave reason
to modify Laumanns’ selection and recombination neigh-
borhood as well as to the division of the variation opera-
tors to autonomous processes bound to the predators. Fur-
thermore, a weighted intermediate recombination was intro-
duced to the model and yielded best results on simple prob-
lems having a Pareto-set parallel to the coordinate axes. Yet
on an oblique Pareto-set the method failed due to the recom-
bination’s dependency on coordinate axes. Consequently, a
recombination indifferent against the position of the Pareto-
set and based on the geometric form of a n-simplex was de-
veloped and proved to be well applicable. Subsequent to
these modifications the analysis of the influence of variation
operators revealed that the weighted intermediate recombi-
nation as well as the simplex-recombination tend to collapse
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the population for a balanced compromise. At the same time
the mutation was proved to be essential for introducing new
information to the population and to drive the individuals
towards the optima of the objective functions represented by
the predators. The problem to find a sufficient solution con-
cerning convergence and diversity was reduced to finding an
adequate proportion of predators initiating mutation and re-
combination. Although these mechanisms worked perfectly
on simple problems, the last section showed the difficulties to
approximate complete solutions for problems with disjoint
Pareto-sets.

To motivate further research concerning the variation op-
erators even more and to demonstrate its potentialities we
close this paper with a preliminary simple change of Lau-
manns’ model to solve some of the addressed difficulties. To
preserve local optima which may be part of the Pareto-set
we change the mutation mechanism in such a way that the
seperation of the variation operators is unmade while the
recombination becomes the dominant factor. New informa-
tion emerges inside the population by allowing the creation
of a descendent outside the convex hull of a simplex. This
is achieved by replacing the uniformly distributed choice of
a random number for equation (11) with a positive normal
distributed choice.

In addition to this, the population is divided into several
species, each getting its own initial realm in decision space
to start from. Although individuals of different species are
not able to recombinate, they may leave their initial realm
to approach a part of the Pareto-set.

First experiments with this modified model show (see Fig-
ure 11) that most parts of the Pareto-set can be computed.
Indeed, some solutions are not Pareto-optimal, however,
most solutions are covered by the results so that a domi-
nance filter is able to extract them.

Figure 11: Approximated Pareto-sets of F2 (left)
after 10,000 FE and F3 after 20,000 FE (right) per
predator with the modified model. The search space
[0, 3]×[−5,5] of F2 was divided for 6 species positioned
along the x2 axis evenly. For F3 2 species initialize
in [−1, 0] × [−5, 5] and [0, 1] × [−5, 5].

Thus, we may conclude, that variation operators for MOO
are essential to yield sufficiently exact and diverse solutions.
However, in addition, macro-evolutionary mechanisms or
other assisting techniques seem to be necessary to fulfill the
requirements of MOO.
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