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ABSTRACT

This paper introduces a multi-objective optimization approach to

the problem of computing virtual reality spaces for the visual repre-

sentation of relational structures (e.g. databases), symbolic knowl-

edge and others, in the context of visual data mining and knowl-

edge discovery. Procedures based on evolutionary computation

are discussed. In particular, the NSGA-II algorithm is used as a

framework for an instance of this methodology; simultaneously

minimizing Sammon’s error for dissimilarity measures, and mean

cross-validation error on a k-nn pattern classifier. The proposed

approach is illustrated with an example from genomics (in particu-

lar, Alzheimer’s disease) by constructing virtual reality spaces re-

sulting from multi-objective optimization. Selected solutions along

the Pareto front approximation are used as nonlinearly transformed

features for new spaces that compromise similarity structure preser-

vation (from an unsupervised perspective) and class separability

(from a supervised pattern recognition perspective), simultaneously.

The possibility of spanning a range of solutions between these two

important goals, is a benefit for the knowledge discovery and data

understanding process. The quality of the set of discovered solu-

tions is superior to the ones obtained separately, from the point of

view of visual data mining.

Categories and Subject Descriptors

I.2.m [Artificial Intelligence]: Miscellaneous; I.5.m [Pattern

Recognition]: Miscellaneous; J.3 [Computer Applications]:

LIFE AND MEDICAL SCIENCES; H.5.m [Information Sys-

tems]: Miscellaneous

General Terms

Algorithms, Experimentation
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1. INTRODUCTION
Knowledge discovery is the non-trivial process of identifying

valid, novel, potentially useful, and ultimately understandable pat-

terns in data [9], and the role of visualization techniques in the

knowledge discovery process is well known. Data and patterns are

concepts which should be considered in a broad sense. There are

different kinds of data (relational, graphical, symbolic, etc.), and

patterns of different kinds (geometrical, logical, etc.). The increas-

ing rates of data generation require the development of procedures

facilitating the understanding of the internal structure of data more

rapidly and intuitively. Moreover, the increasing complexity of the

data analysis procedures makes it more difficult for the user (not

necessarily a mathematician or data mining expert), to extract use-

ful information out of the results generated by the various tech-

niques. This makes graphical representation directly appealing.

Several reasons make Virtual Reality (VR) a suitable paradigm:

Virtual Reality is flexible, it allows the construction of different vir-

tual worlds representing the same underlying information, but with

a different look and feel. VR allows immersion, that is, the user

can navigate inside the data, interact with the objects in the world.

VR creates a living experience. The user is not merely a passive

observer but an actor in the world. VR is broad and deep. The user

may see the VR world as a whole, and/or concentrate the focus of

attention on specific details of the world. Of no less importance

is the fact that in order to interact with a Virtual World, no math-

ematical knowledge is required, and the user only needs minimal

computer skills. A virtual reality technique for visual data mining

on heterogeneous, imprecise and incomplete information systems

was introduced in [23, 24].

These VR spaces are obtained by transforming the original set

of attributes describing the objects, often defining a heterogeneous

high dimensional space, into another space of small dimension (typ-

ically 2-4) and intuitive metric (e.g. Euclidean). The operation

almost always involves a non-linear transformation of the set of

original attributes; implying some information loss. There are ba-

sically two kinds of spaces sought: i) spaces preserving the struc-

ture of the objects as determined by the original set of attributes

(one objective measure to minimize in order to achieve this goal

could be similarity information loss), and ii) spaces preserving the
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distribution of an existing class or decision attribute defined over

the set of objects (one objective measure to minimize in order to

achieve this goal could be classification error). The complexity of

the data, the unknown adequacy of the set of descriptor attributes,

their relevance, noise, and many other factors imply that they do

not necessarily relate with sufficient accuracy to the class or deci-

sion attribute. Therefore, both kinds of spaces are usually conflict-

ing. They are also different from the point of view of the nonlinear

transformations defining them. This situation creates problems dur-

ing visualization, and confuses the human interpreter, because the

same set of objects has a different distribution over the two spaces.

Clearly, it would be much better to construct spaces where both cri-

teria could be simultaneously partially or fully satisfied which leads

to a multiobjective problem formulation.

Evolutionary multiobjective optimization (EMO) provides an al-

ternative to classical multiobjective optimization techniques due to

its population-based nature, which allows the creation of a set of

non-dominated solutions in a single run. Moreover, the presence

of noise in the data, the presence of large search spaces and other

factors make EMO an interesting approach which has proven to be

effective in other real world domains. We propose to introduce an

EMO approach in visual data mining using virtual reality.

The purpose of this paper is to explore the construction of high

quality VR spaces for visual data mining using a multi-objective

optimization technique; in particular, optimization based on genetic

algorithms. This approach provides both a solution for the previ-

ously discussed problem, and the possibility of obtaining a set of

spaces in which the different objectives are expressed in different

degrees, with the proviso that no other spaces could improve any of

the considered criteria individually (if spaces are constructed using

the solutions along the Pareto front). This strategy clearly repre-

sents a conceptual improvement in comparison with spaces com-

puted from the solutions obtained by single-objective optimization

algorithms in which the objective function is a weighted composi-

tion involving different criteria.

This approach is applied to a real world problem: namely, the

representation of a very high dimensional dataset from the domain

of genomics, consisting of microarray gene expression data from

samples of patients with and without Alzheimer’s disease.

2. VIRTUAL REALITY REPRESENTATION

OF RELATIONAL STRUCTURES
A virtual reality, visual, data mining technique extending the

concept of 3D modelling to relational structures was introduced

[23], [24], (see also http://www.hybridstrategies.com).

It is oriented to the understanding of large heterogeneous, incom-

plete and imprecise data, as well as symbolic knowledge. The no-

tion of data is not restricted to databases, but includes logical rela-

tions and other forms of both structured and non-structured knowl-

edge. In this approach, the data objects are considered as tuples

from a heterogeneous space [22].

Different information sources are associated with the attributes,

relations and functions, and these sources are associated with the

nature of what is observed (e.g. point measurements, signals, doc-

uments, images, etc). They are described by mathematical sets

(of the appropriate kind) called source sets (Ψi), constructed ac-

cording to the nature of the information source to represent (e.g.

point measurements of continuous variables by subsets of the re-

als in the appropriate ranges, structural information by directed

graphs, etc). Source sets also account for incomplete informa-

tion. A heterogeneous domain is a Cartesian product of a collec-

tion of source sets: Ĥn = Ψ1 × · · · × Ψn , where n > 0 is

Figure 1: An example of a heterogeneous database. Nominal,

ordinal, ratio, fuzzy, image, signal, graph, and document data

are mixed. The symbol ? denotes a missing value.

the number of information sources to consider. For example, in

a domain where objects are described by attributes like continu-

ous crisp quantities, discrete features, fuzzy features, time-series,

images, and graphs (missing values are allowed), they can be rep-

resented as Cartesian products of subsets of real numbers(R̂), nom-

inal (N̂ ) or ordinal sets(Ô), fuzzy sets(F̂ ), sets of images (Î), sets

of time series (Ŝ) and sets of graphs (Ĝ), respectively (all ex-

tended to allow missing values). The heterogeneous domain is

Ĥn = N̂nN × ÔnO × R̂nR × F̂ nF × ÎnI × ŜnS × ĜnG , where

nN is the number of nominal sets, nO of ordinal sets, nR of real-

valued sets , nF of fuzzy sets , nI of image-valued sets, nS of

time-series sets, and nG of graph-valued sets, respectively (n =
nN + nO + nR + nF + nI + nS + nG).

A virtual reality space is the tuple

Υ =< O, G, B,ℜm, go, l, gr, b, r >, where O is a relational

structure (O =< O, Γv >, O is a finite set of objects, and

Γv is a set of relations); G is a non-empty set of geometries

representing the different objects and relations; B is a non-empty

set of behaviors of the objects in the virtual world; ℜm ⊂ Rm is

a metric space of dimension m (euclidean or not) which will be

the actual virtual reality geometric space. The other elements are

mappings: go : O → G, l : O → ℜm, gr : Γv → G, b : O → B.

Of particular importance is the mapping l. If the objects are in

a heterogeneous space, l : Ĥn → ℜm. Several desiderata can

be considered for building a VR-space. One may be to preserve

one or more properties from the original space as much as possi-

ble (for example, the similarity structure of the data [4]). From

an unsupervised perspective, the role of l could be to maximize

some metric/non-metric structure preservation criteria [2], or min-

imize some measure of information loss. From a supervised point

of view l could be chosen as to emphasize some measure of class

separability over the objects in O [24].

2.1 Structure preservation: An unsupervised
perspective

As mentioned, l plays an important role in giving semantics to

the virtual world, and there are many ways in which such a mapping

can be defined. To a great extent it depends on which features from

the original information system need to be highlighted. In particu-

lar, internal structure is one of the most important ones to consider

and this is the case when the location and adjacency relationships

between the objects O in Υ should give an indication of the sim-

ilarity relationships [4] between the objects U in the original het-
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erogeneous space Ĥn, as given by the set of attributes [22]. Other

interpretations about internal structure are related with the prop-

erties of the space w.r.t. the linear/non-linear separability of class

membership relations [13]. On the other hand, l can be constructed

to maximize some metric/non-metric structure preservation criteria

as has been done for decades in multidimensional scaling [14], [2],

or minimize some error measure of information loss [20]. For ex-

ample, if δij is a dissimilarity measure between any two i, j ∈ U
(i, j ∈ [1, N ], where N is the number of objects), and ζivjv is

another dissimilarity measure defined on objects iv, jv ∈ O from

Υ (iv = ξ(i), jv = ξ(j), they are in one-to-one correspondence).

Examples of error measures frequently used are:

S stress =

sP
i<j

(δ2
ij − ζ2

ij)
2P

i<j
δ4

ij

, (1)

Sammon error =
1P

i<j
δij

P
i<j

(δij − ζij)
2

δij

(2)

Quadratic Loss =
X
i<j

(δij − ζij)
2

(3)

Typically, classical algorithms have been used for directly opti-

mizing these measures, like Steepest descent, Conjugate gradient,

Fletcher-Reeves, Powell, Levenberg-Marquardt, and others. The l
mappings obtained using approaches of this kind are only implicit,

as no functional representations are found. Moreover, their use-

fulness is restricted to the final errors obtained in the optimization

process. However, explicit mappings can be obtained from these

solutions using neural network or genetic programming techniques.

An explicit l is useful for both practical and theoretical reasons.

On one hand, in dynamic data sets (e.g. systems being monitored

or data bases formed incrementally from continuous processes) an

explicit direct transform l will speed up the incremental update of

the virtual reality information system. On another hand, it can give

semantics to the attributes of the virtual reality space, thus acting

as a dimensionality reducer/new attributes constructor.

The possibilities derived from this approach are practically unlim-

ited, since the number of different similarity, dissimilarity and dis-

tance functions definable for the different kinds of source sets is

immense. Moreover, similarities and distances can be transformed

into dissimilarities according to a wide variety of schemes, thus

providing a rich framework where one can find appropriate mea-

sures able to detect interrelationships hidden in the data, better

suited to both its internal structure and external criteria. In par-

ticular, for heterogeneous data involving mixtures of nominal and

ratio variables, the Gower similarity measure [11] has proven to be

suitable.

The similarity between objects i and j is given by

Sij =

pX
k=1

sijk/

pX
k=1

wijk (4)

where the weight of the attribute (wijk) is set equal to 0 or 1 de-

pending on whether the comparison is considered valid for attribute

k. If vk(i), vk(j) are the values of attribute k for objects i and j
respectively, an invalid comparison occurs when at least one them

is missing. In this situation wijk is set to 0.

For quantitative attributes (like the ones of the datasets used in

the paper), the scores sijk are assigned as

sijk = 1− |vk(i)− vk(j)|/Rk

where Rk is the range of attribute k. For nominal attributes

sijk =

�
1 if vk(i) = vk(j)
0 otherwise

This measure can be easily extended for ordinal, interval, and

other kind of variables. Also, weighting schemes can be incorpo-

rated for considering differential importance of the descriptor vari-

ables.

2.2 Class Separability: A supervised
perspective

In the supervised case, a natural choice for representing the l
mapping is an NDA neural network [26], [16], [17], [12]. One

strong reason is the nature of the class relationships in complex,

high dimensional problems like gene expression data, where ob-

jects are described in terms of several thousands of genes, and

classes are often either only separable with nonlinear boundaries,

or not separable at all. Another is the generalization capability

of neural networks which allows the classification of new incom-

ing objects, and their immediate placement within the created VR

space. Of no less importance is that when learning the mapping,

the neural network hidden layers create new nonlinear features for

the mapped objects, such that they are separated into classes by

the output layer. However, these nonlinear features could be used

independently with other data mining algorithms. The typical ar-

chitecture of such networks is shown in Fig-2

Figure 2: Network Architecture in which the NDA network is

learned.
R

means nonlinear activation, / linear activation , and

Σ aggregation

This is a feedforward network with one or more hidden layers

where the number of input nodes is set to the number of features

of the data objects, and the number of neurons in the output layer

to be the number of pattern classes. The number of neurons in the

last hidden layer is m; the dimensionality of the projected space

(for a VR space this is typically 3). From the input layer to the

last hidden layer, the network implements a nonlinear projection

from the original n-dimensional space to an m-dimensional space.

If the entire network can correctly classify a linearly-nonseparable

data set, this projection actually converts the linearly-nonseparable

data to separable data. The backpropagation learning algorithm is

used to train the feedforward network with two hidden layers in

a collection of epochs, such that in each, all the patterns in the

training data set are seen once, in a random order.

This classical approach to building NDA networks suffers from

the well known problem of local extrema entrapment. The con-

struction of NDA networks can be done by using hybrid stochastic-

deterministic feed forward networks (SD-FFNN). The SD-FFNN
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is a hybrid model where training is based on a combination of sim-

ulated annealing with conjugate gradient [18], which improves the

likelihood of finding good extrema while containing enough deter-

minism. Simulated annealing provides global search capabilities

and conjugate gradient improved local search, reducing the risk of

entrapment, and resulting in neuron weights with better properties

than what is found by the inherent steepest descent implied by pure

backpropagation. Alternatively, networks based on evolutionary al-

gorithms can be used, or for instance, particle swarm optimization

combined with classical optimization techniques [21].

2.3 The multiobjective approach: A hybrid
perspective

It should be clear that a space with new features that satisfacto-

rily preserves the similarity structure does not necessarily guaran-

tee the maximization of class separability, since it results from the

solution of an unsupervised problem (i.e. the decision attribute is

not considered). Moreover, the relationship between the original

descriptor variables and the class membership (expressed by the

decision attribute) may be partial, total or poor. On the other hand,

if classification is all that matters, then a set of nonlinear features

may be found that successfully or acceptably classify the data, but

at the cost of distorting the space considerably with respect to the

one compliant with the similarity structure. In this case, the kind

and amount of nonlinearity and distortion introduced may be so

large that the data vector distribution in the two spaces may bear no

resemblance at all. This makes the visual data mining process very

difficult as the data objects have to be represented in two very dif-

ferent spaces, with different properties. In other words, the above

discussed goals are usually in conflict and satisfying them sepa-

rately, complicates the knowledge discovery process.

Therefore, the following is a very relevant question within the

knowledge discovery process using visual data mining: “Are there

alternative low dimensional feature spaces (possibly computed by

non-linear transformations of the original descriptor variables), in

which the class structure can be resolved as much as possible, while

distorting the original similarity structure as little as possible?”.

A multi-objective optimization approach to the problem of find-

ing suitable nonlinear transformations for the representation of re-

lational structures brings a new perspective to the problem.

2.3.1 Objective functions

In order to establish a formulation of the problem based on multi-

objective optimization, a set of objective functions has to be spec-

ified, representing the corresponding criteria that must be simulta-

neouly satisfied by the solution. The minimization of a measure

of similarity information loss between the original and the trans-

formed spaces and a classification error measure over the objects

in the new space can be used in a first approximation. Clearly,

more requirements can be imposed on the solution by adding the

corresponding objective functions. Following a principle of parsi-

mony this paper will consider the use of only two criteria, namely,

Sammon’s error (Eq-2) for the unsupervised case and mean cross-

validated classification error with a k-nearest neighbour pattern

recognizer for the supervised case.

Let X be a set of N data records xi, for i ∈ [1, N ], on p in-

dependent variables and a discrete dependent variable y (i.e. the

class variable) with m possible values, s.t. yq = {1, 2, ..., m}, q ∈
[1, m]. The i-th data record is a vector←−x i which takes a value xij

on the j-th independent variable. The k-nearest neighbor approach

searches a set of training data records T (i.e., data records with

known values for y) to find the k-nearest data records to←−x i. The

proximity (or similarity) of←−x i to a member
←−
t k of T is defined by

a distance (or similarity) calculated over the independent variables

and can be defined by using a variety of measures. In the present

case a normalized Euclidean distance is chosen:

d←−x←−t =

vuut(1/p)

pX
j=1

(xij − tkj)2 (5)

Let Si be a set containing the k-nearest neighbors in T to ←−x i,

where k ∈ [1, N ] is predefined . Then the predicted value of y
for←−x i, ŷi, is given by the value of yq with the highest frequency

within Si, if such frequency is unique. Otherwise, the predicted

value is undefined. This classical non-parametric pattern recogni-

tion classifier has been defined elsewhere [8], [10]. For each of the

data objects in X there is a classification error w.r.t. the training set

T if the predicted class variable does not coincide with its expected

value for the corresponding object, or if the object is unclassifiable.

The classification error associated with X w.r.t. T is the mean of

the classification errors of the objects in X .

3. MULTIOBJECTIVE OPTIMIZATION

USING GENETIC ALGORITHMS
An evolutionary algorithm constructs a population of individu-

als, which evolve through time until stopping criteria is satisfied. At

any particular time, the current population of individuals represent

the current solutions to the input problem, with the final population

representing the algorithm’s resulting output solutions.

The genetic algorithm [1] is a particular evolutionary algorithm

that permits particular sequences of operations on individuals of the

current population in order to construct the next population in the

series of evolving populations. The genetic algorithm requires each

individual to have one measure of its fitness, which enables the ge-

netic algorithm to select the fittest individuals for inclusion in the

next population. For example, one operation is that of mating two

individuals (parents) with the hope that useful pieces of genetic in-

formation contained within the chromosomes may be combined in

such a way that child individuals (those individuals in the new pop-

ulation) may be fitter than their parents. Another genetic algorithm

operation is that of mutation, whereby one individual is selected

from the current population, and its chromosome representation is

modified in some manner (e.g. probabilistically) in order to con-

struct a new individual in the next population.

An enhancement to the traditional evolutionary algorithm, is to

allow an individual to have more than one measure of fitness within

a population. One way in which such an enhancement may be ap-

plied, is through the use of, for example, a weighted sum of more

than one fitness value [3]. Multi-objective optimization, however,

offers another possible way for enabling such an enhancement. In

the latter case, the problem arises for the evolutionary algorithm

to select individuals for inclusion in the next population, because

a set of individuals contained in one population exhibits a Pareto

Front[19] of best current individuals, rather than a single best in-

dividual. Most [3] multi-objective algorithms use the concept of

dominance.

A solution
↼

x(1) is said to dominate [3] a solution
↼

x(2) for a set

of m objective functions < f1(
↼

x), f2(
↼

x), ..., fm(
↼

x) > if

1.
↼

x(1) is not worse than
↼

x(2) over all objectives.

For example, f3(
↼

x(1)) ≤ f3(
↼

x(2)) if f3(
↼

x) is a minimiza-

tion objective.

2.
↼

x(1) is strictly better than
↼

x(2) in at least one objective. For

example, f6(
↼

x(1)) > f6(
↼

x(2)) if f6(
↼

x) is a maximization

objective.
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One particular algorithm for multi-objective optimization is the

elitist non-dominated sorting genetic algorithm (NSGA-II) [7], [6],

[5], [3]. It has the features that it i) uses elitism, ii) uses an

explicit diversity preserving mechanism, and iii) emphasizes the

non-dominated solutions. The procedure is as follows: i) Cre-

ate the child population using the usual genetic algorithm oper-

ations. ii) Combine parent and child populations into a merged

population. iii) Sort the merged population according to the

non-domination principle. iv) Identify a set of fronts in the

merged population (̥i, i = 1, 2, ...). v) Add all complete fronts

̥i, for i = 1, 2, ..., k − 1 to the next population. vi) There may

now be a front, ̥k, that does not completely fit into the next pop-

ulation. So select individuals that are maximally separated from

each other from the front ̥k according to a crowding distance op-

erator. vii) The next population has now been constructed, so con-

tinue with the genetic algorithm operations.

3.1 Implementation
The PGAPack library [15] is a general-purpose, data structure

neutral, parallel genetic algorithm library. It is intended to provide

most capabilities desired in a genetic algorithm library, in an

integrated, seamless, and portable manner. Key features that are

in PGAPack V1.0 include: i) Callable from Fortran or C, ii) Runs

on uniprocessors, parallel computers, and workstation networks,

iii) Binary-, integer-, real-, and character-valued native data types,

iv) Full extensibility to support custom operators and new data

types, v) Easy-to-use interface for novice and application users,

vi) Multiple levels of access for expert users, vii) Parameterized

population replacement, viii) Multiple crossover, mutation, and

selection operators, ix) Easy integration of hill-climbing heuris-

tics, x) Extensive debugging facilities, xi) Large set of example

problems, and xii) Detailed users guide. The PGAPack library

(http://www-fp.mcs.anl.gov/CCST/research/

reports pre1998/comp bio/stalk/pgapack.html

was extended to include Revision 1.1 (10 June 2005) of the

NSGA-II algorithm, http://www.iitk.ac.in/kangal/

codes.shtml, written in C with constraint handling.

4. APPLICATION TO ALZHEIMER’S

DISEASE (GENOMIC DATA)
Alzheimer’s disease (AD) is an incurable chronic, progressive,

debilitating condition which, along with other neurodegenerative

diseases, represents the largest area of unmet need in modern medi-

cine. Progress in understanding these diseases is hampered by their

complexity, but there is now renewed hope that genomics technolo-

gies, particularly gene expression profiling, can have an impact.

Genome-wide expression profiling of thousands of genes provides

rich datasets that can be mined to extract information on the genes

that best characterize the disease state [25]. A total of 4 clinically

diagnosed AD patients and 5 ”normal” patients of similar age were

used in this study, comprising 12 AD and 11 normal samples, for a

total of 23 samples. Each is characterized by a collection of 9600
attributes describing expression intensities of a corresponding num-

ber of genes. Details can be found in [25].

Each sample is a vector in a 9600 space, and therefore, direct

inspection of the structure of this data, and of the relationship be-

tween the descriptor variables (the genes) and the type of sample

(normal or Alzheimer), is impossible. Moreover, within the collec-

tion of genes there is a mixture of potentially relevant genes with

others which are irrelevant, noisy, etc.

The need of simultaneously finding a visual representation (3D)

respecting (as much as possible) the set of object interrelationships

as defined by the 9600 original attributes, and the construction of

a new feature space effectively differentiating the two classes of

objects present, makes this problem suitable for a multi-objective

optimization approach.

4.1 Experimental Settings
In the present case, there is a sample of N = 23 objects in a

9600-dimensional space (9600 genes describe each sample). All of

the attributes (the gene expression intensity values) are real-valued.

Therefore, the original domain is homogeneous, actually a particu-

lar case of the heterogeneous domains according to the formalism

introduced in Section 2. Ĥn = R̂nR , where n = nR = 9600. In

the virtual reality space Υ, m = 3, and if continuous 3D spaces (for

example, with Euclidean metric) are targeted, l : ℜ9600 → ℜ3. The

result of the mapping l is an image of that set of original samples

but in a 3-dimensional space. Accordingly, the number of attributes

of the objects in the new space is M = m = 3. If the image set can

be constructed (i.e. a set of N = 23 vectors of dimension M = 3),

the ζij terms in the error measures described by Eqs. 1, 2, 3 can be

evaluated for any pair of objects i, j. In particular, if Sammon error

is chosen as an error measure (Eq. 2) and if an image is found such

that this measure is minimized, then an implicit representation of

the mapping l is obtained.

This problem can be described by a GA where each linear real-

valued chromosome in the population represents a candidate image

of the set of N objects in the VR space, with the chromosome ele-

ments being the coordinates of the objects in the VR space (a total

of N ·M = 23 · 3 = 69 ). The decoding scheme is simply de-

composing the chromosome into chunks of M elements, such that

the i-th chunk stands for the coordinates of the image of the corre-

sponding object in the original sample (Fig-3). Thus, each chromo-

some represents the result of an implicit mapping l : ℜ9600 → ℜ3.

If the three attributes of the VR space are denoted as X, Y, Z,

their relation with those of the original space is given by:

X = ϕx(v1, v2, · · · , v9600)

Y = ϕy(v1, v2, · · · , v9600)

Z = ϕz(v1, v2, · · · , v9600)

where {v1, v2, · · · , v9600} are the original variables and

ϕx, ϕy, ϕz are the non-linear functions of the original variables

defining the mapping l. Note that in this approach the explicit form

of l is neither obtained nor needed. However, there are applications

where an explicit l is required (they are developed elsewhere).

The collection of parameters describing the application of the

NSGA-II algorithm is shown in Table-1.

It should be observed that a modest population size and number

of generations were used, with a relatively high mutation probabil-

ity in order to enable richer genetic diversity. Randomization of the

set of data objects was applied in order to reduce the bias in the

composition of the cross-validated folds by providing a more even

class distribution between successive training and test subsets. The

number of folds was set in consideration of the sample size.

4.2 Results
The set of non-dominated solutions obtained by the NSGA-II

algorithm is shown in the scatter plot of Fig-4, where the horizon-

tal axis is the mean cross-validated knn error and the vertical axis

the Sammon error. The approximate location of the Pareto front

is defined by the convex polygon joining the solutions provided by

chromosomes 0, 3, 2, 4, 1. Chromosome 0 defines a space with a

perfect resolution of the supervised problem in terms of the Nor-

mal and Alzheimer classes (knn error = 0), but at the cost of a
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Table 1: Experimental settings for computing the pareto-

optimal solution approximations by the multi-objective genetic

algorithm (PGAPack extended by NSGA-II).

population size 100

number of generations 200

chromosome length 69

ga seed 4001

objective functions should be minimized

chromosome data representation real

crossover probability 0.8

crossover type uniform (prob. 0.6)

mutation probability 0.4

mutation type gaussian

selection type tournament

tournament probability 0.6

perform mutation and crossover yes

population initialization random, bounded

lower bound for initialization 0

upper bound for initialization 7

fitness values raw objective values

stopping criteria maximum iterations

restart ga during execution no

parallel populations no

number of objectives 2

number of constraints 0

pre-computed diss. matrix Gower dissimilarity

evaluation functions mean cross-validated error

Sammon error

cross-validation (c.v.) 5 folds

randomize before c.v. yes

knn seed -101

k nearest neighbors 3

non-linear mapping measure Sammon

dimension of the new space 3

severe distortion of the space. Whereas, chromosome 1 approxi-

mates a pure unsupervised solution (with low Sammon error). Its

classification error is large indicating that few non-linear features

preserving the similarity structure lacks classification power. This

may be due to the large amount of attribute noise, redundancy, and

irrelevancy within the set of 9600 original genes.

Clearly, it is impossible to represent virtual reality spaces on a

static medium. However, a composition of snapshots of the VR

spaces using the solutions along the Pareto front approximation

is shown in Fig-5.a-5.e. For comparison Fig-5.f corresponds to

an unsupervised single-objective solution obtained with determin-

istic optimization (Newton’s method) using Sammon’s error (Eq-

2), Gower’s similarity in the original space (Eq-4), and normalized

Euclidean metric in the new space (Eq-5) was obtained in [25]. The

error obtained was 0.1034 after 335 iterations. The error of this sin-

gle objective solution is much better than the equivalent obtained

with the multi-objective approach, but it should be considered that

the reduced number of generations (in the latter case) as well as the

modest population size, considerably reduces the search space.

A solution satisfying classification error as much as possible (ac-

tually with 0-error) is shown in Fig-5.a where both classes are not

only completely separated, but linearly separated. If this space

is compared with the MO solution most oriented towards simi-

larity preservation (Fig-5.e) or with the pure single-objective so-

lution of Fig-5.f, it is possible to see that according to the origi-

nal variables, the two classes are not linearly separable. In fact,

the Alzheimer class is surrounded by elements from the Normal

class. In Fig-5.c, patterns from both Fig-5.a and Fig-5.e-f can be

identified. The two classes are still separable (but less sharply, in

this case by a nonlinear boundary), and also the Alzheimer class

is closer and more mixed with the Normal class. If the spaces of

Figs e and f (particularly the last one) represents an approximation

to the ’natural’ distribution of the data in the original 9600 dimen-

sional space (a reasonable assumption supported by the low Sam-

mon error of Fig-5.f, the distortion required for the space to achieve

classification error =0 is large, as evidenced by Fig-5.a. Clearly,

Fig-5.c shows a space less distorted and closer to that of Fig-5.f,

but where the two classes are still clearly distinguishable. That is

why visually, that space represents a compromise solution between

the two goals and a tradeoff between the two objective functions. It

should be remembered that the class information is not used at all

for computing the space of Fig-5.f. Chromosome 2, according to

Fig-4 and Fig-5.c, can be considered to be the best multi-objective

compromised solution in which both error criteria are simultane-

ously as low as possible. It shows a reasonable class discrimina-

tion with a non-large similarity structure distortion, which is a very

meaningful result.

Figure 3: Multi-objective chromosome representation.

5. CONCLUSIONS
A multi-objective optimization approach was introduced for the

problem of computing virtual reality spaces in the context of visual

data mining and knowledge discovery applied to relational struc-

tures (e.g. databases). The multi-objective procedure was based

on NSGA-II using two objective functions representative of unsu-

pervised and supervised criteria (mean cross-validated knn error as

a measure of missclassification, and Sammon error as a measure

of similarity structure loss). This methodology was applied to the

analysis of high dimensional genomic data collected in the frame-

work of Alzheimer’s disease research.

A Pareto front approximation was recognizable from within the

solutions provided by the final population. Selected solutions from

along that approximation were used for the construction of a se-

quence of visualizations showing the progression from spaces with
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Figure 4: Set of 100 multiobjective solutions. Those along the

Pareto front approximation progressively span the extremes

between minimum classification error and minimum dissimi-

larity loss. The errors for the two objective functions are shown

in parenthesis.

complete class separation and poor similarity preservation to spaces

with reversed characteristics. A solution with a reasonable compro-

mise between the two criteria was identified and clearly contained

properties of both extreme solution spaces. This is the first inves-

tigation of virtual reality space construction using multi-objective

optimization with genetic algorithms applied a specific real-world

problem. Thus, these research results, although preliminary, showed

large potential and further investigation is required.
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(a) Chromosome 0 (knn-error = 0) (b) Chromosome 3

(c) Chromosome 2 (d) Chromosome 4

(e) Chromosome 1 (f) Walker et. al. 2004 (Sammon error = 0.1034)

Figure 5: Snapshots of vr-spaces computed with different solutions along the Pareto front approximation progressively spanning the

extremes (minimum classification error; minimum dissimilarity loss). Light spheres = normal samples, dark spheres = Alzheimer

samples.
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