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ABSTRACT 
The main characteristic feature of evolutionary multiobjective 
optimization (EMO) is that no a priori information about the 
decision maker’s preference is utilized in the search phase. EMO 
algorithms try to find a set of well-distributed Pareto-optimal 
solutions with a wide range of objective values. It is, however, 
very difficult for EMO algorithms to find a good solution set of a 
multiobjective combinatorial optimization problem with many 
decision variables and/or many objectives. In this paper, we 
propose an idea of incorporating the decision maker’s preference 
into EMO algorithms to efficiently search for Pareto-optimal 
solutions of such a hard multiobjective optimization problem. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods. 

General Terms 
Algorithms. 

Keywords 
Evolutionary multiobjective optimization (EMO), many-objective 
optimization, multiobjective combinatorial optimization, decision 
maker’s preference, balance between convergence and diversity. 

1. INTRODUCTION 
Evolutionary multiobjective optimization (EMO) algorithms have 
been successfully applied to multiobjective optimization problems 
in various application areas [1]. EMO algorithms are designed to 
find a set of well-distributed Pareto-optimal solutions with a wide 
range of objective values. It is, however, very difficult for EMO 
algorithms to find such a good solution set of a large-scale 
combinatorial multiobjective optimization problem with many 
decision variables and/or many objectives as pointed out in the 
literature. This is the case even when multiobjective optimization 
problems have only two objectives [6], [7]. Of course, it is more 
difficult for EMO algorithms to find good solution sets of many-
objective optimization problems [4], [5]. 

In this paper, we propose an idea of incorporating the decision 
maker’s preference in EMO algorithms. More specifically, we 
implement a hybrid algorithm of NSGA-II [2] and the decision 
maker’s preference. In our hybrid algorithm, the decision maker’s 
preference is used for parent selection whereas Pareto ranking and 
a crowding measure are used for generation update as in NSGA-II. 

2. HYBRID ALGORITHM 
A number of optimization techniques have been proposed in the 
area of multi-criteria decision making (MCDM) to search for a 
single final solution of a multiobjective optimization problem 
using the decision maker’s preference. The basic idea of our 
hybrid approach is to use the decision maker’s preference to 
improve the convergence of solutions to the desired area while 
keeping the diversity of solutions. We implement this idea by 
modifying only the parent selection phase of NSGA-II in the 
following manner. 

Parent Selection: We use a scalarizing function defined by the 
given preference information to select a pair of parent solutions. 
For example, we use a weighted sum fitness function when the 
relative importance of each objective is given as the preference 
information. On the other hand, when the minimum requirement 
level for each objective is given, we use a penalized objective 
function in the parent selection phase. We can also use the 
distance from a reference solution for parent selection when the 
decision maker’s preference is given as the reference solution. 

3. COMPUTATIONAL EXPERIMENTS 
We applied NSGA-II to the two-objective 500-item 0/1 knapsack 
problem of Zitzler & Thiele [8] using the following parameter 
specifications: 

Population size: 200 individuals, 
Crossover probability: 0.8 (uniform crossover), 
Mutation probability: 1/500 (bit-flip mutation), 
Termination condition: 2000 generations. 

When infeasible solutions were generated by genetic operations, 
we used a repair method based on a maximum profit/weight ratio 
as in Zitzler & Thiele [8]. In Figure 1, we show the 50% 
attainment surface [3] over 100 runs of NSGA-II and an example 
of a solution set by its single run. For comparison, we also show 
the true Pareto front. 
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Figure 1. Experimental results on the 2-500 test problem. 

 
From Figure 1, we can see that the obtained solutions do not have 
enough diversity if compared with the true Pareto front. If the 
decision maker wants to have a solution around the center area of 
the Pareto front, NSGA-II can provide good candidate solutions. 
On the other hand, if the decision maker wants to have an extreme 
solution with a very good value of one objective, NSGA-II can 
not provide good candidate solutions in Figure 1. 

Let us assume that the decision maker wants to have a solution 
around the reference solution G in Figure 2. Whereas NSGA-II 
did not work well in this case, a good solution was obtained by 
minimizing the distance from G using a single-objective genetic 
algorithm (SOGA) as shown by the bold circle B in Figure 2. 
Other circles were obtained by our hybrid algorithm. Our hybrid 
algorithm found a number of good candidate solutions in Figure 2 
(compare Figure 2 with Figure 1). In Figure 3, we used the scalar 
fitness function with the weight vector (0.1, 0.9). On the other 
hand, we used the minimum requirement level ε1=17000 for the 
first objective in Figure 4. Our hybrid algorithm found a number 
of good candidate solutions in Figure 3 and Figure 4. 

4. CONCLUDING REMARKS 
In this paper, we proposed an idea of incorporating a priori 
information about the decision maker’s preference into EMO 
algorithms. The point of the proposed idea is to hybridize the two 
approaches to multiobjective optimization: EMO and MCDM. In 
our approach, a priori information about the decision maker’s 
preference is used to efficiently search for Pareto-optimal 

solutions as in MCDM. In this sense, our approach is different 
from EMO. On the other hand, our approach presents a number of 
candidate solutions to the decision maker as in EMO. In this sense, 
our approach is different from MCDM.  

This work was partially supported by Japan Society for the 
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             Figure 2. Reference solution G.                       Figure 3. Weight vector (0.1, 0.9).                 Figure 4. Requirement level 17000. 
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