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ABSTRACT
Our paper concerns optimal combinations of different types
of reinsurance contracts. We introduce a novel approach
based on the Mean-Variance-Criterion to solve this task.
Two state-of-the-art MOEAs are used to perform an op-
timization of yet unresolved problem instances. In addition
to that, we focus on finding a dense set of solutions to derive
analogies to theoretic results of easier problem instances.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems; I.2.8 [Artificial Intelligence]: Problem Solving,
Heuristic methods

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Multi-Objective Evolutionary Algorithm, Optimal Reinsur-
ance, Mean-Variance-Criterion, Value-at-Risk

1. INTRODUCTION
In many branches of the insurance business the insurance

company is not willing (or not able) to hold the entire risk
on its own. There are several types of treaties which an in-
surance company can use to cede an amount of its claims to
another insurance company, mainly a so-called reinsurance
company. Some focus purely on the severity of claim sizes,
others deal more with the deviation of frequency. Thus, it
seems quite natural to combine some types of reinsurance. A
substantial amount of research has been performed to find
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individually optimal structures for each of these types of
reinsurance treaties. However only few results (e.g. [3]) ex-
ist when the goal is to find optimal combinations of reinsur-
ance treaties because of computational complexity or non-
convexity of the objective functions. We therefore propose
a multi-objective approach to minimize the expenses that
come with contracting reinsurance protections and at the
same time to minimize the retained risk after reinsurance.

2. REINSURANCE BUSINESS
In this section we briefly introduce the necessary method-

ology in insurance mathematics. For a comprehensive intro-
duction we refer to [2].

We consider three important types of reinsurance in this
contribution. The simplest form is the quota share (QS),
where a fixed relative amount a ∈ [0; 1] of the claims and
the premium income is ceded. In the remaining two types
claims are cut at a positive line called priority. The excess
of loss (XL) reinsurance cuts each individual claim at the
priority R. The stop loss (SL) reinsurance cuts the sum of
all claims in a year of business at the priority L.

Reinsurance pricing is done via the expected value of the
amount of claims ceded to the reinsurance company S, i.e.
(1 + λ)E(S). The factor λ describes the risk loading and
depends on the reinsurance type.

The risk of the net sum of claims S is measured using the
variance and alternatively, using the common risk measure
Value at Risk (VaRα). The latter is the α-quantile of the
distribution of S.

3. REINSURANCE OPTIMIZATION
We based our work on a modified Mean-Variance-Criterion

similar to the one used in [6]. As a first objective function
we choose the minimization of the cost of S. The second
objective function is the minimization of the risk of S. The
distribution of the claims is based on real world data.

Our heuristic approach has several advantages compared
to the standard approach using the Lagrange method of
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Figure 1: Optimal fronts of the combination of QS

and XL.

multipliers. We do not need a transformation to a single
objective function. Our model incorporates discrete step
sizes which is more realistic than a continuous framework.
Centeno [3] proves that even in simple problem instances
the feasible search space is not convex in general. Verlaak
[6] states that the computation of optimal reinsurance con-
tracts in the case of a combination of XL and SL is an open
problem. In fact this problem of computational complexity
is caused by the need to compute the distribution of the
sums S and S numerically for each combination of R and L.

4. MOEA APPROACH
We pursue two main goals: At first, we intend to solve

reinsurance optimization problems for cases which pose open
problems to researchers. Secondly, our aim is to find a con-
verged and diverse but dense front of Pareto-optimal solu-
tions in a single run to choose the desired relationship be-
tween expense and risk afterwards. A high density of the
front is then used to deduce information on the structure of
the reinsurance variables of an optimal combination.

We compare two popular and state-of-the-art MOEAs in
this paper: the NSGA-II [1] and the ε-MOEA [4]. For the
chosen parameters we refer to our full paper [5].

5. SAMPLE RESULTS
One of the problems discussed in [6] is a combination of

QS and XL under the risk measure variance. In Fig. 1
optimal fronts derived by the two MOEAs are compared to
the true front computed with the method from [6]. As one
can easily see, the MOEA fronts have converged well to the
true front. The performance results of this problem show the
capability of these MOEAs to converge to the true Pareto
front of problems which cannot be computed directly. An
example of such a problem is the combination of QS, XL,
and SL (cf. [6]). To make the problem structure even harder
we choose the risk measure VaR. We present the best Pareto
fronts of this problem after a typical run of the two MOEAs
in Fig. 2. For more detailed interpretations of the behaviour
of the reinsurance variables a, R and L, we refer to [5].

We use the metrics spacing and coverage to measure the
performance of both MOEAs in both problems. Spacing val-
ues of the NSGA-II are about 0.028 while ε-MOEA yields
0.006. The NSGA-II dominates 0% resp. 4% of the indi-
viduals of the ε-MOEA front in the mean, while the latter
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Figure 2: Optimal fronts of the combination of QS,

XL and SL.

dominates about 26% of the NSGA-II individuals. Addi-
tionally, the ε-MOEA benefits from its growing archive that
provides a denser front than the NSGA-II.

6. OUTLOOK
The high adaptability of MOEAs gives us the opportunity

to change individual problem specifications very easily. Ac-
cordingly, we can deal with problems that are more relevant
to real world applications. Such specifications are the rein-
surance types which are allowed in the combination, the risk
measure, the method for cost calculation and the underlying
distribution.
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