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ABSTRACT
We demonstrate that particle swarm optimization (PSO)
can be successfully used to evolve high performance filter
approximations. These evolved approximations use sets of
quantitative specifications which conventional analytically
derived approximations can not directly employ. The con-
ventional derivations use only a subset of the quantitative
specifications in their algorithm and the remaining specifi-
cations are side-effect results of the algorithm. Thus, with
PSO, instead of a filter designer having access to a lim-
ited set of “ specification knobs” that directly and indirectly
achieve performance, a designer has a ”knob” for each spec-
ification that consequently drives the approximation to the
desired performance.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits-Design Aids

General Terms
Algorithms, Design

Keywords
filter design, particle swarm optimization

1. INTRODUCTION
A filter is a linear frequency selective circuit, which atten-

uates certain frequencies and amplifies certain others. An
ideal (lowpass) filter with so-called “brickwall” character-
istic has frequency domain characteristics as shown in Fig-
ure 1. It has a gain of 1 (0 dB) in the passband and a gain of
0 in the stopband. The frequency at which the gain reduces
from 1 to 0 is called the cut-off frequency (ωc).
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The primary performance criterion of a filter is its fre-
quency domain magnitude response (henceforth called, mag-
nitude response, defined in Section 3.4). A second set of
performance criteria are time domain characteristics. These
can be tested by examining the step and impulse responses
of the filter. Ideally there should be no oscillations in the
step response, a small overshoot in case of oscillations, a low
rise time and settling time. A filter meeting the brickwall
characteristic has ideal frequency band selection but will os-
cillate on being activated by a step (in addition to voiding
causality). Another criterion is a linear phase response in
frequency domain (henceforth called phase response). Fi-
nally, because there is a tradeoff between filter complexity
(i.e. order) and implementation feasibility, complexity is a
performance criterion. 1
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Figure 1: Characteristics of a normalized lowpass
filter.

Ideal filter characteristics are practically unrealizable and
designers accept this limitation. More vexing to the designer
is the fact that performance characteristics are coupled to
each other in non-linear and indirect ways. Thus optimizing
on solely one criterion may result in undesired performance
in another. For instance, a better magnitude response may
result in a worse time domain response. Hence, the designer
has to contend with trade-off solutions.

Design of analog filters is hierarchical in nature. From
an initial specification, the final goal is to synthesize a filter
circuit as either lumped components for discrete component
implementation or as a layout for silicon implementation.
The high level steps are:

1A filter must be causal for realizability. A filter meeting
brickwall characteristics requires a non-causal system.
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1. Filter Approximation: Conversion of specifications to
filter transfer function

2. Realization of transfer function as a prototype i.e. set
of abstract blocks realizable in circuits.

3. Realization of prototype into an actual circuit.

4. Layout design for the circuit.

In this submission we focus on filter approximation which
is the step of constructing the Laplace domain transfer func-
tion [13] of the filter given its specifications. For a set of
conditions (satisfied by all real filters), the Laplace domain
transfer function can completely express any linear, time in-
variant system [13]. Equation 1 show the general form of
transfer function.

H(s) =
amsm + am−1s

m−1 + · · · + a0

sn + bn−1sn−1 + · · · + b0
(1)

H(s) =
am(s − z1)(s − z2) . . . (s − zm)

(s − p1)(s − p2) . . . (s − pn)
(2)

The variable s is the Laplace domain variable. Symbols
ak and bk are coefficients of the polynomial in s in the nu-
merator and denominator respectively. They are required
to be real for synthesizing a realizable filter. Equation 1 can
be factored into Equation 2, where zk and pk are called the
zeros and poles of the transfer function. Zeroes and poles
can be imaginary but need to exist in complex-conjugate
pairs whenever imaginary. The Laplace domain has a one-
to-one mapping to the frequency domain and one gets the
frequency domain characteristics by substituting jω for s in
Equation 1 or Equation 2. The maximum power to which
the s term is raised in the numerator or denominator is the
order of the transfer function. A filter transfer function is
completely specified by its order and the value of coefficients
for all s terms (or equivalently value of all pole-zero pairs).
The complexity of a filter is directly correlated to its order,
i.e. the higher the order, the higher complexity of the filter.

A designer starts with a set of specifications which encap-
sulate the filter performance criteria. Some of these specifi-
cations are “hard”, that is, the designer has specific quanti-
ties or values as goals. Typically, magnitude response speci-
fications are quantitatively defined. The designer has a clear
idea of the desired amplification and attenuation in magni-
tude and frequency range. It is straight forward to stipulate
the maximum gain variation tolerable in the passband and
the minimum required attenuation in the stopband. These
specifications, shown in Figure 1, are listed in Table 1.

Specification Symbol Units
Passband Frequency ωp rads/s
Stopband Frequency ωs rads/s

Max allowed variation of passband Amax dB
Min reqd Stopband Attenuation Amin dB

Table 1: “Hard” Filter Design Specifications

Interestingly, the remaining specifications (i.e. those driv-
ing time domain, phase response and complexity) are usually
qualitatively defined. For instance, the designer simply ex-
presses a desire for a linear phase in the passband. Other

qualitative specifications are: no ripple in passband, or stop-
band or both, fast settling time, low complexity. A good
question to ask is why these specifications (or their error
margins, e.g. minimize the error in linearity) are not quan-
titatively defined? The answer is that, with conventional
approximation methods, hard specifications for these perfor-
mance criteria cannot be incorporated. Conventional meth-
ods do not algorithmically reference and use these quantities
to determine the transfer function. Instead, these quantities
“fall out” or are consequentially derived from the key equa-
tions of the algorithm.

Engineers employ a small set (e.g. Butterworth, Elliptical,
Chebyshev, Inverse Chebyshev, Bessel) of such conventional
deterministic methods to synthesize a transfer function. Be-
cause the methods do not address soft specifications, engi-
neers use rules-of-tumb and experiential knowledge to select
a method. For example, a Butterworth filter [15] (i.e a filter
transfer function designed using the methods and equations
given by Butterworth) will meet the magnitude response
specifications. Additionally, it will have no ripples in pass-
band and a monotonic behavior. However, it may have a
long transition band. Similarly, there exists a Chebyshev
[15] filter that meets the hard specifications. While it will
have ripples, it will be a lower complexity (i.e. order) than
a Butterworth. Qualitative claims such as a Butterworth
filter having better time domain properties than Chebyshev
can also be made.

Algorithms are directly used to supply order-based coeffi-
cients for a normalized lowpass filter. The designer mathe-
matically transforms the coefficients to the non-normalized
form in a straight forward manner.

A vast space of filter coefficients remains unexplored by
classical approximations. Our investigation asks (i) whether
this space is interesting with respect to optimizing a perfor-
mance criterion or providing a desirable tradeoff between
criteria and (ii) can it be effectively explored with an evolu-
tionary algorithm to find useful solutions? Is it possible to
integrate, within an optimization tool, quantitative specifi-
cations that are conventionally qualitative in order to drive
the design of filter? Can solutions which completely dom-
inate the conventional approximations be discovered? Our
investigation conducts experiments where conventional soft
filter specifications are used either as objectives and con-
straints for filter design. In the context of a specific design
problem, we ask whether our evolutionary technique is su-
perior to the state of the art approximation method that
employs Sequential Quadratic Programming (SQP) [2, 10].

The paper proceeds in the following manner: In Section 2
we review Evolutionary Hardware approaches to filter design
and position our work as novel within its context. Tech-
niques other than evolutionary algorithms (EAs) applied to
filter approximation are also discussed in this section. The
state of the art employs Sequential Quadratic Programming
(SQP) [10, 2]. Both conventional hard specifications and
soft specifications (formerly defined qualitatively) are ex-
pressed in the SQP’s objective function and constraints. We
compare this with our approaches. Section 3 describes Op-
timFilt, our algorithm for filter approximation. Section 4
describes OptimFilt’s results. We have selected our speci-
fications to match those published for SQP so that a fair
comparison can be drawn. Section 5 summarizes and Sec-
tion 6 discusses future work.
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2. RELATED WORK
Since the inception of the field, researchers in evolvable

hardware considered automatic design of analog filters. Sem-
inal work by Grimbleby, Koza, and Goh-Li [5, 7, 3] showed
how analog filters could be evolved extrinsically using SPICE
simulations, while Higuchi [12, 11] designed real-time adap-
tive analog filters using intrinsic evolution. The extrinsic
approach merged the first 3 steps of filter design (transfer
function approximation, prototype, circuit realization) into
one. A magnitude response specification combined with a
vocabulary of circuit elements evolved a sized topology for
a filter. This method is useful because it directly integrates
the magnitude response specification to the specifications of
subsequent steps. For example, in the multi-step approach
coefficients from the transfer function may not be amenable
to the component ranges and precision available. Goh-Li
and Vondras [3, 17] showed that sensitivity of response with
respect to a component value can be addressed with this
approach.

This merged-steps approach, however, has disadvantages.
In some sense the EA’s search encompasses the space of
possible transfer functions, the space of prototypes and the
set of circuit realizations for any transfer function. This
search space is larger and has more complex relationships
than the space of coefficients of a transfer function or that
of circuits for a given transfer function, thus making the
search harder. Secondly, it is not general because a different
EA must be developed and invoked for each technology (e.g.
passive filters; OTA-C filters). Thirdly, this approach may
be too “automatic”. The EA assumes more control than a
designer wishes to relinquish by not allowing inspection and
tradeoff choices between specifications across steps.

These approaches use the following performance criteria:
In [4, 9] the criterion was to mimic the brickwall in the pass-
band and stopband. In [7, 3] Amax and Amin specifications
were also added to the brickwall objective. Here, the evolved
circuit met the magnitude response objective only and dis-
regarded other criteria (which may not satisfy acceptable
range). In [9, 3], the criterion is to mimic the Butterworth
characteristics in magnitude response, which amalgamates
prototype synthesis and circuit realization. This is more
practical, since the realized circuit inherits the characteris-
tics of the Butterworth filter. In [4], a time domain filter
is evolved in Section 7, but frequency domain specifications
are not considered in this case. None of these approaches
address multiple objectives concerning magnitude response,
phase response and time response criteria together. In [17],
a multi-criteria framework for sizing a filter topology incor-
porates magnitude response, ranges for component values,
and maximum voltage across components as objectives and
constraints. Another instance of multi-objective evolution
of active filters is [18] which solely considers magnitude re-
sponse specifications. More recently, filter circuits have been
generated using non-linear components [16], where specifi-
cations of magnitude response and the DC range are used.
There has been a lot of work on digital filter synthesis us-
ing evolutionary algorithms [8, 1], some of which addresses
filter approximation. The focus has been to decrease the
effect of discrete coefficient space on the filter performance.
Our literature search revealed no incorporation of multiple
performance criteria in both the time and the frequency do-
main.

This submission is novel because it incorporates time and

frequency specifications simultaneously and it chooses to ad-
dress only Step 1, filter approximation. This latter feature
should make the problem easier for the EA to solve. It
is general because the evolved filter approximation can be
synthesized in any technology and used for analog or digital
filters. It fits into the hierarchy of conventional filter de-
sign and can thus be integrated smoothly in industry design
flow. It sets up potential development of an optimization
tool that appropriately assists a human designer with eval-
uating tradeoffs between each design step.

The results of OptimFilt must be compared to state of
the art which we consider to be [2, 10]. In [2, 10], multi-
ple objectives in time and frequency domain were consid-
ered. This approach approximates closed form expressions
for filter specifications that have no closed mathematical
forms, for instance, peak overshoot. A non-linear, gradient-
based optimization technique called Sequential Quadratic
Programming (SQP) optimizes the objectives given the con-
straints. This approach suffers from the following disadvan-
tages: a) error in the approximation may misguide the opti-
mization, b) it is not extensible because it cannot deal with
objectives and constraints for which no reasonably accurate
mathematical approximations are available, c) SQP does not
find a global optimum d) multiple objectives are aggregated
and weighted to express a single objective, that precludes
trade-off solutions. As is well recognized, EAs do not re-
quire closed form mathematical expressions or gradient in-
formation. We use Particle Swarm Optimization (PSO) [6]
in OptimFilt, which is a population-based, simple to imple-
ment yet powerful algorithm for global optimization.

3. OptimFilt
We have designed OptimFilt to be able to explicitly trade-

off the performance of a subset of filter criteria with another
subset while being constrained with respect to yet another
subset. For example, it could be asked to achieve maximal
linearity in phase response in tradeoff with magnitude re-
sponse with constraints on settling time value. To do this,
OptimFilt maps the designer’s filter specifications into a
PSO problem formulation that turns the multiple specifi-
cations into design drivers (i.e. the knobs that a designer
can control to search among design candidates). There are
three elements in the problem formulation: 1) requirements,
2) objectives and 3) constraints.

OptimFilt must meet two requirements: causality and sta-
bility [13]. It partially enforces these requirements through
its particle representation in the PSO. For a rational transfer
function to be causal and stable, the order of the numera-
tor needs to be less than that of the denominator and the
particle representation enforces this. As well, poles should
be in the left-hand s-plane. This implies all coefficients of
the denominator must be positive. The PSO enforces this.
Since these conditions are necessary but not sufficient, the
settling time constraint (discussed in Section 3.2) also ad-
dresses stability.

An objective refers to the goal of the optimization. In
3.4 we explain how progress on these objectives is mea-
sured to determine their contribution to a particle’s fitness.
Presently, (with easy extension) OptimFilt can be directed
to optimize the following objectives:
Phase Linearity Maximize linearity of phase response in
the passband. (Linearity is simply one choice. Other arbi-
trary response can be defined).
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Peak Overshoot Minimize peak overshoot [2] in time do-
main.
Magnitude Response Shape Meet a specified shape in
magnitude response. For an ideal filter, this shape has brick-
wall characteristics.

The optimization takes place under one or more of the
following constraints:

• ωp, ωs, Amax and Amin

• The settling time of the filter should be less than a
given value. The settling time is the time taken by the
filter to reach a stable value (10% of the stable value)
on being excited by a step function.

• The quality factor [2] of all poles should be less than
a given value (10 in our case).

• any unused objective: peak overshoot, phase linearity
and error in magnitude response

A constraint is a specification that a solution must meet.
In 3.2 we explain how these values are calculated and checked.
The PSO uses a constraint as a basis for comparing two
candidate solutions before it considers their relative perfor-
mance on objectives.

3.1 Particle Swarm Optimization
In OptimFilt candidate transfer function coefficients are

represented by a particle. A particle has m + n dimensions,
see Equation 1, because the highest order coefficient values
in the denominator and numerator are unnecessary extra
degrees of freedom for expressing the solution.

One particle in the initial generation is the exact coeffi-
cients of a conventional approximation, e.g. Butterworth.
The remaining particles are statistical variants of the first.
We vary each coefficient with a Gaussian distribution cen-
tered at the exact coefficient, with variance the maximum
of 10 and the coefficient value. Negative coefficients of the
denominator are discarded and redrawn. We multiply the
variance by a so-called Diversity Factor (usually 1.0) to allow
control over diversity in the initial population. The velocity
update equation is:

v(i) = v(i−1)+c1∗r1∗(ppbest−p(i))+c2∗r2∗(pgbest−p(i))

The position update equation is:

p(i + 1) = p(i) + v(i)

where:

v(i): Current velocity of the particle

v(i − 1): Velocity of the particle in last generation

p(i): Current position of a particle

p(i + 1): Position of the particle in the next generation

ppbest: The best position the particle has been

pgbest: The best position the swarm has been

c1, c2: Parameters set to 2.

r1,r2: Two uniform random variables with values between
0 and 1.

If the position of any coefficient of the denominator be-
comes less than zero after an update, it is set to zero. The
maximum velocity for each coefficient is set proportional to
the maximum of 10 and the respective coefficient value in the
conventional approximation used to seed the initial popula-
tion. The proportionality constant used is henceforth called
’maximum velocity factor’.

3.2 Constraint Evaluation
To derive ωs, ωp, Amax and Amin of a particle, the corre-

sponding filter is normalized to have a maximum magnitude
response of 1. The minima in the passband and the maxima
in the stopband are calculated numerically (with magnitude
response sampled at points separated by 0.25 rads/s). The
end of the stopband is set at 1000 rads/s and can be reset
by the designer. Amax and Amin for the filter are calculated
as per Equations 3 and 4 where gmax and gmin are the max-
imum and minimum gains in the stopband and passband
respectively. These calculated values are compared to spec-
ifications to check if the constraint is violated or satisfied.
A quantitative measure of constraint violation is calculated
with Equation 5, where the value of r(...) is 0 for input less
than 0 and equal to the input when it is more than 0 (ramp
function).

Amax = 20 ∗ log10(1/gmin) (3)

Amin = 20 ∗ log10(1/gmax) (4)

violation = r(particle(Amax) − spec(Amax)) + (5)

r(spec(Amin) − particle(Amin)) (6)

The time response for the normalized filter (with DC gain
1) is calculated numerically for a duration (henceforth called
ttot) slightly more than ts (0.5s in our case). The maximum
deviation of the time response from 1 between ts and ttot is
calculated. If this deviation is more than 10%, the constraint
is considered violated. The quantitative measure of this vio-
lation is the maximum deviation measured with respect to 1
in the given duration. The settling time constraint also ex-
presses the stability requirement, since unstable candidates
will not settle.

The quality factor, Q of a pole indicates whether the pole
will lead to oscillations in the output. It is calculated for
each pole as per [2] and if the value of Q for any pole is
more than 10, the constraint is considered violated. The
quantified violation is the sum of excess Q (Q-10) for each
pole in violation.

3.3 Constraint Enforcement
OptimFilt enforces constraints by taking advantage of the

fact that PSO updates the global best and particle best via
a relative comparison not using an absolute metric. (This
is similar to rank-based selection in genetic algorithms as
opposed to fitness proportional selection.) We have written
an extended comparison algorithm that integrates consider-
ation of constraints. Each constraint has a priority and is
compared in terms of being satisfied or violated one by one.
If the candidate and optima satisfy all constraints, they are
compared on the objective function. The optima is replaced
in the following situations.

756



1. When it violates a constraint while the candidate does
not.

2. When both particles violate a constraint but the can-
didate’s violation is less severe.

3. When all constraints of the candidate and optima are
satisfied, the candidate’s objectives are calculated, weighted
and summed. The optima is replaced if its fitness on
the objectives is less than that of the candidate’s.

The priority for constraints in our case is Amax and Amin

criteria, followed by settling time, Q-factor and any con-
straint on an unused objective. This scheme works in the
following way. Each particle is guided to satisfy the con-
straints (according to the priority) irrespective of the objec-
tives. The feasible areas are then explored for optimizing
objectives irrespective of extent of constraint satisfaction.

3.4 Objective Evaluation
All the objectives are combined into a single fitness func-

tion. A lower fitness implies a more fit solution. The error
with respect to different objectives is calculated in the fol-
lowing way.
Maximum Phase Linearity: The phase response of the
candidate is evaluated in the passband and sampled at points
separated by 1 rad/s. A best fit line for the phase response
is found by linear regression. The squared error between the
phase response and the best-fit line in passband forms the
phase error, phe.
Minimum Peak Overshoot: The filter is normalized to
have a DC gain (gain at 0 Hz) of 1. The time response for
the filter is found numerically for a duration that is longer
than the settling time constraint and is sampled every 5
milliseconds. The maximum value of the time response of
the filter is called the peak value, pv. The peak objective,
pke is expressed by percentage peak overshoot with steady
state value of 1:

pke = (pv − 1) ∗ 100

Specified Shape in Magnitude Response: The filter
is normalized to have a maximum magnitude response of 1.
The sum of squared error between the magnitude response of
the solution and the specified magnitude response sampled
at points (separated by 1 rad/s) gives the magnitude error,
mre.
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Figure 2: Ideal Magnitude Response Characteristics

In case of an ideal lowpass filter, the error is found with
respect to characteristics as depicted in Figure 2. The re-
sponse has a flat response with magnitude 1 in the passband,

a flat response of 0 in stopband and a linear response in the
transition band. The user can set the value of the highest
frequency of interest, by default it is set to 100 rads/sec for
squared magnitude error.

The fitness function is a weighted sum of these errors:

f(particle) = w1 ∗ pke + w2 ∗ mre + w3 ∗ phe

4. EVOLVING FILTER APPROXIMATIONS
We now present experiments that investigate OptimFilt’s

performance. We exercised and assessed OptimFilt with the
filter specifications in Table 2. These specifications were
chosen to allow comparison with [2].

Specification Value
ωp 20 rads/s
ωs 30 rads/s

Amax 2.0475 rads/s
Amin 10.1728 rads/s

Table 2: Filter Specification for Experiments

We conducted 2 experiments: Experiment 1 has parts (a),
(b), (c) and is shown in Table 4. Experiment 2 is a direct
comparison in terms of constraints and objectives (in addi-
tion to specifications) to [2]. It is shown in Table 6. Each ex-
periment started from an existing filter approximation with
the minimum number of poles and zeroes. We varied the set
of objectives and constraints in each to evaluate different as-
pects of OptimFilt. Each experiment consisted of 20 runs.
We ran the PSO with the parameters given in Table 3.

Parameter Value
c1 2
c2 2
Swarm size 50
Diversity Factor 1.0
Max velocity factor 0.5
Number of generations 600

Table 3: PSO parameters

4.1 Experiment 1
Experiment 1(a): The design requires minimization of
peak overshoot given Table 2’s specifications and settling
time as constraints. The number of particles which violate
Table 2’s constraint in each generation is shown in Figure 3.
This number gently decreases to about half the swarm size.
The number of circuits violating settling time constraint
quickly reduced to 0. Figure 4 shows the best individual
of runs (BOR) with a decrease in peak overshoot of 90.1%
(from 10.83% to 1.08%). Phase linearity was not constrained
and it improved in comparison to Butterworth (phe changed
from 193.48 to 60.19). Amax and Amin satisfied the con-
straints but changed from 1.357 and 10.172 to 2.047 and
10.358 respectively. The algorithm traded off magnitude
response in passband for improvement in peak overshoot.
Table 5 reports exact fitness results and the generation af-
ter which no substantial fitness improvement was observed.
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It reports that the improvement in peak overshoot is very
large (see BORF) and PSO is able to consistently achieve
an improvement of more than 80% (with respect to initial
coefficients) across multiple runs.
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Figure 3: Exp. 1(a) and (b): Number of circuits
violating constraints per generation

Experiment 1(b): The design requires maximal phase lin-
earity given Table 2’s specifications, with constraints on Q
value and settling time. We choose an elliptic approxima-
tion as a starting point in this experiment. It is 2 orders
less than Butterworth. As shown in Figure 3, the number
of circuits violating Table 2’s constraints in this experiment
are much higher as compared to Exp. 1(a). This is expected
since as one lowers the order, the feasible space meeting the
constraint becomes smaller and finally non-existent below a
certain order. However, it is commendable that with only a
few circuits in each generation satisfying the constraint, the
PSO is still able to optimize well.

Figure 5 compares the phase response of the best of run
solution with the elliptic filter (an improvement of 92% in
phe). What is interesting is the fact that the solution dom-
inates elliptic filter on all objectives considered, decreasing
pke by 63%, decreasing me by 29% and pushing Amax fur-
ther inside the constraint range. Assuming this is indeed
the range, such a result maybe extremely useful in a prac-
tical setting. However, the maximum frequency of interest
considered by our experiment is 1000 rads/s and the filter
may fall out of specifications beyond this range.
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Figure 4: Exp. 1(a): Step Response of BOR and
Butterworth filter. X-axis: Time(s), Y-axis: Mag-
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Experiment 1(c): The design requires maximal phase lin-
earity given Table 2’s specifications, peak overshoot and set-
tling time as constraints. The initial approximation used is
Chebyshev which has a peak overshoot of 3.22%. We con-
strained the peak overshoot to be less than 2.00%. The di-
versity factor was set to 2, so that PSO could explore areas
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Figure 5: Exp. 1(b): Phase Response of BOR and
Elliptic filter

Exp 1(a) 1(b) 1(c)
Approx Butterworth Elliptic Chebyshev
P,Z 4, 0 2, 2 3, 0
Obj 1 Peak Phase Phase

Overshoot Linearity Linearity
Constr 1 Table 2 Table 2 Table 2
Constr 2 Settling Settling Settling

Time Time Time
Constr 3 Peak

Overshoot

Table 4: Definition of Exp. 1(a) to 1(c). (P,Z: Num-
ber of Poles, Zeros)

far away from Chebyshev. The best of run solution improves
phase linearity by 95% (initially 1611.30) and meets the peak
overshoot constraint. It trades off magnitude response in
stopband to achieve this. PSO consistently improves phase
linearity by an amount more than 80% across runs. This ex-
periments suggests how OptimFilt can be used to optimize
on a criteria given a hard-specification by the user. This is
in contrast with the approach to optimize on a criteria and
later check if the final solution meets the hard-specification.
Results are shown in the appropriate column of Table 5.

Experiment 1(a) 1(b) 1(c)
Avg BF 1.28 (0.13) 119.84 (4.81) 175.0 (282.2)
BORF 1.08 117.02 70.29
GC 102.5 (149.6) 420.05 (86.38) 210.6 ( 140.2)
tEV AL 0.032 0.026 0.036
Init Fit 10.83 1499.50 1611.30

Table 5: Results of Exp. 1(a) to 1(c), Avg BF: Av-
erage Best Individual Fitness, BORF: Best of Runs
Fitness, GC: Generations to converge, tEV AL: aver-
age time (sec) to evaluate objectives and constraints
of one individual (On a Pentium M, 2.13GHz Win-
dows machine), Init Fit: fitness of conventional ap-
proximation.

4.2 Experiment 2
Experiment 2, see Table 6, permits direct comparison with

Experiment 1 in [2] (henceforth called SQP solution). The
design goals are to minimize peak overshoot and phase lin-
earity with Table 2’s specifications, Q value and settling time
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as constraints. The fitness function is an weighted sum of
the two objectives: percentage peak overshoot is weighted
by 0.75 and phase linearity by 1.0.

Experiment 2
Approximation Butterworth
Poles, Zeros 4, 0
Objective 1 Phase Linearity
Objective 2 Peak Overshoot
Constraint 1 Table 2
Constraint 2 Settling Time
Constraint 3 Q Value

Table 6: Definition of Experiment 2.

Out of 20 runs, 4 OptimFilt solutions dominated the SQP
solution and had better performance in terms of both peak
overshoot and phase linearity. Fourteen solutions dominated
the SQP solution in percentage peak overshoot, but were
worse on phase linearity. There were 2 solutions which were
completely dominated by the SQP solution. Figure 6 shows
the time domain response of the Butterworth, OptimFilt’s
best of run and SQP solution. OptimFilt’s BOR solution
improved phe by 13.66% and pke by 52.1% with respect to
the SQP solution.

This experiment shows that PSO can find better solutions
than SQP. This highlights a compelling feature of evolution-
ary algorithms in contrast with gradient based techniques
which get stuck at the local optima. It is encouraging to
see that PSO can beat the SQP solution 20% of the time
and we are optimistic that this rate can be improved. An
alternative is to have a tool which runs PSO multiple times
to find the optimal solution.

The best of run (BOR) solutions for experiments 1(a),(b),(c)
and 2 are shown expressed as transfer functions in Equa-
tions 7 through 10.

1

s4 + 73.996s3 + 1923.174s2 + 40787.676s + 300958.583
(7)

0.309s2 + 2.311s + 526.765

1.000s2 + 24.839s + 531.585
(8)

1

s3 + 25.553s2 + 683.703s + 5721.031
(9)

1

s4 + 54.346s3 + 1512.278s2 + 28820.945s + 214001.244
(10)

5. SUMMARY
In this paper we have described a system named Optim-

Filt that evolves filter approximations in the form of coeffi-
cients of a transfer function. The key feature of OptimFilt
in terms of being a useful design tool is that it can take
all the conventional specifications in the initial step of filter
design into account in producing an approximation. Only
a few of a filter’s specifications are quantitatively specified
and conventional approximations (e.g. Butterworth, Ellip-
tic) offer designers no control over the rest. One might see
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Figure 6: Exp. 2: Step Response for Butterworth
(- -), SQP (-.) and OptimFilt’s BOR (line). X-axis:
time(s), Y-axis: Magnitude

OptimFilt as providing more quantitative control knobs to
a designer. By running OptimFilt multiple times, a designer
can investigate tradeoffs resulting from explicit, interacting
objectives or sample variety in the the degrees of freedom
beyond objectives but optionally under constraints.

OptimFilt considers causality and stability to be funda-
mental requirements of its solutions. It offers a filter de-
signer the choice of translating a specification into a con-
straint or an objective. It further allows constraints to be
placed on objectives. So, for example, a designer can op-
timize for peak overshoot and phase linearity under con-
strained specifications of Amax, Amin, ωs and ωp while ob-
serving the resulting approximation’s Q value. The effec-
tive optimization that supports this control and expressive-
ness is OptimFilt’s PSO algorithm. OptimFilt has a spe-
cialized subroutine overriding the standard PSO subroutine
that compares a candidate to the global best (or particle
best) to determine if it should be replaced. OptimFilt’s
subroutine first considers the specifications expressed as con-
straints and considers them according to a designer-assigned
priority. When both the candidate and best particle violate
the same constraint, OptimFilt replaces the best particle if
its violation is greater and performs no more comparisons.
Only when all constraints are satisfied in both the candi-
date and best particle, does OptimFilt start to compare
and replace on the basis of a sum of weighted objectives.
So the search only subsequently, i.e. after candidates fulfill
constraints, works toward objectives. The trajectory of the
search process effectively has two phases: Phase I influenced
by constraints and Phase II by objectives.

In contrast to a state of the art approximation based on
SQP, OptimFilt offers independence from inaccurate math-
ematical models that can mislead a search for the optima.
We have experimented with OptimFilt and the experiments
documents its effectiveness. It is capable of evolving a solu-
tion that is better than the SQP state of the art method.

6. FUTURE WORK
In terms of future work we have set our sights on two tasks.

First, we would like to improve OptimFilt as an approxima-
tion tool. It would be ideal if OptimFilt could produce mul-
tiple solutions in a single run that are pareto optimal with
respect to multiple objectives. In other words, we would
like our PSO algorithm that currently integrates constraints
with a combined weighted set of objectives to integrate con-
straints with search for a pareto optimal front. The many
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successful and different evolutionary multi-objective algo-
rithms will provide us with technical inspiration [14]. PSO
has been extended to multi-objective search. Integrating
support for constraint handling in the manner which Op-
timFilt currently addresses it with multi-objective search is
our goal.

Second, we would like to expand OptimFilt to be more
than a single algorithm. We would like it to become a
multi-tool environment that gives filter designers access to
an evolutionary based tool for each step of the filter design
process. After Step 1 a transfer function has been produced
from the filter approximation. In Step 2 it is realized as a
prototype. The transfer function’s polynomial form is con-
verted into terms or a block diagram which can be realized
using circuit elements. For example, a high order filter is
decomposed into a concatenation of biquad (second order)
filters and first order filters. These lower order filters can
be realized as summers and integrators arranged in a given
topology [15]. Different decompositional approaches to real-
ization trade off with respect to sensitivity, noise, dynamic
range and other criteria. Step 3 realizes the prototype as
a circuit in an implementation technology (e.g., opamp-RC,
OTA-C, Switched Capacitor, MOSFET-C). Specifications
in play in this step are, for example, noise specifications,
power consumption, dynamic range etc. In Step 4, the lay-
out is constructed. These design steps do not occur strictly
sequentially. The designer has to iterate between them be-
cause the specifications change between steps and the filter
design is a non-linear composition of all the specifications.
Our ultimate goal is to extend OptimFilt to be a comprehen-
sive tool addressing the whole filter design flow from speci-
fication to a sized circuit or layout.

In short, we plan to investigate the hypothesis that ad-
dressing each filter design step with evolutionary optimiza-
tion techniques (ranging from weighted objective functions
to multi-objective approaches) will yield designs that a de-
signer will find more satisfactory than a tool directly going
across all steps or conventional tools.
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