
ALPS: The Age-Layered Population Structure for Reducing
the Problem of Premature Convergence

Gregory S. Hornby
University Affiliated Research Center, UC Santa Cruz

Mailstop 269-3, NASA Ames Research Center
Moffett Field, CA

hornby@email.arc.nasa.gov

ABSTRACT
To reduce the problem of premature convergence we define
a new method for measuring an individual’s age and pro-
pose the Age-Layered Population Structure (ALPS). This
new measure of age measures how long the genetic material
has been evolving in the population: offspring start with an
age of 1 plus the age of their oldest parent instead of start-
ing with an age of 0 as with traditional measures of age.
ALPS differs from a typical evolutionary algorithm (EA) by
segregating individuals into different age-layers by their age
and by regularly introducing new, randomly generated indi-
viduals in the youngest layer. The introduction of randomly
generated individuals at regular intervals results in an EA
that is never completely converged and is always exploring
new parts of the fitness landscape. By using age to restrict
competition and breeding, younger individuals are able to
develop without being dominated by older ones. Analysis
of the search behavior of ALPS finds that the offspring of
individuals that are randomly generated mid-way through a
run are able to move the population out of mediocre local-
optima to better parts of the fitness landscape. In compari-
son against a traditional EA, a multi-start EA and two other
EAs with diversity maintenance schemes we find that ALPS
produces significantly better designs with a higher reliability
than the other EAs.
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1. INTRODUCTION
A common problem experienced in running an evolution-

ary algorithm (EA) is that after some number of evaluations
the population converges to a local optima and no further
improvements are made no matter how much longer the EA
is run. What has happened is called premature convergence,
which is that the existing genetic material in the population
has converged such that the variation operators cannot pro-
duce new individuals which will move the population into a
better part of the fitness landscape [1, 6, 8, 16]. To over-
come the problem of premature convergence much work has
has been done to investigate its causes and to reduce its ef-
fects. Many attempts at creating a more robust EA have
been tried but so far none has successfully resulted in an
improved EA with which naive users can expect to reliably
find near-optimal solutions.

Perhaps the easiest methods for reducing the likelihood
of premature convergence are to slow convergence through
increasing the mutation rate, mutation size or population
size. Increasing the mutation rate will keep diversity high
and keep the population from converging quickly but it is
just as likely to replace good alleles and building blocks as
bad ones. If the mutation size is too large then the muta-
tion operator will not create offspring near its parent and
be unable to explore narrow fitness peaks. Using a larger
population simply increases the number of generations be-
fore it converges with the hope of increasing the likelihood
of finding the fitness peak with global optima. With this ap-
proach deciding on the best population size is a challenge:
using too large a population on a simple problem results in
search taking much longer than necessary, and on difficult
problems the necessary size of the population may be too
large to be feasible.

Aside from increasing the mutation rate/size or increasing
the population size, there have been various modifications
to the canonical EA to better maintain genotypic diversity
over the course of evolutionary search. Diversity of the pop-
ulation can be maintained by modifying the replacement
strategy, such as with preselection [3], crowding [6], and
deterministic crowding [17]. Another approach is the use
of sharing functions, which modify the fitness of individu-
als based on their genotypic similarity [7]. Alternatively,
the population structure can be modified, such as with spa-
tially structured populations in which individuals have a lo-
cation and are restricted to interacting with their neighbors
[18]. In addition, there are many newer methods which are
variations on these basic techniques. While these methods
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work to varying degrees, drawbacks are that methods which
work through genotypic comparisons are better suited to bit
strings than to more sophisticated representations, such as
genetic programs, and, ultimately, all such methods are lim-
ited to discovering solutions that are within the basin(s) of
attraction of the initial population.

Breaking out of the basin of attraction of the initial start-
ing population can only be achieved by introducing new,
randomly generated individuals into the population that are
in new areas of the fitness landscape. This method of get-
ting around the premature convergence problem is a fairly
common practice that is implicitly done by running the EA
multiple times with different random number seeds. While
restarting the EA increases the chances of eventually find-
ing the global optima – at the very least, if the random
individual generator can produce every point in the fitness
landscape then eventually the global optima will be found
in one of the initial populations – deciding how long to run
the EA before restarting becomes a challenge. If few gener-
ations are used, then the population may not have enough
time to climb the fitness peak of the global optima, and if
a large number of generations are used then much time will
be wasted while the population has converged on top of a
mediocre fitness peak before the next run is started.

To better integrate new, randomly generated individuals
we propose the Age-Layered Population Structure (ALPS),
which uses a novel measure of age to restrict competition and
breeding between individuals in the population. With ALPS
an individual’s age is a measure of how long its genetic mate-
rial has been evolving in the population. Randomly created
individuals start with an age of 0 and each generation in
which an individual is used to produce an offspring its age
is increased by one. Individuals created through mutation
or recombination start with an age of 1 plus the age of their
oldest parent, since their genotypic material has been evolv-
ing in the population for at least that many generations.
The population is separated into multiple age-layers, with
each age-layer having a maximum allowable age for individ-
uals, with selection, breeding, and replacement restricted
to adjacent layers. At regular intervals the individuals in
the initial layer are replaced with new, randomly-generated
individuals.

By structuring the population so that individuals only
compete against other individuals of similar ages, young in-
dividuals are able to explore newly-discovered basins of at-
traction while being protected from older individuals that
have had more time to evolve up their local optima. In ad-
dition, by competing against individuals of a similar age,
individuals will only cluster about a local optima as long as
it has the best fitness for similarly-aged individuals and the
population will move off of it as younger individuals discover
better local optima.

ALPS has similarities to other types of EAs, but the dif-
ferences result in a significantly better algorithm. Prior to
ALPS there have been many variations of evolutionary al-
gorithms that have used some sort of age parameter [4, 5,
12, 13, 14]. These systems differ from ALPS in that the age
value of offspring is a measure of how long that particular in-
dividual has been in the population thus individuals created
through mutation or recombination start with an initial age
value of 0 or 1. In contrast, with ALPS age is a measure
of how long the genotypic material has been evolving in the
population with offspring taking the age of 1 plus that of

their oldest parent. In addition, with these other age-based
systems randomly generated individuals are only created at
the beginning of an evolutionary run so these systems are
limited to finding solutions in the basin of attraction of the
initial population.

Another EA that separates the population into different
layers and regularly introduces new, randomly generated in-
dividuals in the initial layer is the Hierarchical Fair Com-
petition (HFC) model [9]. The main difference between
HFC and ALPS is that HFC uses fitness, instead of age, as
the characteristic to segregate individuals. Using fitness to
segregate individuals has the problem that individuals that
have converged to a local optima near the top of a fitness
layer prevent newer individuals in different basins of attrac-
tion from climbing through that fitness-layer. Variations on
the HFC paradigm have been made – Adaptive Hierarchical
Fair Competition (AHFC) [11] and Continuous Hierarchical
Fair Competition (CHFC) [10] – but these have not been
shown to be significantly better than regular HFC.

To demonstrate the effectiveness of ALPS it is compared
against a traditional EA, a multi-start EA, HFC, and an EA
using deterministic crowding. The design problem on which
these algorithms are compared is a challengin antenna de-
sign problem that is a variant of the antenna we evolved
for NASA’s ST5 Mission [15]. Evolution with a multi-start
EA and with deterministic crowding both do better than
the traditional EA and HFC, but all four are significantly
outperformed by ALPS. Analysis of the search behavior of
ALPS shows that by using age to restrict competition and
breeding the genetic material of newly generated random in-
dividuals is able to discover and evolve up new fitness peaks
and move the population to new and better parts of the
fitness landscape.

The rest of this paper is organized as follows. Section
2 consists of a definition of our novel age measure and a
description of the ALPS. Section 3 is a description of our
experimental setup, the results are presented in section 4,
and a discussion of our findings is given in section 5. In
section 6 we describe how to combine ALPS with other di-
versity maintenance techniques and then conclude

2. THE ALPS PARADIGM
ALPS differs from traditional EAs by segregating indi-

viduals by a novel measure of age and using this to control
breeding. The age-measure that we define for the ALPS-
EA is a count of the number of generations in which an
individual’s genotypic material has been evolving inside the
population. New individuals that are randomly generated
start with an initial age of 0 since their genetic material has
just been introduced into the population. Individuals that
are created through variation, such as by mutation or re-
combination, take the age of 1 plus the age value of their
oldest parent since their genetic material comes from their
parents and it has now been in the population for one more
generation than it was with their parents. If an individual
is copied to the next generation, such as through elitism, its
age is increased by 1 if it was used as a parent in that gen-
eration and its age remains unchanged if it was not used as
a parent. This increase to an individual’s age even though
it was not changed is because its genetic material was used
in that generation and it forces the individual to compete
with its offspring. Even if an individual is selected to re-
produce multiple times in one generation its age is still only
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Table 1: Different systems for setting the age-limits
for each age-layer and the corresponding maximum
age in each layer for an age-gap of 1.

Max age in layer
Aging-scheme 0 1 2 3 4 5 6
Linear 1 2 3 4 5 6 7
Fibonacci 1 2 3 5 8 13 21
Polynomial (n2) 1 2 4 9 16 25 49
Exponential (2n) 1 2 4 8 16 32 64

increased by 1 when it is copied to the next generation since
age is a measure of how long the genetic material has been
in the population and not how widely it is used.

To restrict competition and breeding among individuals
the population consists of a number of age-layers, some-
what similar to the island-model EA [18]. Each age-layer
in the population has a maximum age limit for individuals
in it, except for the last layer which can have individuals
of any age. Different systems can be used for setting these
age limits, such as by using linearly, polynomially or expo-
nentially increasing limits (see table 1). To keep the size
of the population and number of layers manageable, and
since there is generally little need to segregate individuals
which are within a few “generations” of each other, these
values are then multiplied by an age-gap parameter. Thus
with a polynomial aging-scheme and an age gap of 20 the
maximum ages for the layers are: 20, 40, 80, 180, 320, . . . .
This allows some generations of evolutionary search to occur
with the randomly-generated individuals in the first layer so
that they may find and move into good basins of attraction
before being pushed into the next layer. Alternatively, an
ALPS-EA can be run with an infinite number of age-layers,
with memory for new layers created as they are needed.

Evolution with the ALPS model is similar to a canoni-
cal EA, with a few exceptions. First, individuals can only
breed with individuals from either their own layer or from
the previous one. Thus for layer 0, parents are selected from
individuals only in layer 0; for layer 1 parents are selected
from individuals in layers 0 and 1; for layer 2 parents are
selected from individuals in layers 1 and 2; and for layer n,
parents are selected from layers n − 1 and n. By selecting
parents from both the current layer and the previous layer,
offspring of individuals are able to pass from one layer to the
next in a smooth way. Second, at regular intervals all indi-
viduals in the first layer, layer 0, are replaced with randomly
generated individuals. This happens at every AGE-GAP gen-
erations. Thus with an age-gap value of 7, new individuals
are created in the first layer at generations 0, 7, 14, 21, . . . .
Finally, individuals are only present in a layer when evolu-
tion has proceeded for as many generations as the age limit
of the previous layer. For example, with an age-gap of 15
and an exponential aging system, only layer 0 is active for
the first 15 generations. At generation 15 layer 1 is then
used, layer 2 is used starting at generation 30, layer 3 is
used starting at generation 60, layer 4 is used starting at
generation 120, and so on. When a layer becomes open for
use its individuals are created through offspring from par-
ents selected from the previous layer. In addition, when an
individual becomes too old for its current layer, it is com-
pared against individuals in the next oldest layer and, if it

is more fit than at least one of them, it replaces the least fit
individual in that layer.

By increasing an individual’s age each generation in which
it is used as a parent, it will eventually age its way up the
layers and, likely, out of the population. An individual is
only guaranteed to stay in the population forever it if is at
the global optima, otherwise it will eventually be replaced
as better individuals are evolved. This differs from HFC, in
which individuals can stay in the population forever if their
fitness is at the maximum of their fitness layer.

3. EXPERIMENTAL SETUP
To determine the effectiveness of the ALPS paradigm, ex-

periments are performed comparing it to a canonical EA,
HFC and to a multi-start EA. A canonical EA is used so
that a performance comparison can be made between it and
the ALPS-EA to show how well ALPS performs against the
style of EA used by the majority of practitioners in the field
of evolutionary computation. Runs with HFC provide a
useful comparison because it also regularly introduces new,
randomly generated individuals in its first layer thus by com-
paring ALPS against HFC the relative advantage of using
age versus fitness to segregate and manage individuals in dif-
ferent layers can be inferred. A multi-start EA is included
for comparison since it is both the most simple and most
commonly used method for regularly generating a new batch
of randomly generated individuals and evolving them. All
systems use the same representation and variation operators
with the only difference being in how the population of in-
dividuals is managed. The details of the different EAs will
now be described followed by a description of the antenna
design problem on which they are compared.

3.1 Configuration of the Different EAs
The particular ALPS implementation that is used for these

experiments is as follows. The population is made up of 10
age-layers with each layer consisting of 100 individuals, re-
sulting in a total population size of 1000 individuals. A
polynomial aging scheme is used with an age-gap parame-
ter of 20 generations. Tournament selection is used with a
tournament size of 7 and an elitism of 3 in each layer. New
individuals are created with an equal probability of muta-
tion or recombination.

The canonical EA is a generational EA with a population
size of 1000 individuals and uses tournament selection with
a tournament size of 7. An elitism of 30 is used since this
results in the same number of individuals being copied into
the next generation as with ALPS and its use of an elitism
of 3 in each of its 10 layers. New individuals are created
with an equal probability of mutation or recombination.

A single trial with the multi-start EA consists of 100 runs
of canonical EA for 100000 evaluations, and the best indi-
vidual of a multi-start individual is the best individual of
these 100 runs.

The HFC model that is used is adaptive HFC (AHFC), in
which the fitness thresholds for each layer are adjusted ev-
ery fixed number of generations. Our implementation uses
10 fitness-layers, with 100 individuals in each layer for a to-
tal population size of 1000 individuals. Parents are selected
using tournament selection, with a tournament size of 7. In
addition, an elitism of 3 is used to copy the best individu-
als of each layer from one generation to the next. Fitness
thresholds are adjusted every 20 generation. With this con-
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figuration it will create as many random individuals as with
ALPS.

3.2 Representation
The problem domain on which these algorithms compared

is that of evolving antennas. Antennas are encoded with an
open-ended representation with which the nodes of the geno-
type are antenna-construction operators that specify how to
construct the antenna [15]. Constructing an antenna be-
gins with a feedwire of length 1mm coming up out of the
ground-plane and operators are executed starting with the
root node down to the leaf node. In constructing an antenna
the current state (location and orientation) is maintained
and operators add wires or change the current state. The
operators are as follows: forward(length), add a wire with
the given length and extending from the current location
and then change the current state location to the end of
the new wire; rotate-x(angle), change the orientation by
rotating it by the specified amount (in radians) about the x-
axis; rotate-y(angle), change the orientation by rotating
it by the specified amount (in radians) about the y-axis; and
rotate-z(angle), change the orientation by rotating it by
the specified amount (in radians) about the z-axis. Since we
constrained antennas to a single, bent wire with no branch-
ing each node in the genotype has at most one child.

For example, in executing the program rotate-z(0.5236)

forward(1.0), the rotate-z() operator causes the the cur-
rent orientation to rotate 0.5236 radians (30◦) about the Z
axis. The forward() operator adds a wire of length 1.0 cm
in the current forward direction.

3.3 Antenna Optimization Problem
The antenna problem on which we compare the different

EAs is similar to the X-band antenna we evolved for NASA’s
Space Technology 5 mission [15]. The goal for this partic-
ular problem is to produce an omni-directional monopole
antenna operating at 50Ω with a gain pattern of ≥0 dBic
from 0◦ - 80◦ from zenith for both transmit (2288 MHz) and
receive frequencies (2106 MHz), a voltage standing wave ra-
tio (VSWR) of under 1.5 at both frequencies, and fit inside
a cylinder of height 6cm and radius of 5cm.1 The fitness
function we use to evolve antennas for this problem is es-
sentially the same as the one we used in evolving the ST5
antenna [15] and is a product of three components scoring
the VSWR, gain values, and gain smoothness on the trans-
mit and receive frequencies.

The VSWR component of the fitness function is constructed
to put strong pressure toward evolving antennas with receive
and transmit VSWR values below the required amounts of
1.5, reduced pressure at a values below 1.25 and then no
pressure to go below 1.1:

fv(v) =





v + 2.0(v − 1.25) if v > 1.25
v if 1.25 > v > 1.1
1.1 if v < 1.1

vswr = fv(VWSR2106MHz)fv(V SWR2288MHz)

The gain-penalty component of the fitness function uses
the gain (in dBic) in 5◦ increments about the angles of in-
terest: from 0◦ ≤ θ ≤ 90◦ and 0◦ ≤ φ ≤ 360◦. For each an-

1VSWR is a way to quantify reflected-wave interference, and
thus the amount of impedance mismatch at the junction.

gle, the calculated gain score from simulation is compared
against the target gain for that elevation and the outlier
gain, which is the minimum gain value beyond which lower
gain values receive a greater penalty. Gain penalty values
are further adjusted based on the importance of the eleva-
tion:

gain penalty (i, j):
gain = calculated gain at θ = 5◦i , φ = 5◦j;
if (gain ≥ target[i]) {

penalty := 0.0;
} else if ((target[i] > gain) and (gain ≥ outlier[i])) {

penalty := (target[i] - gain);
} else { /* outlier[i] > gain */

penalty := (target[i]-outlier[i]) +
3.0 * (outlier[i] - gain));

}
return penalty * weight[i];

Target gain values at a given elevation are stored in the array
target[] and are 2.0 dBic for i equal from 0 to 16 and are
-3.0 dBic for i equal to 17 and 18. Outlier gain values for
each elevation are stored in the array outlier[] and are
0.0 dBic for i equal from 0 to 16 and are -5.0 dBic for i
equal to 17 and 18. Each gain penalty is scaled by values
scored in the array weight[]. For the low band the values
of weight[] are 0.1 for i equal to 0 through 7; values 1.0
for i equal to 8 through 16; and 0.05 for i equal to 17 and
18. For the high band the values of weight[] are 0.4 for i
equal to 0 through 7; values 3.0 for i equal to 8 through 12;
3.5 for i equal to 13; 4.0 for i equal to 14; 3.5 for i equal to
15; 3.0 for i equal to 16; and 0.2 for i equal to 17 and 18.
The final gain component of the fitness score of an antenna
is the sum of gain penalties for all angles.

To put evolutionary pressure on producing antennas with
smooth gain patterns around each elevation, the third com-
ponent in scoring an antenna is based on the standard de-
viation of gain values. This score is a weighted sum of the
standard deviation of the gain values for each elevation θ.
The weight value used for a given elevation is the same as
is used in calculating the gain penalty.

These three components are multiplied together to pro-
duce the overall fitness score of an antenna design:

F = vswr × gain× standard deviation
The objective of the EA is to produce an antenna design
that minimizes F .

The Numerical Electromagnetics Code, Version 4 (NEC4)
was used to evaluate all antenna designs [2]. Antenna de-
signs were analyzed on top of a 4” ground-plane that was
approximated with a wire-mesh, for which each antenna sim-
ulation took a several seconds of wall-clock time to run

4. EXPERIMENTAL RESULTS
A total of 20 trials was performed with the canonical EA,

AHFC and ALPS. After 100000 evaluations – approximately
100 generations, a typical length of an evolutionary run –
these three EAs all have similar performance (figure 1.a).
Already a leveling off in performance appears to be occur-
ring and runs with traditional EAs may be stopped after
this many evaluations since they generally have converged
and there is little improvement to be had from running
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Figure 1: A plot of the best individual in the pop-
ulation for the three different EAs averaged over 20
trials each: (a) after the first 100000 evaluations; (b)
after 10 million evaluations.

the EA longer. Continuing evolution a further 9.9 million
evaluations shows that both the canonical EA and AHFC
have made few improvements (figure 1.b) yet with ALPS
there were large gains in fitness. To summarize, after 10
million evaluations the averaged results of these trials are
(mean±s.e.): standard EA, 153.1±16.4; AHFC, 148.0±35.4;
and ALPS, 28.7±10.8. Using a two-tailed Mann-Whitney
test the difference between both ALPS and the standard
EA as well as ALPS and AHFC is highly significant, with
P < 0.001. In contrast, using a two-tailed Mann-Whitney
test, the performance difference between the standard EA
and AHFC is not significantly different, with P ≥ 0.05.

That the ALPS model significantly outperformed the canon-
ical EA, and by a large margin, tells us that continuously
introducing new, randomly-generated individuals into the
population and restricting breeding and competition by an
individual’s age can produce a better evolutionary algorithm.
Since the performance difference between AHFC and a canon-
ical EA is neither large nor statistically significant, these
results also show that just introducing new individuals into
the population is not sufficient to produce a better EA and
that age is a better attribute with which to control breeding
than is fitness. Finally, all solutions found with ALPS are

better than all solutions found with either AHFC or a reg-
ular EA, which suggests that a single run of ALPS is better
than performing multiple shorter runs of a traditional EA.

To determine how well ALPS compares against perform-
ing multiple short runs with a traditional we ran an addi-
tional set of experiments using a multi-start paradigm in
which a single trial consists of 10 million evaluations di-
vided into 100 separate runs of 100000 evaluations with the
canonical EA. The best individual from a single multi-start
EA trial is the best individual found from the 100 separate
runs. The results of the multi-start EA trials are 47.6±15.3.
Using a two-tailed Mann-Whitney test finds that the supe-
rior performance of ALPS over the multi-start EA is highly
significant, with P < 0.001.

5. DISCUSSION
An intuitive understanding of why evolution with ALPS

works so well can be gained by examining the fitness and age
values of the best individual in each layer over the course of
evolution. The two graphs in figure 2 show the first 2 million
evaluations of one of the trials with the ALPS paradigm: the
graph in figure 2.a consists of a plot of the fitness of the best
individual in each layer of the population, and the graph in
figure 2.b consists of a plot of the age of these individuals.
Since the bottom layer, L-0, of the population is replaced
by a new group of randomly generated individuals every 20
generations (which is 20000 evaluations once all layers are
populated) it can be seen to oscillate rapidly in both graphs.
In figure 2.a, L-0 starts with a very poor fitness, improves
to a fitness value centered around 250 over the course of 20
generations and then starts afresh at something higher then
500. In figure 2.b the plot of the age of this best individual in
layer L-0 shows that the age of this individual starts at 0 and
then increases to 20 over the course of 20 twenty generations,
hand-in-hand with improvements in fitness, and then is reset
to 0 as this layer is replaced with new, randomly generated
individuals. Similarly, the other layers in these two graphs
can be seen to oscillate with a polynomially increasing gap
between “resets”.

Since the best individual in a layer generally takes over
the layer it is in with its offspring, all individuals in a layer
tend to have a similar age-level. Consequently, when the
best individual in a layer is aged out of that layer the rest
of the individuals in the layer that are genotypically simi-
lar are also in the process of being aged-out of that layer.
At this point the layer is reset with new genetic material
from the best individuals of the previous layer, hence the
smooth arcs formed from the plots of adjacent layers show
a continuous line of development of both fitness and age of
genotypic material progressing through multiple age-layers.

To help understand why evolution with ALPS is bet-
ter able to continue finding new and better solutions, even
when run for a very large number of generations, in figu-
ure reffig:alps4-ex2 we examine a close-up of the evolution-
ary run from figure 2. The plot of the best fitness of each
layer shown in the graph of figure 3.a starts after 1.6 million
evaluations have taken place, and just below it in the graph
in figure 3.b is a plot of the age of these individuals. These
two graphs show the conjoined oscillation in fitness and age
of the best individual in the bottom layer, L-0, every 20
generations. These graphs also show, by the smooth con-
nection between the lines from adjacent layers, the transfer
of genotypic material from one layer to the next. It can be
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Figure 2: A plot of the fitnesses and ages of the best
individuals of over the first 2 million evaluations of
an EA run using ALPS.

seen that the offspring of the individual that was randomly
generated sometime around 1.7 million evaluations quickly
progressed up the layers from L-0, to L-1, all the way to L-5,
after several thousand evaluations (which is several gener-
ations since there are 1000 individuals in the population).
About the time when this genetic material reaches layer L-
5, it is aged out of layer L-0, which then starts evolving a
new bunch of randomly generated individuals. Several gen-
erations later it also ages out of L-1, and this layer then
starts evolving individuals that have moved up to it from
L-0. Eventually the genetic material reaches the top layer,
L-9, and a new global optima is found. These two graphs
show that by using age to restrict competition and breeding
between individuals, the ALPS paradigm is able to regularly
generate new individuals whose offspring are able to evolve
and move the population out of a mediocre local-optima.

Interestingly, from looking at the plot of ages in figure 3, it
shows that the ages of the best individuals from layers L-5,
L-7 and L-9 (ages for layers L-4, L-6, and L-8 are not plot-
ted) do not drop down to that from L-2 which suggests that
the genetic material that evolved down from L-0 recombined
with an older individual from an intermediate layer and the
resulting offspring used the age of the older parent. That

the new best individual contains some genotypic material
acquired through recombination with descendants from the
individuals recently created can be shown by plotting the
ages of individuals in each generation with a second age-
measure.

Instead of assigning the age of the oldest parent to off-
spring created through recombination, with this second age
measure, age2, individuals are given the age of their youngest
parent. The graph in figure 3.c is a plot of the age2 of the
best individual in each layer of the same run as the graphs in
figure 3.a and b. This graph shows that at the time the fit-
ness of the best individual in the population starts dropping
to a new local-optima the age2 of the best individual in the
top age-layer has an age2 of 31, using this second age mea-
sure. This means that new best individual is a descendant
of an individual that was randomly generated some 31 gen-
erations previous. In fact, using this second age-measure,
the maximum age2 of the best individuals in any of the age-
layers seldom goes higher than 100, which means that the
genetic material of the new, randomly generated individuals
is being transferred to the rest of the population in the other
age-layers.

The combination of genetic material from recently gener-
ated random individuals and individuals whose genetic ma-
terial has been in the population for many generations is not
achievable with a multi-start EA and may be why ALPS out-
performs such an algorithm. With a multi-start EA in which
all the genetic material from previous runs is discarded in-
dividuals from the new run cannot use the genetic material
from them. Alternatively, in a multi-start EA in which some
of the best individuals are kept from a previous run, their
offspring quickly take over the population since they have
much better fitness scores than the randomly generated in-
dividuals against which they are competing. With the ALPS
paradigm new and old individuals are able simultaneously
evolve without the old individuals killing off the new ones
thereby enabling the ALPS-EA to successfully balance both
exploitation and exploration.

The behavioral difference between ALPS and HFC can be
seen by examining fitness and age graphs from a run with
the HFC algorithm, figure 4, and comparing them with sim-
ilar graphs for ALPS. The first graph, figure 4.a, shows the
sequential layering of fitness values for each fitness-layer in
the population, just as would be expected with the HFC
model. Also, since Adaptive HFC (AHFC) was the vari-
ant used for these experiments, a regular resetting of fitness
values can be seen. Both the sequential layering of fitness
and the resetting of fitness values are similar to behaviors
observed with ALPS in the graphs in figures 2 and 3. The
second graph, figure 4.b, plots the ages of the best individ-
ual in each fitness layer of an AHFC run. Similar to ALPS,
the age of individuals in the lowest fitness-layer oscillates
starting from an age of 0, although with AHFC it climbs
much higher since there are no age-limits with this system.
Unlike ALPS, the age of the best individual in the other lay-
ers is the same and comes from the initial population. This
second graph shows that AHFC does not enable the move-
ment of the new, randomly generated individuals up the its
fitness layers. That AHFC is not successful in enabling new
individuals their offspring to stay and evolve in the popula-
tion demonstrates that age is the better attribute to restrict
competition and breeding than is fitness.
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Figure 3: Graphs of part of the ALPS run of figure 2
with the lines of some age-layers left out to improve
clarity: (a) a plot of the fitness of the best individual
in selected layers; (b) a plot of the age of the best
individual in selected layers; and (c) a plot of age of
the best individual in selected layers using age2, a
different measure of age.
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Figure 4: A plot of the fitnesses and ages of the best
individuals in layers 0, 1, 2 and 9 of an EA run using
AHFC.

6. HYBRIDIZING ALPS
While ALPS is good at using age to shepherd the devel-

opment of new, randomly-generated individuals, it may be
that this is not sufficient to find near optimal results. One
way to try improving ALPS is to combine it with another
diversity maintenance technique. From past work on evolv-
ing antennas an EA using deterministic crowding (DC) had
been found to work best [15]. With deterministic crowding,
new individuals are inserted into the population by compar-
ing an offspring against its parent (or most similar parent
in the case of recombination) and replacing that parent if
it is more fit. To combine DC with ALPS, DC was used in
each of the different age-layers of ALPS and, each time a
parent was replaced by its child, the parent was then tested
against the least fit individual of the next oldest age-layer
and replaced it if it had better fitness. Out of 20 trials with
both of these algorithms the results are: DC 97.1±54.2;
ALPS-DC 22.1±7.8. Regular ALPS outperforms DC and
the difference is statistically significant with P < 0.01 using
a two-tailed Mann-Whitney test. The superior performance
of the ALPS-DC combination over both DC alone as well
as the multi-start EA is found to be highly significant, with
P < 0.001 using a two-tailed Mann-Whitney test. The dif-
ference in performance between ALPS-DC and ALPS with
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tournament selection is not significant, with a two-tailed
Mann-Whitney test finding P > 0.05.

7. CONCLUSION
In this paper we have defined a new measure of the age of

an individual and with this measure have proposed the Age-
Layered Population Structure (ALPS) as a system to reduce
the problem of premature convergence. Unlike canonical
EAs, ALPS continues to explore new parts of the fitness
landscape by continuously creating a new sub-population
of randomly generated individuals in its bottom layer. By
segregating individuals into different layers based on their
age, and using this to restrict competition and breeding,
promising new individuals are able to develop without being
dominated by older ones.

To determine the effectiveness of ALPS it was compared
against a handful of other EAs and in all cases it was found
to be significantly better in performance. The large differ-
ence in performance between ALPS and both a canonical
EA and an EA using deterministic crowding demonstrates
that regularly introducing random individuals into the pop-
ulation can produce a better EA. Similarly, the large perfor-
mance advantage of ALPS over the Hierarchical Fair Compe-
tition (HFC) model – another EA which regularly introduces
random individuals into the population but uses fitness as
the attribute to restrict competition and breeding – demon-
strates that the novel measure of age defined here is a better
attribute to control breeding than is fitness. Similarly, the
significant performance advantage of ALPS over a multi-
start EA demonstrates that it can be more advantageous
to integrate the regular introduction of random individuals
into the population with the ALPS approach than to have
many disjoint EA runs.

It is hoped that by using age as a means to control breed-
ing between individuals in the population, future variants
of the ALPS algorithm – such as by hybridizing ALPS with
another diversity maintenance technique – will provide even
better ways to prevent premature convergence.
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