Genetically Programmed Strategies For Chess Endgame

Nicolas Lassabe, Stéphane Sanchez Hervé Luga and Yves Duthen
IRIT/UTH
21 allé de Brienne
31042 Toulouse, France

[lassabe,sanchez,luga,duthen] @irit.fr

ABSTRACT

Classical chess engines exhaustively explore moving possi-
bilities from a chessboard configuration to choose what the
next best move to play is. In this article we present a new
method to solve chess endgames without using Brute-Force
algorithms or endgame tables. We are proposing to use Ge-
netic Programming to combine elementary chess patterns
defined by a chess expert. We apply this method specifi-
cally to the classical King-Rook-King endgame. We show
that computed strategies are both effective and generic for
they manage to win against several opponents (human play-
ers and artificial ones such as the chess engine CRAFTY).
Besides, the method allows to propose strategies that are
clearly readable and useable for a purpose such as teaching
chess.

Categories and Subject Descriptors

Algorithm [Genetic Programming)

Keywords

chess, Genetic Programming, evolving strategies

INTRODUCTION

One of the first challenges of computer science, and more
specifically Artificial Intelligence, is to create chess engines.
But, from quite simple rules and a limited chessboard size,
chess game generates a great complexity and chess engines
have been conceived in several ways.

The first one is to evaluate and to store, for each chess-
board configuration what the best move to play is. This
simplistic and idealistic approach of the problem seems tech-
nically difficult for it is commonly said that there are more
possible chess games than atoms in the universe' [17] . De-

1.

!The number of chess games is approximately 10'?3, that of
legal positions is between 10?3 and 10°° as a comparison, the
number of atoms in_the Universe is estimated to be betwee
4 x 10™ and 6 x 107

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’06, July 8-12, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

831

spite this, chess engines commonly use such tables of best
moves but only for endgame situations with less than five
pieces on the chessboards and only a few with six pieces
on chessboard. Even under such restricted conditions, the
needed storage size for each table is often several gigabytes.

A second approach is what is commonly called Brute-
Force method?. It consists in calculating the best next
move considering exhaustively the possibilities of the op-
ponent from the actual chessboard configuration. Here the
problem is no longer storage but the exponential growth of
search space. Nevertheless, over the years, algorithms to
search through trees of moves, and evaluation functions to
estimate the correctness of a move, have improved to such
an extent that modern chess engines play almost like chess
grandmasters. Still, this approach has a flaw. Even if chess
engines based on Brute-Force algorithms play near perfectly,
they only mathematically compute the next best move: it is
impossible to qualitatively know why such move is preferred
to another one. The method to choose a move is not the
one used by a real chess player.

A third approach to conceive artificial chess engines is
to try and solve the chess game considering it and under-
standing it as a chess grandmaster does. This induces a
cognitive study of a chess game that began with the appear-
ance of the first artificial chess engines. This study shows
that chess players elaborate strategies splitting up the con-
figuration of chessboards in to specific patterns. Modelling
these patterns and putting them together could be a good
way of creating chess engines that use understandable and
readable strategies instead of using Brute-Force algorithms
or large endgame tables such those used by Nalimov’s ones
[12]. Several works already propose such an approach to
specifically solve chess endgames. They usually highlight
the difficulty of creating strategies that are both effective
end generic enough to win all the configurations of a spe-
cific chess endgame.

This paper refers to this third approach as we propose
to use Genetic Programming to automatically create an ar-
tificial chess player that plays using specific patterns and
moves proposed by an associate chess expert. In order to
implement and evaluate the performance of the method we
will only for this time focus on a classic endgame, the King-
Rook-King endgame (KRK). Genetic Programming allows
to put patterns and moves together in order to compute
generic strategies that can be effective against several op-
ponents and in various starting configurations of a KRK
endgame. We will also show in the results section that com-

2See Appendix

puted strategies are realistic and clearly readable by any
chess player. Last, to evaluate the quality of computed
strategies, we will discuss games played by our artificial
player against a perfect player using Nalimov’s tables and
compare them to those played by a referring chess engine,
CRAFTY by Hyatt® [14], against the same perfect oppo-
nent.

2. BACKGROUND

Chess players need to develop a tactical and strategic
sense to master this game and about ten years are gener-
ally necessary to become an international master. If the
chess players devoted a lot of time to their passion, very
early in the history of computer sciences, researchers also
spent a lot of time trying to create chess programs able to
play like chess grandmasters.

The first article on artificial chess engines was written by
Shannon in 1950 [17]. At the time, they thought that re-
solving this game would be fast and so they could prove
the power of artificial intelligence. In 1957, Herbert Simon
said that within ten years, a digital computer would be the
world chess champion. One year later, he discovered the
alpha-beta pruning algorithm for chess [13]. Since then, per-
formance of chess engines has never cease improving along
with the improvement of alpha-beta, of its heuristics and of
its evaluation functions [15]. Over the past years, research in
this domain has focused on ways to improve evaluation func-
tions. The most original ones is proposing to optimize the
evaluation function using genetic algorithms [9], to replace
it by artificial neural networks or to build it automatically
using genetic programming [1]. In this perspective, genetic
programming [10] has been mainly used in two ways. The
first one is the automatic production of new heuristics for
alpha-beta pruning [7], and the second is to find new evalua-
tion functions to estimate the value of potential next moves
[5, 8]. Though these uses of GP were original and effective,
they still rely on an exhaustive exploration of possible moves
to play in order to choose the best next one. A third ap-
proach is to use Genetic Programming to classify endgames
situations according to the remaining moves to checkmate
the opponent. This classification is done using standard
endgames tables [6].

One inconvenience of such an approach (based on evalu-
ation of moves and alpha-beta pruning) is that it is bound
to the complexity of the alpha-beta trees (36 moves per po-
sition on the average means 36" according to depth n). In-
deed, if this approach is effective in the case of a chess game,
it is no longer viable in the case of the Go game where
there are about 300 available moves per situation [3]. Still,
this method, commonly called Brute-Force, has proved its
worth thanks to the growing processing capacities of modern
computers: in 1997, DEEP BLUE defeated the world chess
champion, Garry Kasparov, in six classical game match held
in New-York [16].

This kind of victory of a computer over a human mas-
ter has led to make chess one of the most used games to
promote artificial intelligence and computer science. Nev-
ertheless, chess engines are not able to strategically plan
moves or to explain why they compute such a combination

3Crafty v19.13 is a direct descendent of CrayBlitz, the World
Computer Champion from 1983 to 1989 : Elo of 2617 SSDF
rating list (source code: ftp://ftp.cis.uab.edu/pub/hyatt)

832

of moves. They just exhaustively consider moving possibil-
ities and eliminating the least interesting ones in order to
play the most promising move. On the contrary, human
players have the capacity to focus only on a few available
moves without exhaustively exploring the moving possibili-
ties.

To prove this, Herbert Simon and others have studied the
cognitive mechanisms of chess players. Using psychological
tests, they have highlighted the importance of learning and
the systematic use of patterns by chess players [18]. From
this study, work about the solving of chess endgames using
specific patterns has been pursued. Weill shows that it is
possible to create by hand strategies for chess endgames by
building decision trees using patterns [19]. The same year,
Bain [2] proposed to solve a KRK endgame by learning logi-
cal rules from the extraction of patterns from KRK endgame
tables. Similar work about solving the KRK endgame was
carried out [11] but learned strategies came from human
versus human games and they were modified by hand when
they were unable to propose the next move.

3. EVOLVING STRATEGIES FOR KRK

In this work, our main purpose is to automatically gener-
ate strategies that can checkmate the Black King in every
possible configuration of KRK endgame. Owur concern is
not to use endgame tables or classical algorithms bases on
trees of moves and evaluation functions anylonger, but to
build strategies as a human chess player does. That is to
say by combining elementary chess patterns to build a win-
ning strategy. This work differs from previous studies about
endgames solving due to a fact that we do not try to extract
patterns or playing rules from known endgame tables such
as Nalimov’s or from recorded played games, but we intend
to propose a chess engine that learns how to play effectively
using patterns proposed by chess experts.

The learning technique that we have chosen to apply is
Genetic Programming (GP), by which computer programs
can evolve [10]. A prime advantage of using GP is that we
do not need to estimate topologies of evolved programs in
advance or to determine precisely what the operators (or
predicates) are to be used to compute a correct strategy.
In GP, we start with an initial set of operators and func-
tions and we let the system evolves according to the fitness
function. A secondary advantage of GP is that computed
programs are often readable. This was important to us for
we wanted computed endgames strategies to be easily read-
able and understandable in order to reproduce them while
playing, or to be used as a support for chess teaching. Last,
using GP, it is no longer necessary to evaluate the correct-
ness of every move played, but it is possible to generate an
effective strategy with a fitness function that only considers
the outcome of games played during evaluation.

3.1 The King-Rook-King endgame

In the particular case of chess endgames, a player usually
follows specific algorithms or strategies. While involving
few pieces, solving endgames is not trivial. Indeed, pieces
involved have more freedom and so there are many available
moves per situations. While chess engines usually perform
a wide-search through endgame tables to determine the cor-
rect solution, human players are able to exclusively perform
a deep-search to determine a wining strategy. This is a real
advantage to solve endgames where planning a good strategy

Figure 1: Patterns: (a) Opposition: the Kings are in
front of each other, separated by one field. (b) Near
opposition: the Kings are almost in front of each
other (c) Lateral check: there is opposition and the
Rook laterally checks the King. (d) Checkmate: the
King can not flee behind anymore.

is necessary. This phase is less tactical than the mid-game
period (where chess engines are excellent) and it is crucial
to anticipate the future of the game much further than an
acceptable deep-search in a tree of moves. In the case of the
King-Rook-King (KRK) endgame, a good coordination of
King and Rook moves is necessary to avoid stalemate and
realize the checkmate. Players use solving methods that are
not easily implemented and usually based on patterns that
are specific to endgames.

In a KRK endgame, the players easily understand that
it is necessary to beat the defending King back to the edge
of the board in order to checkmate. While several more
or less effective methods exist, the strategy used remains
the same. In order to beat back the defending King, and
to eventually checkmate, attacking King must be in direct
opposition to the defending one and the Rook must check
the defending King on its side (Fig. 1). Players must repeat
this operation until defending King reaches the edge of the
board. To do that, they analyze the board configuration
to determine specific patterns in order to choose their best
next move. These patterns are usually simple, but their
combination can produce complex strategies.

3.2 Patterns definitions

Chess players do not choose the next move considering all
the possibilities, or counting how many fields a piece can
cross. They have a specific objective that can be split up
in patterns reachable by specific moves [18]. While playing,
they usually try to determine which pattern they can obtain
next, and how good enough it will be for their current strat-

833

Predicates

boolean kingsInOpposition()

Are the Kings in front of each other and separated by
one fields?

boolean kingsCloseToOpposition()

Are the Kings almost in opposition?

boolean kingOnEdge ()

Is the Black King on the edge of the board?

boolean oneEmptyFieldToBlackKing()

Does the Black King have only one possible move left?
boolean distanceBKWK3()

Does the distance between the Kings equal three fields?
boolean noEmptyFieldToBlackKing ()

In the current configuration, can the Black King move?
boolean possibleControlOfEscapeLine()

Can the White Rook block the Black King?

boolean possibleLateralCheck()

Can the White Rook check the Black King?

boolean controlOfLineBeetweenKings()

Does the White Rook control a line between the Kings?
boolean threatenedRook()

Is the Black King in a position to capture the White
Rook?

boolean protectedRook()

Is the White King protecting the White Rook?

boolean possibleProtectionOfRook()

Can the White King protect the White Rook?

boolean possibleProtectionOfRookWithOpposition()
Can the White King protect the White Rook by getting
in opposition with the Black King?

White King moves

protectRook ()

move the White King to protect the Rook.
nearlyOpposition()

move the White King to be close to opposition.
distantOpposition()

move the White King toward the Black King.

White Rook moves

controlEscapeLine ()

move the White Rook to limit the movement freedom of
the Black King.

lateralMove ()

move the White Rook away from the Black King along
the controlled line.

controlLineBeetweenKings ()

move the White Rook to control a line between the Kings.
lateralCheck()

move the White Rook to check the Black King.
moveAwayToFreeBK ()

move the White Rook away from the Black King to avoid
stalemate.

Table 1: Set of predicates and moves used to gener-
ate strategies

states bonus | penalty
Rook is lost 0 5
impossible move 0 3
draw by repetition 0 2
game exceed 50 moves 0 1
King is stalemate 200 1
King is checkmate 400 1

Table 2: Bonus and penalties used by the fitness.

egy. In the particular case of KRK endgames, the discus-
sions with the International Grandmaster Laurent Fressinet*
2625 elo [4] have isolated 13 predicates (Tab. 1) that deter-
mine a current situation of the chess board, and 8 specific
moves to play.

3.3 Genetic encoding and genetic operators

Using GP, we will build binary trees with operators (pred-
icates) as nodes and functions (moves) as leaves. Each tree
is a chromosome and it defines a unique strategy that is
evaluated by performing several reference games. As each
defined predicate can be considered as a conditional state-
ment, we defined 13 operators. Each operator can be read
as an [F THEN ELSE statement. Each one of the 8 moves
is modeled as a function. Transition between two nodes is
considered as a logical AND.

Crossover is similar to the usual operator used in genetic
programming [10]. Mutation substitutes a randomly se-
lected node to another predicate, modifies a function (leaf)
or replaces a part of the actual tree with a randomly gener-
ated one.

3.4 Fitness

Fitness evaluation should allow getting winner strategies
for endgames of a King Rook against a King. That is to
say that the best programs must be able to checkmate. We
also want computed programs to be the most effective in
most chessboard configurations. That is to say that they
must win every game they play. Thirdly, computed pro-
grams must win a game as fast as possible. That is to say
that they win a game with a minimal sequence of moves.
Last, we want to favor the shortest computed programs (the
smallest computed trees). Fitness value F' (Equ. 1) of a
computed program is a weighted sum of a sum of partial
fitness functions f; (Equ. 2) and an evaluation of the size
of the program tree N. A partial fitness f; is computed for a
unique chess game i amongst a set of chosen games (that will
ensure that the program is effective against various starting
configurations). Each partial fitness function is firstly based
on how many moves M, it is necessary to play to end one
game. This partial value is then modified according to how
the game ends. If the King or the Rook checkmate their
opponent, or if the opponent King achieves stalemate (the
game ends in a draw but the King and the Rook manage
to push out the opponent King to the edge and are close to
checkmate), genetically computed programs are considered
as good ones. In these cases, we add a bonus B; to the par-
tial fitness function (Tab. 2). If the game ends in a draw
because there are three similar chessboard configurations, or
if the program does not play any valid moves, or if the Rook

4Laurent Fressinet is in the FIDE world top 100 chess play-
ers from 2002.

834

Figure 2: (a) The White Rook attracts the Black
King. (b) The White Rook blocks the Black King.

is lost (and so it is impossible to checkmate), the computed
programs are considered as bad and the partial fitness value
is divided by an according penalty P;. In the case of a draw
if the computed program exceeds 50 moves without any cap-
ture, we can not conclude whether the program is good or
bad, so no bonus or penalty is applied.

F=aY fit 61— —) (1
(-)+ B,
i = e @

maxN : Maximal count of allowed nodes.
maxM : Maximal count of allowed moves.

4. RESULTS

Chess programs to solve the KRK endgame have been
generated using four experiments. The goal of each experi-
ment is to generate the strategy of the white King and Rook
to checkmate the Black King. Experiments differ from each
other by the playing strategy applied to the defending King.
The evaluation is done by making each generated program
to play 17 reference games that represent the most relevant
cases of the KRK endgame. The side to play at the begin-
ning of a reference game can be White or Black according
to the game itself. For all experiments, the mutation rate is
5% and the crossover rate is 65% (after several trials, these
parameters are those that give best convergence to our prob-
lem). The population of programs to evolve consists of 10000
individuals.

4.1 First experiment

In the first experiment, the Black King’s strategy is ag-
gressive as it tries to capture the opponent Rook. After a
couple of minutes, a suited strategy to checkmate the Black
King is computed: instead of pushing out the opponent King
to the edge of the board (the usual strategy for the White
side), the computed strategy consists in attracting the Black
King by putting the White Rook in one corner of the chess
board (Fig. 2). Once the Black King is near the corner,
the White Rook blocks it against the edge by controlling the
second line from the edge. Then, White King only has to ap-
proach and to checkmate the opponent King. The best white
computed strategy wins all the 17 reference games (Fig. 3).
But, as the Black King’s strategy is pretty dumb and un-
realistic, the relevant result for this experiment is only to

Chess Endgame KRK : Experience 1

best
average

1000

800 |

600 [

Fitness

400 [

200 |

L L L
150 200 250
Generations

(a)

300

Chess Endgame KRK : Experience 1
100 T

T
checkmate
illegal move
repetition -------
limit move
stalemate ----
lost rook -------

40 -

Programm’s return

P A ™)
0 50 100 150 250

Generations

(b)

Figure 3: (a) The fitness evolution. (b) Before
the 50th generation, strategies played mainly illegal
moves and a lot of Rooks were lost. After the 50th
generation, number of checkmates grows quickly,
most Rooks are saved and illegal moves are mostly
avoided.

200 300

show how good our method is to compute an effective strat-
egy against a specific one, and to compute a strategy that
is effective in all the reference games.

4.2 Second experiment

In the second experiment, the Black King has a better
strategy: it does not follow the White Rook anylonger but
it will try to capture it if it is close to it. If White Rook is
not close to it, it will run away from it, trying to stay in the
center of the chess board. Against this strategy, an effec-
tive White strategy is computed in a little less than an hour
(Fig. 4). White King and the Rook manage to checkmate
the Black King using a realistic strategy: the White Rook
and the King cooperate to push the Black King against one
edge of the chess board, and the White King also protects
White Rook if necessary. However, computed strategies are
no longer effective if we slightly the modify Black King’s
strategy (the White side is unable to checkmate). This ex-
periment confirmed the correct convergence of the method
toward a suited winning strategy, but we could not obtain
a generic strategy for the KRK endgame, that is to say a
strategy that checkmates any opponent.

835

Chess Endgame KRK : Experence 2

" best
average
1000 |

600 [

Fitness

400 [

L L L
150 200 250
Generations

(a)

100 300

Chess Endgame KRK : Experence 2
100 T

T
checkmate
illegal move
repetition -------
limit move
stalemate -
lost rook ---+---

Programm’s return

Generations

(b)

Figure 4: (a) The fitness evolution. (b) Before the
30th generation, the strategies played in majority
illegal moves and a lot of Rooks are lost. After the
30th generation, the number of checkmates grows
quickly, most Rooks are saved and illegal moves are
mostly avoided.

4.3 Third experiment

In third experiment, each computed strategy is still eval-
uated for the 17 reference games, but against 4 different
Black Kings strategies. So, each computed strategy is eval-
uated with 68 games. The common point of four strategies
is that the Black King tries to stay in the center of the chess
board. They differ from each other by the following facts:
the Black King does not seek to break opposition to the
White King and it prefers to try and stay close to the center
of the chessboard considering the Euclidian distance to the
center. The Black King avoids opposition to the White King
and, if necessary, moves away from the center of the chess-
board, considering Euclidian distance to the center. The
Black King does not seek to break opposition to the White
King and it prefers to try and stay close to the center of the
chessboard considering how many moves are necessary to
reach the center. The Black King avoids opposition to the
White King and, if necessary, moves away from the center of
the chessboard, considering how many moves are necessary
to reach the center.

An effective strategy to checkmate the Black King and to
win all the 68 games is computed in about 3 hours (Fig. 5).

Chess Endgame KRK : Experience 3
T T T

best

average

1000

800 |

600 [

Fitness

400 [

200 |

L
200
Generations

(a)

Chess Endgame KRK : Experience 3
100

T
checkmate
illegal move
repetition -------
limit move
stalemate ----
lost rook -------

40 -

Programm’s return

100 150
Generations

(b)

Figure 5: (a) The fitness evolution. (b) Before the
50th generation, strategies played in majority illegal
moves and a lot of Rooks are lost. After the 50th
generation, the number of checkmates grows quickly,
most Rooks are saved and illegal moves are mostly
avoided.

S s
0 50 250

The strategy proposed is really close to the one usually used
by the chess expert. But, although it is effective against the
dumb strategy of the first experiment, further tests using
slightly different starting configurations of the chessboard,
or against a human player with different strategies, show
that the computed strategy is not totally generic. Indeed,
the best computed strategy only wins 96% of the new 68
played games.

4.4 Fourth experiment

In the fourth experiment, we add a fifth Black King’s
strategy to the previous four. This strategy consists in us-
ing Nalimov’s tables to make the Black King always play
the best move. As in the previous experiment, an effective
strategy is computed in about 3 hours (Fig. 6). This strat-
egy wins all the 85 games used for evaluation and it manages
to win all over games it plays (different starting positions,
different strategies, against human players).

4.4.1 A computed strategy from fourth experiment

Figure (Fig. 7) shows the tree generated that represents
one of the best computed strategies from the fourth experi-
ment.

836

Chess Endgame KRK : Experience 4

T
best
average

1000

600 [

Fitness

400 [

L L L
150 200 250
Generations

(a)

100 300

Chess Endgame KRK : Experience 4
100 T

T
checkmate

illegal move
repetition -------
limit move

P stalemate -

sOF i lost rook -------

Programm’s return

150 200
Generations

(b)

Figure 6: (a) The fitness evolution. (b) Before the
30th generation, strategies play in majority illegal
moves and a lot of Rooks are lost. After 30th gen-
eration, the number of checkmates grows quickly,
most Rooks are saved and illegal moves are mostly
avoided.

100

300

In the left part of the tree, the Kings are in opposition.
This side is used both to push the Black King back to the
edge of the chessboard and to checkmate it: if lateral check
is not possible, the White Rook will be moved to make it
possible (1).

In the right part of the tree, the Kings are not in oppo-
sition. If the Black King attacks the White Rook then the
White King protects the White Rook by taking opposition
(2). This action is really effective because the White King
can protect the White Rook and goes on pushing the Black
King back without moving the White Rook.

If the White Rook is not attacked, and this kings are not
near the opposition, the White King gets closer to the Black
one (3). If the kings are close, the White Rook controls the
lines around the Black King to prevent it from escaping (4).

After the analysis of the computed strategies, the chess
expert confirms that they are really close to those used by
good chess players. Besides, he appreciates the fact that
they are concise, readable and understandable. It is also
noticeable that some of the concepts he formulated are not
used by the computed strategies. Our method only uses the
most relevant ones. Last, playing the KRK endgame against

21

Distant
opposition

Distant
opposition

<
6 ¥y
4 iy
C) predicate / \
s Control of line Control line | |
2

I:] White Rook move between Kings between Kings ||
i

|

I:I White King move i

It 140

I

i

i| Control line
— Yes 1 between Kings
—— No |

Figure 7: Representation of one of the best strate-
gies for the KRK endgame. The predicates are rep-
resented by circles and the moves by squares. The
number indicates how many times each branch of
the tree was visited. All parts of the tree are useful.

several computed strategies, and systematically losing the
game, tends to confirm that computed strategies are generic
and work against any strategy for any starting configuration.

4.4.2 Qualitative evaluation of best computed strate-
gies

Nalimov’s tables are reference tables for chess endgames
that involve less than 6 pieces on the chessboard. They allow
to know which move it is best to play in each configuration
for both the Black and White sides. The best move is the
one that leads the attacker to the fastest checkmate or the
one that leads the defender to the longest survival before
checkmate or to stalemate. To evaluate the performance of
the best computed strategies, we perform for each of them
the 17 reference games. In each game, the White side (the
King and the Rook) is attacking and played by a computed
strategy while the Black King is perfectly defending using
Nalimov's tables. Figure (Fig. 8) shows the average moves
needed by ten computed strategies to checkmate the Black
King. In theory, it is impossible to win a game in fewer
moves than a game played between two players using Nal-
imov’s tables. The graph shows that our computed strate-
gies manage to be perfect, or near perfection, in most of
the games played, except for 4 starting configurations when
they badly fail to reach the minimal count of moves. In
this case, our first analysis is that the patterns used (or
predicates) may not be precise enough to identify really the
specific configurations of the chessboard. To complete this
evaluation, we performed the same 17 games between the
CRAFTY chess engine as the White side and a player us-
ing Nalimov’s tables. In games that require less than eight
moves to checkmate, CRAFTY is as effective as a perfect at-
tacker: it can go through its entire research tree to find the
best way to checkmate. For games that require more than
eight moves to checkmate, CRAFTY must take its move
decision by considering only its evaluation function and it
becomes less effective than the computed strategies: a lot of
played moves are unnecessary and do not effectively lead the
endgame to checkmate. On the contrary, computed strate-
gies almost managed to play moves that induce progress to
checkmate. Besides, for the latter, the CRAFTY reflecion
time increased to about 4 minutes, while that of any of the

837

Chess End-Game
50 T

Nalimov/Nalimov
OurNalimov -
Naiimov/Crafty -

40 : 4

20 iy]

Nb move

L
0 5 10 15 20
Positions

Figure 8: Average count of moves needed to win
each of the 17 referring games

computed strategies remained below 1 second. Last, it is
important to notice that computed strategies checkmated
their 17 opponents in 11 moves on average, against 9 if the
attacker played perfectly (Nalimov) and against 16 in the
case of CRAFTY.

5. CONCLUSION

In this paper we presented a method to solve chess endgames
without using classic Brute-Force algorithms or huge chess
endgame tables. Instead, we used Genetic Programming
to generate automatically winning strategies from a set of
elementary chess patterns. The computed strategies for
the first considered endgame, the KRK endgame, showed
promising results. Indeed, we managed to produce generic
strategies that can be effective against the tactics of every
opponent they encountered and this for every starting game
configuration. Besides, Laurent Fressinet’s evaluation con-
firms that they are both concise and realistic in the way
they play the KRK endgame. Last, the secondary goal of
this project, producing strategies that are fully readable and
that allow to understand how such an endgame must be
played, is fulfilled.

However, two problems arose from this work. Firstly,
computed strategies for KRK endgame do not manage to
be optimally effective. While they seem better than the one
used by a chess engine such as CRAFTY, it is still possi-
ble to refine the definition of patterns in order to avoid the
less effective moves that remain in some games. Secondly,
it seems pretty obvious that the defined patterns are really
specific to KRK endgames. It might be necessary to evaluate
the validity of those patterns in other endgames involving
Rooks and Kings.

This work about the generation of chess strategies us-
ing genetic programing is still in progress. We are tring
currently to model with our chess expert a new set of pat-
terns to generate strategies for other endgames such as King-
Knight-Bishop against King. This endgame requires at least
30 moves to checkmate and, though known strategies exist,
they are usually not well mastered even by chess masters. To
compute effective strategies for this endgame could allow to
teach this endgame more effectively and to understand more
precisely the utility of each move played.

6. ACKNOWLEDGMENTS

We wish to thank International Grandmaster Laurent Fressinet,

Sosthéne Kramo, Samy Abbas and Jérome Barrio for helpful
and constructive comments.

7. REFERENCES
[1] M. Autones, A. Beck, P. Camacho, N. Lassabe,

H. Luga, and F. Scharffe. Evaluation of chess position
by modular neural network generated by genetic
algorithm. In FuroGP, pages 1-10, 2004.

M. Bain and S. Muggleton. Learning optimal chess
strategies. In Machine Intelligence 13, pages 291-309,
1994.

J. Burmeister and J. Wiles. The challenge of go as a
domain for ai research: a comparison between go an
chess. In Proceedings of the Third Australian and New
Zealand Conference on Intelligent Information
Systems IEEE Conference on Evolutionary
Computation, volume volume 2, 1995.

A. E. Elo. The Rating of Chessplayers, Past and
Present. Arco Pub., New York, 2nd edition, 1978.

G. J. Ferrer and W. N. Martin. Using genetic
programming to evolve board evaluation functions for
a boardgame. In 1995 IEEE Conference on
Evolutionary Computation, volume 2, page 747, Perth,
Australia, 29 - 1 1995. IEEE Press.

D. Gleich. Machine learning in computer chess:
Genetic programmig and krk, 2003.

R. Grof3, K. Albrecht, W. Kantschik, and W. Banzhaf.
Evolving chess playing programs. In GECCO 2002:
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 740-747. Morgan
Kaufmann Publishers, 2002.

A. Hauptman and M. Sipper. GP-endchess: Using
genetic programming to evolve chess endgame players.
In Proceedings of the 8th FEuropean Conference on
Genetic Programming, volume 3447 of Lecture Notes
in Computer Science, pages 120-131, Lausanne,
Switzerland, 30 Mar. - 1 Apr. 2005. Springer.

G. Kendall and G. Whitwell. An evolutionary
approach for the tuning of a chess evaluation function
using population dynamics. In Proceedings of the 2001
Congress on Evolutionary Computation CEC2001,
pages 995-1002. IEEE Press, 27-30 2001.

J. R. Koza. Genetic Programming: On the
programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, Mass., 1992.

E. Morales. On learning how to play. In Advances in
Computer Chess 8, pages 235-250. Universiteit
Maastricht, 1997.

E. V. Nalimov, G. Haworth, and E. A. Heinz.
Space-efficient indexing of endgame databases for
chess. ICGA Journal, Vol. 23(No. 3):148-162, 2000.
A. Newell, J. Shaw, and H. Simon. Chess-playing
programs and the problem of complexity. IBM Journal
of Research and Development, 2:320-335, 1958.

A. E. G. Robert M. Hyatt, Harry L. Nelson. Cray
blitz. In in Computers, Chess, and Cognition, pages
111-130. Springer-Verlag, 1990.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

2]

3]

[4]

[5]

[7]

8]

(10]

(1]

(12]

(13]

(14]

(15]

838

[16] Y. Seirawan, H. Simon, and T. Munakata. The
implications of kasparov vs. deep blue. Commun.
ACM 40(8), pages 21-25, 1997.

C. Shannon. Programming a computer for playing
chess. Phil. Mag., 41:256-275, 1950.

H. Simon and W. Chase. Skill in chess. American
Scientist, 61:394-403, 1973.

J.-C. Weill. How hard is the correct coding of an easy
endgame. In H. J. v. d. Herik, I. S. Herschberg, and
J. W. H. M. Uiterwijk, editors, Advances in Computer
Chess 7, pages 163—-176. University of Limburg, 1994.

APPENDIX

(Glossary of chess terms : www.arkangles.com)

Alpha-Beta pruning. A technique used by computer
programmers to cut down on the number of possible moves
a computer has to evaluate before choosing the best move.

Check. The act of attacKing the opponent’s King. The
opponent must get out of check on the next move, either by
moving the King, capturing the attacKing piece, or moving
another piece between the King and the attacKing piece.

Checkmate. Threatening the capture of the enemy King
such that it cannot escape. This wins the game for the
attacKing side.

Draw. A game that ends in a tie, where each player is
awarded half a point. A draw occurs when 1) there’s not
enough material to force mate; 2) there is a stalemate; 3) a
3-time repetition of position has been reached

Elo rating. An internationally accepted mathematical
system for ranKing chess players, created by Arpad Elo.
International Grandmasters are typically in the range 2500
to 2700, world champions often over 2700. The standard
deviation is 200 points. The scale is such that a player at
1800 would be expected to beat one at 1600 by the same
margin as a player at 2600 against one at 2400.

Endgame. The final phase of the game when there are
few pieces left on the board. The endgame generally starts
when the immediate goal is to promote a pawn.

Fifty move rule. A game can be drawn when fifty moves
have been made by each player without a capture or pawn
advancement.

Opposition. An endgame term meaning the King not
forced to move. Where the two Kings stand on the same file
or diagonal with an odd number of squares between them,
the player that doesn’t have to move is said to "have the
opposition.” This is important in King and pawn endings
as the player who can secure the opposition can effectively
guard certain spaces or drive the opposing King back.

Positional. A move, series of moves, plan, or playing
style concerned with exploiting small advantages.

Strategy. The formation and execution of an overall
plan.

Tactics. Traps threats, and plans based on the calcula-
tion of combinations or variations. A position where many
combinational ideas are present is a tactical position.

Transposition. Reaching an identical position from a
different sequence of moves.

