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ABSTRACT 
A novel approach to classification is proposed in which a Pareto-
based ranking of individuals is used to encourage multiple 
individuals to participate in the solution.  To do so, the 
classification problem is re-expressed as a cluster consistency 
problem, thus allowing utilization of techniques from multi-
objective optimization. Such a formulation enables classification 
problems to be automatically decomposed and solved by several 
specialist classifiers rather than by a single ‘super’ individual.  In 
this paper, we demonstrate the proposed approach to two 
benchmark binary problems and recommend a natural extension 
to multi-class problems.  Results indicate the general 
appropriateness of the approach. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis.  

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Genetic Programming, Multi-objective Classification. 

1. INTRODUCTION 
Since the conception of Genetic Programming (GP) several 
methodologies have been proposed for encouraging solutions to 
take the form of a set of programs (individuals) solving different 
parts of the problem, as opposed to the population converging on 
a single ‘super’ individual. Recent examples might include the 
cooperative [1], and competitive [2] co-evolutionary paradigms, 
where both have been demonstrated within a Genetic Algorithm 
(GA) context. Both co-evolutionary approaches are multi-
population models.  In this work we are specifically interested in 
developing a multi-member solution from a single population, as 

opposed to ‘super’ individuals, where the latter has recently been 
investigated in a Multi-objective GP context [3].  

Recent advances in the Multi-objective GA (MOGA) optimization 
literature have demonstrated that a Pareto front may be used to 
maintain a set of candidate solutions to multi-modal problems [4]. 
Within the MOGA context, candidate solutions describe a point in 
multi-dimensional space, where the basic objective is to locate the 
set of solutions (points) minimizing a predefined objective over an 
unknown (multi-modal) function. The specific interest of this 
work is to provide a methodology for utilizing the MO 
framework, currently demonstrated under a GA context, for 
solving the problem decomposition issue under Genetic 
Programming. To do so we make use of a recent result from GP in 
which the switching (or global) wrapper classically employed to 
map the ‘raw’ GP output to a discrete number of class labels is 
replaced with a local or Gaussian-type wrapper function [5]. 
Under this context, it is now possible to phrase the classification 
problem as finding the minimum set of mappings from a multi-
dimensional input space to class consistent clusters on the one-
dimensional GP output space. 

In the following section, we provide the rationale for the proposed 
approach before detailing the multi-objective GP (MOGE) 
classifier itself in Section 3. Results on two real world binary 
classification benchmarks are presented in Section 4, with 
conclusions and future work presented in Section 5. 

2. BACKGROUND 
Binary GP classifiers have typically assumed a wrapper operator 
based on a switching type function which partitions the entire 
range of GP output values into a binary space for comparison 
against the class label. Such a methodology was recently 
questioned, and demonstrated to hide the underlying information 
regarding the quality of the mapping performed by GP from the 
original multi-dimensional input space to the one dimensional 
output space [5]. Specifically, basing the wrapper on a global as 
opposed to a local activation function ignores the degree of class 
separation implicit in the mapping performed by GP. This issue 
was addressed by expressing the objective of the classification 
problem as one of maximizing a cluster separation distance; where 
a cluster is comprised of all values associated with the same class 
label as mapped by GP to the one dimensional GP output space. 
The implicit assumption in this model however, is that a single 
mapping is sufficient and / or appropriate to solve the 
classification problem. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’06, July 8–12, 2006, Seattle, Washington, USA. 
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00. 

863



In this work, we build on [5] by supporting multiple mappings. 
Thus, we are interested in identifying the minimum set of non-
overlapping clusters capable of describing the in-/out- class data. 
Such a methodology provides the basis for decomposing the 
problem into a series of smaller problems. To do so, we express 
cluster membership by assuming a Gaussian membership 
function, thus we are nominally interested in minimizing several 
properties, including the overlap in Gaussian membership, the 
number of mappings necessary to describe the data, and 
classification error (that is, cluster membership must be consistent 
across class label(s)). As such, we have a multi-objective 
optimization problem that we can address using the recent 
advances from MOGA. 

3. ALGORITHM DESCRIPTION 
The following study is performed using Grammatical Evolution 
(although the algorithm is not specific to the type of Genetic 
Programming employed). Grammatical Evolution (GE) permits 
automatic and language independent evolution of programs of 
arbitrary complexity [6].  There are some obvious similarities 
between GE and GP; however, GE does not operate directly on 
the programs themselves as in traditional GP; rather the programs 
are stored as a series of Backus-Naur form (BNF) grammar rule 
selectors, which are in turn indirectly represented by a fixed 
length binary string individual.  In this sense, GE is similar to GA 
and consequently permits the use of simple GA search operators. 
Since the algorithm presented here is not specific to GE and 
because of the numerous similarities, the terms GE and GP are 
used interchangeably in this paper. 

3.1 GE Search Operators 
GE uses a context free grammar (CFG) to perform the mapping 
between genotype and phenotype. This implies that changing the 
value of a single gene will frequently change the phenotypic 
representation for all the following the genes. That is to say, the 
genotype is incrementally converted into a corresponding 
phenotype using the CFG to convert non-terminals into terminals, 
where there non-terminals frequently expand into other non-
terminal symbols before the grammar identifies a terminal. This 
has resulted in the use of context based crossover operators that 
note the genes corresponding to a terminal in the phenotype [7]. 
Crossover is limited to exchanging gene sequences between 
terminal symbols in the phenotype, thus the remainder of the 
phenotype is largely preserved. Such a crossover operator was 
demonstrated to perform significantly better than the single point 
crossover typically employed by GE. In this work a similar 
crossover operator is employed along with a mutation operator 
that explicitly mutates genes corresponding to terminals in the 
phenotype, resulting in alternative terminals of the same arity. 

3.2 MOGE Classifier Output Representation 
In this work, the term ‘classifier’ refers to a set of GE individuals 
(mapped as arithmetic expressions in this case) that collectively 
solve a classification problem.  Individual expressions here are 
defined by the following context-free grammar, where variables 
are replaced by their associated pattern features: 

code: exp 
exp : var | const | exp op var | exp op exp 
op  : + | - | * | % 
var : x1 | x2 | … | xi 

Classification rules are built by first mapping the multi-
dimensional input exemplars to the one dimensional output space 
(GPout) and then re-expressing a subset in terms of a Gaussian 
membership function i.e., a local membership function. A 
decision value of more than a predefined decision threshold (0.1 
in this work) indicates that the pattern is considered ‘in-class’ or 
1; it is ‘out of class’ or 0 otherwise (See fig. 1). 

2 3 4 5 6 7 8

(GPout )

In-class

Out of class

GPiσ

GPiµ

 
Figure 1. Sample GE decision based on raw output. 

Thus in this work, an individual participating in a classifier is a 
data structure containing three members: GE arithmetic 
expression, Gaussian center (µ) and width (σ).  This is a key 
difference between a Multi-objective GE (MOGE) classifier and 
the conventional approach to classification with GP, where a hard 
switching function at the output value of 0 is frequently 
employed. 

3.3 MOGE Algorithm Overview 
The proposed algorithm has the following basic form: 

1. Initialize the GE population (POP_SIZE, CODONS, 
BITS_PER_CODON, MAX_EXP_LEN) with uniform 
probability; 

2. Evaluate initial population: 
a. For each individual, transform the (multi-

dimensional) input data to the associated 
(one-dimensional) output space, or GPout; 

b. Cluster each individual’s points on GPout to 
establish initial Gaussian centers (µ) and 
widths (σ); 

c. Calculate Pareto variables corresponding to 
the classification objectives; 

d. Assign Pareto ranking and initial fitness; 
3. While stopping criteria is not satisfied, execute the 

following inner loop for 3
POP_SIZE  (≡1 EPOCH) times: 

a. Perform fitness proportionate, stochastic 
selection of two parents; 

b. Apply search operators (P(XOVER), 
P(MUTATE)) to generate two children. 

c. Evaluate children (step 2) with respect to the 
current population, updating population 
members as necessary; 

d. Children replace the two lowest ranked 
members of population (ties are resolved 
using uniform probability); 
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4. Select classifier participants from the members of the 
Pareto front based on maximum classification 
performance on training data. 

The stopping criteria of Step 3 is defined in terms of either: 
successive epoch Pareto rank histograms match (Section 3.4.3), 
or maximum number of iterations are completed 
(MAX_EPOCHS). 

3.4 Algorithm Details 
3.4.1 Initialization 
Initialization of an individual is performed by randomly setting 
each of the genes and attempting to map to a legal expression as 
defined by the grammar.  The process is repeated until a legal 
mapping is successful such that no degenerate GE individuals are 
explicitly defined in the initial population [6].  There are no 
requirements on expression length; however, for memory 
considerations, expressions are constrained to a maximum length 
of MAX_EXP_LEN.  

3.4.2 Individual Evaluation 
Each individual is decoded into the corresponding phenotype, and 
evaluated over the training set, effectively mapping the original 
multi-dimensional input data onto points in a single dimensional 
(GPout) space.  This set of GPout points are then clustered, in this 
case using the Potential Function method (section 3.4.2.1), thus 
associating a cluster center with the region of highest density. The 
cluster center now defines the individual’s Gaussian center (µ) 
and the GPout points that are clustered about this center (also 
defined by the Potential Function) that are used to estimate the 
individual’s Gaussian width, σ, 

∑
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where i indicates the GPout points having membership to this 
cluster. The output from the individual is now defined by a 
Gaussian probability density function: 
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where GPG is the GP’s (Gaussian) class membership function.  
That is to say, at this point we have not explicitly enforced class 
membership, but merely constructed the membership operator on 
the basis of a single distribution describing the region of most 
density on GPout. When the membership function returns a value 
of more than the chosen decision threshold (0.1 in this work), the 
point’s associated pattern is considered ‘in-class’ (with the 
associated degree of membership); an exemplar is ‘out of class’ or 
has 0 membership otherwise (see fig. 1). This value is denoted the 
individual’s decision value for a given point and the set of 
decision values for an individual (over all exemplars) is hereafter 
referred to as the individual’s decision vector.   
It is also through the decision vector that cluster class consistency 
is assured.  In other words, the membership function is used 
during evaluation to establish the individual’s adherence to the 
objectives that are defined for identifying the notion of classifier 
success, including: minimization of the sum squared error (SSE); 
minimization of overlap between patterns classified among 
individuals in the population; minimization of expression length; 
and maximization of pattern coverage.  Thus the membership 

function provides the basis for measuring the degree to which the 
objectives are satisfied. Ultimately, it is the degree of success in 
optimizing this set of objectives that leads to the individual’s 
Pareto ranking and therefore its overall fitness assignment.  

3.4.2.1 The Potential Function 
The Potential Function is a four step iterative process, which 
proceeds as follows [8]:  

1. Identify each point’s candidate potential with respect to 
all other points in the set using a suitable distance 
metric. 

2. Select the point with the highest total potential. 
3. Subtract the highest potential (as determined in step 

two) from all other points. 
4. Repeat steps two and three until a terminating condition 

is realized. 
 

The distance metric identified in step one is referred to as the 
‘Potential Function’: 

( )∑
=

−−=
K

i
outoutoutt jGPiGPjGPP
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K is the total number of points in the set and α is the cluster 
radius constant (providing a means to influence granularity of 
clusters). 
Points with the most similarity to the current point, GPout(j), 
contribute most to the corresponding potential Pt(GPout(j)). Points 
with the most (or very near) neighbors will be assigned the 
greatest potential (as required in step two).  
Step three removes the influence of the ‘winning’ point (that with 
the highest potential) from all others within the same cluster. 
Thus, having found a winner, each cluster member’s potential is 
reduced by an amount proportional to its distance from the current 
winning potential Pt(GPout

*(j)), or ∀ i ∈ {1...K}, Pt+1(GPout(i)) is 
defined as: 




 −−−
2* )()(exp))(())(( jGPiGPjGPPiGPP *

outoutouttoutt β  

where Pt+1(GPout(i)) is the updated potential at iteration t + 1 and 
β (< α) is the radius associated with the Potential decay process. 
This process continues until an end condition is reached, as 
defined by the ratio of the potential at the current time step 
Pt(GPout

*(j)), to the initial potential, P0(GPout
*(j)) as follows: 

IF ( )))(())(( *
0

* jGPPiGPP outupperoutt γ>   

THEN create a new cluster; 

ELSE IF ( )))(())(( *
0

* jGPPiGPP outloweroutt γ<   

THEN end; 
ELSE ignore the point (it does not represent a 
significant cluster). 

Where the cutoff values ( lowerγ  and upperγ ) were chosen 

experimentally. 
In this work we are only interested in identifying the first cluster 
and associated neighborhood of points. That is to say, the 
performance of each individual is described in terms of exemplars 
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mapped to a single local membership function.  Since the 
assignment of points, GPout(i), to clusters is determined by the ‘j’ 
which resulted in the greatest decrease of potential during the 
decay steps, a complete run of the Potential Function is done per 
evaluation.   

3.4.2.2 Classification Objectives 
We have identified several objectives that need to be optimized in 
order to qualify the value of an individual that might be chosen to 
participate in the final classifier.  Each metric used in the list 
below is referred to as a Pareto variable. The associated 
objectives are referred to hereafter as the Pareto objectives. The 
Pareto variables and objectives chosen for this work are as 
follows: 

1. Minimize the sum squared error (SSE):  this objective 
describes classification performance by rewarding true 
positive classifications while discouraging the 
occurrence of false positives (an individual incorrectly 
labeling a pattern of class 0 as class 1).  The opposite 
situation (occurrences of false negatives) is not of major 
concern here, since our hypothesis is that many, highly 
specialized individuals will naturally decompose the 
problem and participate in the final classifier.  Here, the 
SSE for an individual is calculated by: 

( )∑
=

−=
N

i
outi iGPGPGactualSSE

1

2),),(( σµ  

where i indicates raw GP output points having 
membership to this individual’s cluster center as 
identified by the Potential Function; actual is the actual 
pattern label. 

2. Maximize the count of ‘in-class’ patterns correctly 
classified:  aims to include as many patterns as possible 
within the Gaussian mapping.  This objective is 
expected to encourage survival of individuals that map 
patterns densely in GPout. That is, mapping many 
patterns (in a class-consistent fashion) to the same 
region of the GP’s output space is a desirable quality.   

3. Minimize expression length: this objective, based on 
techniques investigated in [3], aims to impose 
parsimony and discourage unnecessarily lengthy 
solutions, which are clearly undesirable since longer 
expressions lead to more computational overhead and 
less solution transparency. 

4. Minimize pattern overlap: aims to encourage diversity 
in the patterns that are being correctly classified; i.e. this 
objective is intended to discourage the population from 
repeatedly overlapping in their decision vectors (as 
defined in 3.4.2).  In other words, it is largely 
unproductive to have many individuals all classifying 
the same training patterns.  Therefore, the overlap value 
for an individual is simply based on a count of the 
number of times that each exemplar has already been 
correctly classified by other members of the population. 

3.4.2.3 Pareto Ranking and Fitness Assignment 
The Pareto variables introduced in the previous section 
collectively define a four-dimensional Pareto vector for each 
individual which is then the basis for Pareto ranking. Multi-

objective optimization with Pareto ranking involves the notion of 
Pareto dominance, where Pareto vector A dominates vector B if A 
performs at least as least well as B over all dimensions, and better 
than B in one or more.  Conventionally, an individual is said to be 
dominated if at least one other individual dominates it and non-
dominated if it dominates all others.  The set of non-dominated 
solutions is known as the Pareto front. 

In this algorithm, ranking with ties is employed [9].  When 
evaluated, the rank of an individual is the number of individuals 
by which it is dominated plus one.  All non-dominated solutions 
are given the same rank (=1, defining the Pareto front).  In the 
event of identical Pareto vectors in two individuals (that is, two 
vectors having the same entries in each dimension within a small 
degree of precision), one of the ranks is randomly increased by 
one thus naturally removing duplicates in the set of non-
dominated solutions. 

For simplicity, this work assigns the fitness of an individual in 
proportion to its Pareto rank.  The final step of identifying the 
classifier participants considers only members of the Pareto front. 

3.4.3 Convergence Criteria 
To identify a converged state among population members, we 
employ the convenient stopping criteria identification method of 
Pareto-rank histograms, introduced by Kumar and Rockett [9] as a 
frequency distribution of tied ranks in a population.   
For this work, rank histograms are generated from the ratio of the 
number of individuals at each rank between the current and 

previous epochs, beginning after epoch 3
MAX_EPOCHS .  A match 

between rank histograms of two successive epochs is used as an 
indicator that a sufficient degree of convergence has been reached.  
Obviously if this condition is never met, the evolution process 
reaches a stopping point after MAX_EPOCHS, as defined in 
Table 2. 

3.4.4 Selecting Classifier Participants 
Once the stopping criteria have been met, the final step is to 
choose the best set of individuals from the Pareto front in terms of 
overall classification on the training set.  We refer to this set of 
individuals as the classifier participants, identified using the 
following algorithm, 

1. Select ‘free’ individuals: begin with the participants 
defined as: all Pareto front individuals having false 
positives == 0 and true positive > 0 on the training set; 

2. Select individuals with low count of false positives: 
successively add individuals from the Pareto front 
(ordered by false positives) to the classifier set if: 

a. The number of new training patterns correctly 
labeled by the individual as ‘in-class’ > the 
number new false positives generated; 

3. Repeat step 2 until:  
a. All training patterns are correctly classified by 

the classifier participants or; 
b. False positives generated by a candidate 

participant surpass a maximum threshold (in 
this work, 5% of the total number of training 
patterns is used as a cutoff). 
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3.5 A Standard GE Classifier Algorithm 
The standard GE classifier used in this work follows a similar 
algorithm (and employs identical parameters, given in Table 2) to 
that presented in section 3.3, with the following changes:   

• A (global) switching wrapper function centered at the 
GP output value of 0 determines a classifier’s decision 
value on each pattern. 

• Steps 2 and 3c now evaluate individuals solely on the 
grounds of a hits-based metric over the entire training 
set; fitness is therefore assigned in proportion to the 
overall accuracy of the classifier under evaluation. 

• Step 3d now performs each replacement by choosing 5 
individuals at random and replacing the one with the 
lowest fitness score. 

• Step 4 chooses the individual with the best training 
accuracy as the solution. 

• An early stopping criterion is defined by a mean 
training accuracy of 95%. 

4. RESULTS AND ANALYSIS  
Classification results of the Multi-objective GE classifier (MOGE) 
algorithm, as described in sections 3.3-3.4, are compared against 
those of the standard GE classifier, as outlined in section 3.5.   

50 random initializations were run for each GP experiment.  
Results are reported for maximum (MAX), minimum (MIN) and 
median (MED) values along with first and third quartiles (Q1 and 
Q3) to indicate the variation in results.  Statistics presented in the 
results are defined on true positives (TP), true negatives (TN), 
false positives (FP) and false negatives (FN) and are summarized 
below in Table 1. 

Table 1. Definitions and abbreviations for result statistics 

Statistic Abbreviation Definition 
Accuracy ACC FNFPTNTP

TNTP
+++

+  

Sensitivity SENS FNTP
TP
+

 

Specificity SPEC TN
TN + FP = 1 − FPR  

False Positive Rate FPR FPTN
FP

+
 

Score SCO 2
SPECSENS +  

 

4.1 Parameters  
Table 2 provides the parameters used all runs of MOGE and the 
standard GE classifier. 

Table 2. GE parameters using in this work 

Parameter Name Value 
POP_SIZE 300 
NUMBITS 560 
CODON 8 
MAX_EXP_LEN 1025 
MAX_EPOCHS 400 
P(XOVER) 50% 
P(MUTATE) 3% 

4.2 Datasets and Partitioning 
In the experiments that follow, two binary data sets were used to 
benchmark classification performance of the proposed algorithm.  
Partitioning of the data into training and test sets was performed 
by randomly assigning patterns (without replacement) to training 
or test such that 75% of patterns appear in training and 25% 
appear in test. In and out of class data are stratified in order to 
achieve proportional representation from each class within the 
two partitions. Note that the test partition represents a disjoint set 
(‘unseen’ exemplars) from the classifier’s perspective.   
Two widely known binary classification problems, taken from the 
UCI repository for Machine Learning1 are used in the experiments 
reported on here: 

1. Breast (Original Database): This binary classification 
set contains 699 exemplars with 9 numeric-valued 
features per pattern.  This is an unbalanced data set, 
with 244 patterns of class 1 and 455 of class 0.  

2. Liver Disorders Database: A binary classification 
problem containing 345 exemplars with 6 numeric-
valued features per pattern.  This is an unbalanced data 
set, with 145 patterns of class 1 and the remaining 200 
of class 0. 

4.3 Experiments 
All experiments were run on a commodity AMD Sempron 2800+ 
processor with 1GB of RAM, running the Fedora Core 2 
operating system.  The GE mapping code employed in these 
experiments is widely available on the web2. 
This paper reports on four experiments in total.  Two are run with 
the Multi-objective GE classifier (MOGE) algorithm (one on each 
data set) and these experiments are directly compared against 
those run with the standard GE classifier. 

• Experiment 1: Run 50 initializations of the standard 
GE classifier algorithm on the UCI Breast Database.   

• Experiment 2: Run 50 initializations of the MOGE 
algorithm on the UCI Breast Database.   

• Experiment 3: Run 50 initializations of the standard 
GE classifier algorithm on the UCI Liver Disorders 
Database.   

• Experiment 4: Run 50 initializations of the MOGE 
algorithm on the UCI Liver Disorders Database.   

In each experiment, results are collected on training and test sets 
for the classifier’s basic performance characteristics (see Table 1).  
In experiments 2 and 4, statistics for the number of classifier 
participants, participant expression size, and percentage of 
patterns classified by each participant are also collected.   
In experiments 1 and 3 we are evolving only a single ‘super’ 
individual, and therefore only the winning expression size is 
collected in addition to the classifier’s basic performance 
characteristics.   

                                                                 
1 See  http://www.ics.uci.edu/~mlearn/MLSummary.html 
2 See http:// www.grammatical-evolution.org 
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4.4 Classifier Performance 
Tables 5, 6, 7 and 8 summarize the results of training and test runs 
in terms of the basic performance metrics for each of experiments 
1-4. 

4.5 Expression Sizes  
Table 3 indicates expression lengths for MOGE participants and 
solutions of standard GE runs.  Table 4 summarizes the number of 
MOGE classifier participants for each problem considered. No 
introns are removed prior to calculating expression lengths for the 
MOGE or standard GE results. 
Based on the results in Table 3, it is clear that MOGE participant 
sizes are considerably smaller than solutions in Standard GE, and 
participant sizes vary slightly more than the solutions of the 
standard GE.  This is particularly noticeable in the case of the 
MOGE Liver results, where there is a difference of 10 between 
first and third quartile expression sizes.  This is thought to be due 
to the evolution of specific (and of varying length) participants to 
accurately deal with certain subsets of exemplars in the difficult 
Liver training set.  Implicit in the notion of smaller solution sizes 
is lower computational overhead during expression evaluation and 
improved solution transparency.   

4.6 MOGE Problem Decomposition 
Samples of percentage of in-class patterns classified by each 
participant in Experiments 2 and 4 are presented in the Figures 2 
and 3. It is readily apparent that there is a strong correlation 
between participation and associated performance of classifiers 
under training and test conditions. Moreover, in the case of the 
more difficult Liver dataset, the test data results in individuals 
representing 1 or 2 percent of the training data being dropped in 
favor of individuals expressing more of the dataset (e.g. 
participants 13 and 14). This resulted in the test data being 
classified by 9 out of the 18 classifiers originally identified during 
training. 
From the performance tables it is apparent that MOGE does 
indeed successfully decompose the problem to build solutions 
using a set of individuals. Classification performance is similar to 
that returned using our baseline GE, with better results returned 
under the more difficult Liver dataset when using MOGE.  On the 
easier Breast problem, it appears that the MOGE system 
emphasized the false positive rate as opposed to detection rate.  
The MOGE results on the test partition were marginally worse as 
compared to those of the standard GE classifier, despite MOGE’s 
better results on the training data.  Additionally, MOGE provides 
a measure of certainty for each classification (as opposed to a 
binary response alone) and decomposes the problem, yielding 
smaller solutions than the standard GE thus potentially reducing 
expression evaluation cost while permitting more insight into the 
solutions provided. 

5. CONCLUSIONS 
A methodology is proposed for integrating problem 
decomposition with model building under a classification context. 
The basis for the MOGE algorithm is a process for building local 
(wrapper) functions on the GP output space provided by the GP 
mapping from input to output spaces. Class consistency is then 
imposed using a multi-objective optimization setting in which a 
Pareto ranking of the population is enforced. Moreover, by 
utilizing the MO framework of Kumar and Rocket, we benefit 

from the availability of an early stopping criteria associated with 
the behavior of the Pareto front. 
We demonstrate that the ensuing solutions are competitive with 
results from a standard GE classifier, in which solutions take the 
form of a single super individual. We note that the MOGE system 
additionally establishes improvements over the standard approach 
in terms of the simplicity of solutions provided while enabling 
automatic problem decomposition.  Moreover, from the very low 
false positive rates returned by the MOGE method, it is apparent 
that the class membership of exemplars mapped to the local 
membership function is very consistent. 
In the case of future work, the approach will be benchmarked on a 
wider range of datasets, in particular multi-class problems, where 
solutions for each class will all be returned from the same 
population. That is to say, generalizing to the multi-class 
classification problem only requires that cluster consistency be 
enforced over multiple labels. Thus the objectives are evaluated 
relative to the exemplar class most frequently appearing in the 
local membership function.  Finally, we also anticipate reviewing 
the objectives used to direct the multi-objective component of the 
algorithm. 
 

Table 3. MOGE vs. STD GE: Expression lengths 

MOGE: Participant Sizes 
 BREAST LIVER 
Median 13 11 
Q1 11 7 
Q3 17 17 
Min 5 3 
Max 45 111 
 
STD GE: Solution Sizes 
 BREAST LIVER 
Median 19 19 
Q1 17 15 
Q3 23 23 
Min 9 5 
Max 35 97 

 

Table 4. Number of MOGE Classifier participants 

MOGE: Classifier Participants 
 BREAST LIVER 
Median 26 21 
Q1 24 19 
Q3 29 24 
Min 15 16 
Max 35 28 
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Figure 2. Percentage of Patterns Classified by each of MOGE 

Classifier Participants on Breast (Train and Test) 
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Figure 3. Percentage of Patterns Classified by each of MOGE 

Classifier Participants on Liver (Train and Test) 
 

Table 5. Results of Experiment 1: Standard GE on Breast set 

STD GE: TRAINING (Breast) 
 ACC SENS SPEC FPR 'Score' 
Median 0.956 0.967 0.953 0.047 0.960 
Q1 0.947 0.961 0.938 0.039 0.952 
Q3 0.964 0.972 0.961 0.063 0.965 
Min 0.892 0.923 0.874 0.029 0.901 
Max 0.972 0.989 0.971 0.126 0.972 
      
STD GE: TEST (Breast) 
 ACC SENS SPEC FPR 'Score' 
Median 0.947 0.933 0.950 0.050 0.948 
Q1 0.935 0.900 0.945 0.045 0.927 
Q3 0.953 0.950 0.955 0.055 0.948 
Min 0.841 0.817 0.845 0.027 0.836 
Max 0.971 1.000 0.973 0.155 0.977 

 
 
 
 

Table 6. Results of Experiment 2: MOGE on Breast set 

MOGE: TRAINING (Breast) 
 ACC SENS SPEC FPR 'Score' 
Median 0.975 0.956 0.986 0.014 0.969 
Q1 0.970 0.945 0.980 0.009 0.964 
Q3 0.979 0.961 0.991 0.020 0.975 
Min 0.951 0.934 0.951 0.000 0.951 
Max 0.985 0.983 1.000 0.049 0.982 

      
MOGE: TEST (Breast) 
 ACC SENS SPEC FPR 'Score' 
Median 0.929 0.883 0.955 0.045 0.917 
Q1 0.919 0.850 0.945 0.036 0.906 
Q3 0.935 0.900 0.964 0.055 0.928 
Min 0.900 0.800 0.927 0.027 0.877 
Max 0.953 0.983 0.973 0.073 0.960 

 

Table 7. Results of Experiment 3: Standard GE on Liver set 

STD GE: TRAINING (Liver) 
 ACC SENS SPEC FPR 'Score' 
Median 0.765 0.609 0.883 0.117 0.745 
Q1 0.758 0.573 0.860 0.095 0.735 
Q3 0.773 0.636 0.905 0.140 0.753 
Min 0.700 0.500 0.760 0.067 0.689 
Max 0.788 0.745 0.933 0.240 0.765 

      
STD GE: TEST (Liver) 
 ACC SENS SPEC FPR 'Score' 
Median 0.659 0.471 0.770 0.230 0.630 
Q1 0.635 0.429 0.720 0.185 0.605 
Q3 0.682 0.543 0.815 0.280 0.648 
Min 0.565 0.371 0.520 0.100 0.560 
Max 0.718 0.686 0.900 0.480 0.693 

 

Table 8. Results of Experiment 4: MOGE on Liver set 

MOGE: TRAINING (Liver) 
 ACC SENS SPEC FPR 'Score' 
Median 0.798 0.700 0.867 0.133 0.783 
Q1 0.778 0.655 0.843 0.113 0.764 
Q3 0.821 0.755 0.887 0.157 0.806 
Min 0.750 0.500 0.793 0.053 0.723 
Max 0.842 0.827 0.947 0.207 0.840 

      
MOGE: TEST (Liver) 
 ACC SENS SPEC FPR 'Score' 
Median 0.682 0.514 0.800 0.200 0.663 
Q1 0.659 0.436 0.765 0.160 0.625 
Q3 0.718 0.593 0.840 0.235 0.691 
Min 0.576 0.200 0.680 0.100 0.550 
Max 0.765 0.743 0.900 0.320 0.753 
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