
Ant Colony Optimization Technique for Equilibrium 
Assignment in Congested Transportation Networks 

Matteo Matteucci 
Department of Electronics and Information 

Politecnico di Milano 
Piazza Leonardo da Vinci 32, 20133 Milan 

+39 02 2399 3470 

matteucci@elet.polimi.it 

Lorenzo Mussone 
Dept. Building Environment Science and Technology 

Politecnico di Milano 
Via Bonardi 9, 20133 Milan 

+39 02 2399 5136 

mussone@polimi.it 

ABSTRACT 
This paper deals with transport user equilibrium. A modified 
version of the ant colony system is proposed where the ant 
colony heuristic is adapted in order to take into account all 
aspects characterizing the transport problem: multiple ODs 
(Origin-Destination pairs), link congestion, non-separable cost 
link functions, elasticity of demand, multi classes in demand. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
Heuristic methods  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Ant colony system, User equilibrium assignment, Transportation 
networks, Non separable cost. 

1. TRAFFIC ASSIGMENT PROBLEM 
The best known approaches to traffic assignment problem are 
Deterministic User Equilibrium (DUE) and Stochastic User 
Equilibrium (SUE). 

Given a directed graph G(V,E), with V being the nodes and E 
the links, we can identify a subset of nodes in V and call them 
centroids. Let d be a vector with components representing the 
average number of trips going from centroid origin o to centroid 
destination d within a give time period. Each origin-destination 
(OD) flow generates on the network path flows Fi, with i∈Iod, 
where Iod is the subset of all admissible paths connecting the 
pair of centroids o and d. For a given link i∈E, the sum of all 
path flows crossing this link is called the link flow:  

 kikki Faf ∑= , (1) 

where aik is 1 if the link i is used by the path k and 0 otherwise. 

A model of a transportation system describes the behavior of 
traffic demand d and its relationship with link flows. By 

introducing a cost ci(f) for traveling on a certain link i, 
depending on the observed traffic f, one can express traffic 
demand and the way it is distributed on links as a function of the 
vector of costs c, in particular the relationship between F, f and 
d becomes ( )( ) ( )( )fcdfcPF =  and ( )( ) ( )( )fcdfcAPf = ; 
where P is a matrix with each element corresponding to the 
fraction of traffic demand routed on a certain path and C=ATc 
represents the vector of path choices costs (which has been 
considered the sum of the composing link costs). These 
equations, as shown in figure 1, describe the circular 
dependence at the base of the equilibrium problem. 
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Figure 1. Equilibrium relationship between traffic demand, 

flows and costs. 

A method to solve DUE is the Frank-Wolfe algorithm. Daganzo 
[2] proposed a model for optimization for symmetric SUE. A 
plain complete review of SUE and DUE as well models is 
presented by Cascetta in [1]. 

2. ANT SYSTEM FOR THE TRAFFIC 
ASSIGMENT PROBLEM 
We think about an Ant System [3] for the user equilibrium 
assignment problem in the following way. An agent/ant decides 
to travel on a path using the information left before by other ants 
then it distributes a new quantity of pheromone in function of 
the “goodness” of the path. In order to effectively explore the 
space of solutions there must be a relationship between 
pheromone and flow, because ants deposit pheromone not flow. 
For each link, for instance, a quantity of flow proportional to the 
pheromone present on it could be associated. Then, after 
pheromone distribution, the new proportional flow assignment 
implies a variation of costs that leads the ants following to have 
a different evaluation of paths. All this can be viewed in the 
same manner as the circular relationships of equilibrium 
between traffic demand, flows and costs explained previously, 
where pheromone substitutes traffic demand (Figure 2). 
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Figure 2:  Equilibrium relationships between pheromone 

distribution, flows and costs. 
At every iteration step each ant deposits a quantity of 
pheromone ∆τκ

ij(t)=1/Ck(t) on each arc belonging to the tour 
made by ant k at iteration t, and Ck(t) is its cost. For every od-
couple there is an ant colony, with its own nest (centroid O) and 
a food source (centroid D). Every ant of the same colony 
distributes pheromone of the same type, so that the ants in that 
colony can recognize and follow only paths that lead to the same 
food source. Every ant colony is independent and its ants have 
to route a quantity of flow equal to the corresponding flow 
demand from an origin O to a destination D. 

At time t on link (i,j) there is a quantity of flow equal to: 

 ∑
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where dc is the flow demand of colony c, NOD is the number of 
colonies, τc

ij (t) is the quantity of pheromone of colony c on 
arc(i,j) and τc

FS (t) is the sum of pheromone quantities present 
on the arcs of the forwarding star of node i of colony c. An ant 
must follow paths leading to the food source (i.e., its 
destination) only of its colony, and so it has to pay attention 
only to the information (pheromone) left by the other ants of the 
colony. The ant-decision table Ac

i=[ac
ij(t)]|Ni| of node i and 

colony c is obtained by the composition of the local pheromone 
trail values with a heuristic weight of the minimum path as 
follows: 
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where τc
ij (t) is the amount of pheromone trail of colony c on 

link (i,j) at time t and wij(t) is a weight value of arc (i,j). The 
value of τc

ij (t) used in Equation (3) may be the exactly amount 
of pheromone released by ants or the perceived one extracted 
according to a certain distribution (e.g. the normal distribution). 

The probability at time t an ant k chooses to go from node i to 
node j∈ Nk when constructing its trip is given by: 
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where Nk

i⊆Nk is the set of nodes connected to node i that ant k 
has not yet visited. 

After all the ants have completed their trips, pheromone 
evaporation on all arcs is triggered, and, after that, each ant k 
deposits a quantity of pheromone ∆τk

ij(t) on each used link: the 
shorter the tour made, the greater the amount of pheromone 
deposited. In practice, the addition of new pheromone by ants 

and pheromone evaporation are implemented by the following 
rule applied to all the arcs: 
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where m is the number of ants at each iteration (maintained 
constant), and ρ ∈ (0,1] is the pheromone trail decay coefficient. 
The initial amount of pheromone τij(0) is set to the same small 
positive constant valueτ0 on all arcs in order to randomly 
explore the network at the first iteration of the algorithm. 

3. EXPERIMENTAL VALIDATION 
Tests have been conducted to verify the actual properties of the 
proposed ACS in different scenarios and deterministic user 
equilibrium. Four networks with different structures and OD 
demand are tested. In Table 1 the main features, number of 
links, number of nodes and OD centroids of the networks are 
reported.  

Table 1: Networks features and validation results 
 Links Nodes OD Computing 

Time[s] 
Iterations 
(<10%) 

Trial  12 6 4 0.2 9 
Non Separable Costs 28 12 8 0.2 10 

Maggi (Milan) 373 189 1283 8.3 15 
Extra-urban (Naples) 1363 994 1483 1.8 8 

Convergence (90%) is obtained easy for lower values of ρ and 
with a limited number of iterations for all networks. 
Comparisons with Frank-Wolfe (FW) DUE solution show a 
good similarity, but not same results.  

4. CONCLUSIONS 
The modified version of ACS is suitable for application in 
almost all real cases to solve the UE assignment problem due to 
its versatility without assuming simplifying hypotheses. The 
solution found by ACS does not depend on the shape of the 
objective function and therefore also the particular cases of non-
separable cost link functions or multi-class demand can be 
tackled easy and successfully. 
Applications to real networks show a computation time that is 
short enough also in complex networks and it can be improved 
through a parallel programming that is easy enough to apply 
thanks to the similar nature of ACS which is intrinsically 
parallel.  
Future research concerns different probability functions used by 
ants when choosing best path and how they build their decision 
table, that is how they perceived path costs. 
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