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ABSTRACT

Recently there has been considerable interest in determin-
ing whether, and how much, evolutionary pressure for ge-
netic robustness influences evolutionary processes. In this
paper, we attempt to show that this evolutionary pressure
does have a significant effect in typical genetic programming
problems. Specifically we demonstrate that in a standard
genetic programming implementation to solve a symbolic
regression problem, pressure for genetic robustness forces
the population away from high fitness, but less robust, so-
lutions in favor of solutions with lower fitness, but higher
genetic robustness.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming,
program synthesis.

General Terms

Algorithms, Experimentation, Theory.

Keywords

Dynamics, Elitism, Robustness.

1. INTRODUCTION

Genetic programming (GP) problems typically generate
solutions that meet goal criteria for a desired fitness func-
tion. Consider two outcomes, the first being optimization
which is a popular use for GP, and the second, survival of a
population or species as a model. In the first outcome a so-
lution that represents a function or program is the goal and
robustness is a secondary concern. In the second outcome,
survival is the primary concern with fitness as secondary.

Unless one directs the fitness function to evolve robustness
as a feature, we find the majority of research optimizing for
a solution. Optimal solutions often trade off robustness for
solution time. If growth of the GP solution is permitted
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it enables the individual to sustain more disruptive events
caused by crossover or mutation, thus providing a more ro-
bust solution.

Our goal in this research is to determine if highly fit in-
dividuals become susceptible and subsequently replaced by
less fit and more robust individuals. Four experiments test
various behaviors of robust individuals. We show that be-
yond the generation which contains the optimal fitness indi-
vidual, the individual may not be optimal to survive evolu-
tionary disruption. Finally we show the dynamic transition
of a population moving from a highly fit individual on a
narrow peak to a less fit individual on a broader peak for
a typical GP symbolic regression problem. The dynamic is
discussed further in the background section.

2. BACKGROUND

Consider genetic robustness as a measure of the correla-
tion between genotypic changes and fitness changes. A more
robust individual is one in which genotypic changes have a
relatively smaller effect on fitness. Several researchers have
shown that evolution may favor genetically robust individu-
als over more fit individuals. Specifically it has been shown
that given a landscape consisting of less fit, but broader
peaks and of more fit, but narrower peaks under some con-
ditions an evolving population will preferentially converge
on the less fit, but more stable peaks rather than the more
fit, but narrower peaks.

Figure 1 illustrates this scenario. The broader peaks rep-
resent solutions that are more robust; a small genotypic
change to an individual on a broad peak is likely to pro-
duce an individual with a fitness that is similar to the orig-
inal individual. In contrast a small genotypic change to an
individual on a narrow peak is more likely to shift the indi-
vidual “off” the peak, producing an individual with a fitness
that is very different (and typically worse) than the original
individual.

Simulation by GP showing transition phases through evo-
lutionary processes provides an insight to population dy-
namics. Modeling the complex interactions of real world
systems may lead to a better understanding of the proper-
ties that affect robustness.

Edlund and Adami model robustness with antagonistic,
multiplicative or synergistic as a measure of fitness decay
due to epistasis, using this model they find robustness occurs
where the phenotype have maximal independence among
each other [5]. Wilke and Adami examine neutral muta-
tions and find selective pressure evolves robustness against
mutation [18].



Figure 1: The narrow peak on the left shows the few
fit individuals that achieved fitness. The flatter and
less fit peak is occupied by more individuals who are
more resilient to genotypic changes.

For example, DeVisser et al. define genetic robustness as
the ’invariance of phenotypes in the face of heritable per-
mutations (e.g. mutations)’ [7]. The research identifies three
classes of theories addressing robustness scenarios; adaptive,
intrinsic and congruent. Adaptive: mechanisms that buffer
a trait from deviation increase the fitness and should be fa-
vored by natural selection. Intrinsic: buffering with respect
to mutations may be a necessary or likely consequence of
adaptation. Congruent: suggests a correlation between ge-
netic and environmental robustness, robustness may evolve
as a correlated side effect of evolution for environment ro-
bustness. Any trait improving robustness also increases fit-
ness, and can occur when the trait is intrinsically connected
to improving its function, or when a trait avoids deleterious
variation in an adaptive scenario.

Historically robustness is defined as canalization, which is
the developmental buffering and homeostatic processes by
which a particular kind of organism forms a relatively con-
stant phenotype although individuals may have a variety of
genotypes and environmental conditions may vary [17] [14].

In the evolutionary computation literature, the term re-
siliency is sometimes used instead of genetic robustness.
Streeter states that large trees will be the most resilient in
the face of crossover in his examination of code growth [16].

Wilke and Adami show that survival of the flattest in-
fluences the growth rate using low and high mutation rates.
The individuals cluster near the peak for low mutation rates,
alternatively with high mutation rates replication grows faster
around the flatter peak where individuals are able to retain
fitness values closer to the peak [18].

Krakauer and Plotkin model redundancy by comparing
a family of landscapes with varying degrees of steepness.
They show a fixed environment will evolve organisms to-
wards maximum redundancy where a genotypic change causes
the least change in fitness. This research also shows popula-
tion sensitivity where small populations prefer shallow land-
scapes and large populations prefer steep landscapes [11].

Evolving individuals often adopt strategies to increase
the genetic robustness. One common example is the code
growth phenomenon in GP. Over the course of evolution GP
individuals grow progressively by adding additional instruc-
tions. These instructions typically have very low functional-
ity, that is they contribute little or nothing to the individu-
als’ fitness. However, they increase the genetic robustness of
the individuals by enabling individuals to better withstand

872

deleterious mutation and crossover events. In a small indi-
vidual with a relatively low proportion of functionally unim-
portant code, most mutation or crossover events are likely
to affect the individual’s functionality; it is not very robust.
In contrast, in a large individual with a relatively high pro-
portion of functionally unimportant code, most mutation or
crossover events are not likely to affect the individual’s func-
tionality and if they do, it will typically have a small effect;
the individual is robust.

More recently, a novel evolutionary dynamic has been
shown based on the evolutionary pressure for both robust-
ness and fitness. It was shown that as individuals, which
originally converged on a low fitness, broad peak, increase
their inherent genetic robustness, through growth or other
mechanisms, they shift from the low fitness, broad peak to
high fitness, narrow peaks. The individuals’ evolved robust-
ness makes up for the narrowness of the higher fitness peak.
This demonstrates that the evolution of genetic robustness
is sometimes a necessary precondition to a population of
individuals finding a fit, but less robust solution [15]. How-
ever, these results were shown for a very simple, illustrative,
problem. It is not clear whether a similar phenomenon ap-
plies to more typical GP problems. Thus, the goal of this
paper is to determine whether similar evolutionary dynam-
ics occur for more typical problems. Specifically, whether
high fitness, but less robust individuals are out competed
by lower fitness, but more robust individuals.

3. EXPERIMENT GOALS

Previous research demonstrating the shift from lower fit-
ness, broad peaks to higher fitness, narrow peaks used a
carefully tailored, toy problem in which the exact fitness
landscape was well defined. This is not possible with more
typical GP problems, such as symbolic regression. Instead,
we seed the population with high fitness, but genetically
‘brittle’ individuals. These individuals are located on high,
but presumably narrow, fitness peaks.

Our hypothesis, is in contrast to a more traditional view
that fitness is the driving force where evolutionary compu-
tation predicts that the high fitness seed individuals will
quickly dominate the population, leading to convergence on
those solutions. The hypothesis for this experiment is that
high fitness, but genetically brittle individuals (the seeded
individuals) will go extinct, replaced by lower fitness, but ge-
netically more robust individuals. Confirming this hypothe-
sis requires demonstration of 1) that high fitness individuals
become extinct, 2) when the high fitness individuals go ex-
tinct they are replaced by less fit individuals, and 3) when
the high fitness individuals go extinct they are replaced by
more robust individuals.

We are also interested in the effect of elitism, because
elitism will always preserve at least one copy of the highest
fitness individual, even if it would otherwise go extinct, due
to a lack of robustness. Does preserving one or more copies
of this individual improve the evolutionary process, or do
these copies only take up space in the population?

3.1 Background on Seed Individuals

We hypothesize that less fit and larger individuals will
evolve and replace two initial seeds with perfect fitness.
The seed individuals represent the narrow but more fit peak
shown earlier. To guarantee that the high fitness individuals
are available we insert two high fitness seed individuals into



the population at generation 1 with perfect fitness. Typi-
cally, once the goal fitness value is achieved for the target
or objective function the evolutionary simulation is termi-
nated. In this experiment, the intent is to determine the
best fitness individuals at the end of a ’a priori’ number of
generations, thus we do not end the simulation when the fit-
ness goal is met. We allow evolution to continue for a finite
number of generations irrespective of the fitness values.

The transcendental function sine is the objective for the
symbolic regression experiment. Two equivalent functions
represent highly fit and brittle seeds for the population.
Equations 1 and 2 shows the tangent and Taylor series equiv-
alent seed functions for sine. The tangent equivalent seed
has a higher probability to undergo deleterious changes due
to the complexity of the sequence of terms when compared
with the Taylor series. We identify the size of the functions
for the tangent equivalent individual has 15 nodes and the
Taylor series equivalent is 36 nodes.

The GP environment parameters for the testing the seed
are shown in the seed test column of Table 3. The integer
constants in the following formulas are created by the GP
environment with ephemeral random constants (ERC).

For example, Equation 3 shows a potential outcome of

a genetically altered Taylor series. In this case the —|—€—?

is removed, the sign preceding “"”7—,7 is changed to + and 1
is added to the equation. Similar disruptive events to the
tangent equivalent function are more likely to be deleterious
due to its structure.
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Brittle or non-robust individuals exhibit significant change
in fitness with small changes in the genotype. An illustra-
tion of brittleness with sine equivalent functions is shown in
Figure 2 where equations 1 and 2 have minor alterations.

We create a slight modification to each individual as shown
in Equation 4 where the constant value 2 is changed to 3,
and Equation 5 where the constant value 3 is changed to 4.
We indicate the modified values in bold font. Through the
x range -0.5 to 0.5 the mean square error is small, below =~
-1 and above 1 the mean squared error becomes significant
as both altered functions deviate from the target function.

3tan(§)

sin(x) tan3(§) +1 “)
) .'174 x5 .'.E7 x9 11

Seed solutions have no introns or non-significant nodes,
all nodes of each seed are significant code. This differs from
evolved individuals that often have a large percentage of
introns, thus increasing the probability that a modification
may occur where there is little or no function degradation
of the individual.
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Figure 2: Sine equivalent function, normal, altered
Taylor series and tangent equivalent. Slightly mod-
ified sine equivalent functions using altered Taylor
and tangent Equations 4 and 5.

In Figure 3 we show the insertion of seeds effect evolution
by comparing the mean population fitness of 100 trials with-
out seeds against the mean population fitness with seeds.
The case with the seeds attains a higher mean fitness due
to the initialization with perfect fitness individuals.

3.2 Brief Background of Symbolic Regression

Symbolic regression is the procedure of inducing a sym-
bolic equation, function or program that fits given numerical
data. GP is ideal for symbolic regression and most GP appli-
cations can be reformulated as a symbolic regression prob-
lem. A GP system performing symbolic regression takes a
number of numerical input, output relations, called fitness
cases, and produces a function or program that is consistent
with fitness cases [12].

The term symbolic emphasizes that the goal is not finding
the optimum parameters but the optimum functions in the
form of expressions or symbolic representations.

The goal of symbolic regression is to find a numerically
robust solution expression E(x) which minimizes the fol-
lowing mean square error for a given sample set of A of
independent input values xx and dependent output values
di(k=1,...,|A|) [13]:

A
1\\

A > (E(xy) — di)?

The symbolic regression output equation provides a method
for prediction, analysis and system modeling. Several ex-
amples of real world symbolic regression problems include
chemical process modeling [8] [9], approximation and rainfall
runoff modeling [2], data mining [6], design of experiments
[1], and economic decision analysis [10] [4].

MSE(E, A) = (6)

4. EXPERIMENTS

We test our hypothesis from section 3 with four experi-
ments. The first experiment confirms robustness is a fac-
tor by testing varying depth GP environments, with the
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Figure 3: The top plot shows the mean population
fitness without seeds for 100 runs, and a mean of
those 100 runs are shown by the heavy black line.
The bottom plot is similar information with seeds in
the population.

expectation that shallow depth trees are less likely to sup-
port robustness. The second experiment confirms that given
enough depth most of the seed individuals go extinct be-
tween generations 10 and 50. We test the effects elitism pres-
sure in experiment 3 by varying the elitism parameter and
confirming it has a significant influence of mean size of the
best of run individual. Finally, experiment 4 applies a con-
stant evolutionary pressure of mutation and confirms seed
individuals that dominate early generations are replaced by
more robust individuals.

4.1 Experiment 1. Robustness

Robustness in our context occurs through redundancy and
or replication of the building blocks in an individual. Dis-
ruption of the individual by crossover, or mutation are dele-
terious to non robust individuals. Robustness decreases the
probability that a critical subtree or building block will af-
fect the overall fitness of the individual. In testing this hy-
pothesis we analyze the effects of varying depth individuals
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with a symbolic regression experiment. We test for the fre-
quency of the seed individual in the top 50 rank positions of
the population for the symbolic regression problem.

In typical GP, a run terminates when any solution meet-
ing the fitness criteria is satisfied. Recall we disable the
run termination criteria to observe the population through
generation 5000. This change in termination criteria allows
observation of the population and fitness dynamics.

We expect shallow depth GP environments to support less
robust individuals. In this experiment we insert a single tan-
gent equivalent seed at the completion of generation 1. If
shallow individuals are less robust, we expect the seed to
dominate the solution for 4999 generations of the top 50
ranked positions. Since shallow depth trees limit robustness
the seeds should dominate shallow environments, robust in-
dividuals should increase their ranking as the depth of the
environment allows the creation of larger individuals. The
problem environment parameters are shown in the exper-
iment 1 column of Table 3. The experiment includes 10
iterations for each trial at depths of 3, 6, 9, and 12. The
mean number of size 15 individuals from each trial is shown
in column 2 of Table 1. The sweep ratio column in Table 1
shows the number of size 15 individuals divided by the total
possible slots (4999 x 500 = 24950).

Table 1: Robustness Demonstration Summary

Depth | Size 15 Ind. Count | Sweep Ratio
3 249736 0.9990

6 190589 0.7625

9 153101 0.6125

12 111753 0.4471

Results: The depth 3 sweep ratio of 0.9990 indicates few
non seed individuals evolve to the top 50 ranked positions.
As the depth increases, to 6, 9, and 12 we observe the sig-
nificant decrease in the seed (size 15) individuals holding
the top 50 positions of the population. At depth 12, 0.4471
size 15 individuals remain, or ~55% of the top 50 ranked
positions evolve to more robust individuals. We offer the
following explanations:

e Larger trees allow individuals to grow introducing repli-
cation of building blocks and reduce the probability
that a node or subtree disruption will produce a dele-
terious outcome. This confirms the hypothesis that
less fit and more robust programs can achieve higher
rates of survival.

e Table 1 demonstrates the brittleness of the tangent
individual as the depth increases and more robust and
larger individuals replace the seed individual.

e The handcrafted tangent equivalent function seed is
brittle. 'We note that once disrupted, the tangent
building blocks only survive a few generations.

4.2 Experiment 2: Robustnessor Fitness

Experiment 2 tests the hypothesis that high fitness indi-
viduals are replaced by less fit and more robust individuals.
Experiment 2 tests the size of the top ranked best fit individ-
ual for 100 trials. We identify the seed individuals by their
size. To determine the influence of the seeds on descendants



we manually inspect subsequent generations for evidence of
subtrees from the original seed individuals. The experiment
2 column of Table 3 shows the GP environment parameters.

Results: Recall that the seed tangent equivalent solution
is size 15. Initially the tangent individuals dominate the
best solutions as shown in selected best of run statistics
for the top 10 ranked individuals. However, starting in the
region of generation 50 larger individuals of size 50 to 100
begin to appear and replace the tangent individuals. Some
of the new, larger individuals have a lower fitness than the
tangent individuals (if they had a higher fitness they would
be inserted into the top of the ranking). Because they are
much larger than the tangent individuals, it is reasonable to
assume that they are more robust.

Thus, these results show that a more robust, but less fit so-
lution, here represented by the individuals with a size greater
than 50, can replace more fit, but less robust solutions even
in a typical GP problem. The individual rank and size of the
best 10 individuals from selected trials shown below allow
one to visualize the robust or large individuals rank.

We analyzed data from all the trials, two trials are pre-
sented due to space considerations. The format of the matrix
is row 1 indicates the generation, note Column 1 indicates
the top 'n’ individual, (row 2 is the rank 1 individual, row
3 is rank 2, etc.). Row 1 (columns 2-9) indicate the gen-
eration of the result. Trial 80 shows the tangent individual
remaining at rank 1 for the remaining 4999 generations, and
rank 2 is the Taylor series, all remaining individuals increase
in size and hold the remaining positions. Trial 100 shows
both seeds superseded by generation 5 and larger individu-
als dominating by generation 100.

Gen-> 5 10 50 100 500 1000 2500 5000
1 15 15 15 15 15 15 15 15
2 36 36 36 36 36 36 36 36
3 22 22 22 22 22 22 22 22
4 43 7 7 163 268 298 339 484

Trial 80 5 37 43 1256 157 294 298 377 471
6 45 36 51 158 298 298 382 469
7 39 38 51 184 298 301 382 473
8 39 38 99 177 298 298 383 469
9 37 40 113 174 298 298 372 469

10 8 37 113 158 298 298 382 469

Gen-> 5 10 50 100 500 1000 2500 5000
1 5 5 57 1561 429 463 541 579
2 6 5 41 1561 411 455 547 579
3 6 5 45 1561 411 451 547 553
4 8 5 51 1565 405 451 547 553

Trial 100 5 6 5 41 1565 411 451 557 599
6 16 5 29 165 411 451 557 599
7 23 5 57 165 411 455 557 599
8 9 5 65 1565 411 455 557 599
9 35 5 71 155 411 451 557 589
10 15 5 61 1561 411 451 557 589

Figure 4 shows the generation range of 1 to 100. The mean
individual size of 15 shows the tangent equivalent function
dominating the best of run individuals until generation 17.
The individual trial plots shown as straight gray lines be-
tween size 7 and 40 are the seed individuals before crossover
modifies their structure. A significant increase in the mean
size of the best of run individual occurs at generation 18.
Within the first 18 generations, the random individuals have
poor fitness and the best of run is dominated by the seeds.
The mean size of the individuals across all 100 trials is ap-
proximately 400 nodes at generation 5000.
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Figure 4: The best of run tree size with a smaller
x — azris and y — axis range (0-100), and the mean
size of all best of run individuals over all trials with
standard deviation.

This result confirms the hypothesis that robust and larger
individuals evolve replacing the seed individuals in a typical
GP problem. In this experiment the jump in mean size
at generation 18 suggests more robust solutions begin to
dominate after generation 17. The size 15 seed solutions are
replaced by non-seed individuals that grow to 4 times the
seed size by generation 60 and in excess of 26 times the seed
by generation 5000.

4.3 Experiment 3. Elitism Pressure

Elitism, also referred to as the elitist strategy directly
copies the best n individuals from the current generation
to the succeeding generation. The elite individuals are not
subject to crossover or mutation. Elite individuals go ex-
tinct when higher performing individuals displace them in
the elite set.

Various selection strategies are possible, frequently it is
the best n individuals from a rank order by fitness. The
number of elite individuals is typically in the range of 1
to 3, regardless of population size. Elitism often improves
search while reducing exploration. DeJong suggests search
versus exploration advantages in two types of landscapes:
unimodal surfaces improve with an elitist plan, while multi
modal surfaces degrade with an elitist plan [3].

Elitism protects the best of run individuals and eliminates
the possibility of any future deleterious operations for the
generation. These individuals are more likely to dominate
best of run ranking for a greater number of generations than
without elitism. Without elitism, the probability of selection
for crossover reduces the chance of any individual maintain-
ing its structure.

The seeds are compact human developed representations
of sine equivalent functions that may be more susceptible
to disruption from crossover. We hypothesize elitism will
cause the transition from the compact seeds to more robust
individuals to be delayed. The experiment 3 column of Table
3 shows the GP environment parameters.



Results: Consider the role of elitism and its selection
pressure effect on the ability to develop robust individuals.
The final size of the best of run individual is compared with
no elitism with five trials that increase the elitism set size.
Figure 5 shows an inverse relationship of the elitism set size
with best of run individual size over a range of elitism values
from 0 to 5. Larger elitism set sizes result in smaller best of
run individuals. Table 2 and Figure 5 shows the decrease in
individual size with increasing elitism.

The columns of Table 2 denote: FE elitism value, E%
elitism as percent of population, Spor(sk) is the mean size of
the best of run at generation 5000 for 100 trials, Sporm is the
mean size normalized to elitism of 0, 7BOR(5k) the Best of
Run mean fitness of 100 trials measured at generation 5000,
and 7M(5k) is the population mean fitness of 100 trials at
generation 5000.

Table 2: Experiment 3 Summary

E | E% | 33orek) | Snorm | fporer) | faek
0 | 0.000 395.29 | 1.000 0.860 | 0.764
1| 0.002 281.95 | 0.713 0.906 0.787
2 | 0.004 178.14 | 0.451 0.930 0.819
3] 0.006 132.12 | 0.334 0.951 | 0.836
41 0.008 87.54 | 0.221 0.973 | 0.850
5| 0.010 69.59 | 0.176 0.977 0.858
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Figure 5: Best of run mean of 100 Trials at Elitism
0, 1, 2, 3, 4, 5. Increasing elitism causes significant
changes to the best of run individual size.

Figure 6 plots four values against I/ on the z —axis. The o
symbol plots the values of $,0rm which depict the decrease
in size of the best of run individual relative to its size at
generation 5000 with elitism of 0. The A symbol shows the
best of run mean fitness for 100 trials. The x shows the
best of population mean fitness for 100 trials.

The { shows Fitness Improvement Ratio Frr given by
Equation 7 where f; is the fitness at a given elitism value,
(e.g. 1,2, ..), fe, is the fitness with no elitism, and R, is
the ratio of elitism to the population size at a specific elitism
value, (e.g. 0.002 or 0.2% for elitism value of 1). The Frr
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Figure 6: Elitism Effect on Size and Fitness. In-

creasing the elitism set size increases fitness and de-
creases robustness.

shows the fitness improvement for a given value of elitism
set size. This result confirms the selection pressure from
elitism leads to smaller individuals. If it is the case that
larger individuals are more robust, than we lose robustness
and gain more compact solutions.

1
Ji—feq

Re,

i

Frr = (7)

4.4 Experiment 4. Disrupting the Seeds

Robustness is a measure of the average fitness and/or phe-
notype change in response to a genotype change. In our hy-
pothesis, larger individuals are more likely to be robust and
improve their fitness when exposed to deleterious phenotype
changes. Brittle individuals in the previous experiments use
human designed equivalent functions for the transcendental
sine function. We test the hypothesis by applying a contin-
uous disruptive pressure through the addition of a mutation
phase. Experiment parameters for the mutation phase test
are shown in the experiment 4 column of Table 3.

The experiment tests whether the human developed seed
individuals maintain a majority of the rank 1 positions, for
100 trials over 5000 generations. If the large individuals
are more robust than the human developed sine equivalent
functions, then the majority of large individuals will surpass
the fitness of the brittle individuals.

Results: Figure 7 shows the best of run individual size
histograms for generation 2, 50, 1000 and 5000. The y—axis
is the frequency for a given size of the best of run individual.
Figure 7 generation 2, shows the majority of the best of run
individuals with a size less than 50. By generation 50 shown
in Figure 7, we note the size of the best of run individuals
range from 50 to 300. In Figure 7 we show generation 1000
where only a few compact individuals remain from size 1
to 10, where the others have grown to a size of 75 to 800.
At generation 5000, no rank 1 individuals that are less than
size 100 remain. Long term survival shows that robustness
is correlated with size.



Table 3: GP Experiment Parameters

Objective: Evolution of a functional equivalent for the transcendental sine function.
Function set: Addition, division, factorial, power, square root, subtraction, and tangent.
Parameter Seed Test Experiment 1 Experiment 2 Experiment 3 Experiment 4
Population size 500 500 500 500 500
Generations 5000 5000 5000 5000 5000
Maximum depth 17 3,6,9, 12 17 17 17
Initialization depth 20% to 60% 20% to 60% 20% to 60% 20% to 60% 20% to 60%
Initialization method half and half half and half half and half half and half half and half
Fitness cases 20 20 20 20 20
Function evaluation range -3.14 to 3.14 -3.14 to 3.14 -3.14 to 3.14 -3.14 to 3.14 -3.14 to 3.14
Internal crossover frequency 0.9 0.9 0.9 0.9 0.9
External crossover frequency 0.1 0.1 0.1 0.1 0.1
ERC Enabled, 1-20 Enabled, 1-20 Enabled, 1-20 Enabled, 1-20 Enabled, 1-20
Crossover selection Tournament, Tournament, Tournament, Tournament, Tournament,
Size = 3 Size = 3 Size = 3 Size = 3 Size = 3

Crossover frequency 1.0 0.6 0.8888 1.0, 0.998, | 0.8888

0.996, 0.994,

0.992, 0.99
Reproduction frequency 0.0 0.01 0.0 0.0, 0.002, | 0.0

0.004, 0.006,

0.008, 0.01
Reproduction selection Best Best Best Best Best
Mutation parameters
Frequency None 0.39 1112 None 0.1112
Internal node frequency NA 0.9 0.9 NA 0.9
Leaf node frequency NA 0.1 0.1 NA 0.1
Replacement tree depth NA 2 max = 4 NA max = 4
Depth ramp NA NA 0to4 NA 0to 4
Selection method Best Best Best Best Best
Subtree creation NA half and half half and half NA half and half

Reviewing these results show a clear and significant shift
in the size of the individual as mutation and crossover events
negatively affect the smaller individuals’ fitness. These re-
sults indicate growth positively influences adaptation against
the deleterious effects of mutation.

5. CONCLUSIONS

These results demonstrate robustness as an evolutionary
dynamic, where robust individuals replace high fitness nar-
row peak or less robust individuals. The evolved individ-
uals achieve resilience to crossover through growth. This
increases the probability that non-critical sections of the
individual will undergo change due to crossover or muta-
tion. This confirms GP code growth seeks redundant build-
ing blocks through replication to improve survivability of
crossover events. When early generation individuals evolve
as solutions, one may be obtaining a fit solution and not nec-
essarily the most robust solution against evolutionary dis-
ruption.

Achieving robustness allows evolution to select to higher
fitness individuals who are affected less by perturbation of
the environment. This suggests that code growth is a re-
quirement for robustness in complex GP solutions. Limiting
the genome size may affect robustness and introduce equi-
librium between exploration and robustness. Without the
ability to improve through crossover events and individual
would effectively be jumping around the optimal point of
the narrow peak landscape. Each evolutionary event can
potentially reduce the fitness of the individual to make it a
candidate for replacement.

The results offer additional areas for future research. In
the context of evolution there appears to be two paths pos-
sible. In the first path, creation of high fitness and brittle
individuals that propagate to future generations and at the
same time likely to suppress less fit individuals. The second

877

path is where individuals evolve robustness attributes and
avoid extinction.

If growth is necessary to achieve robustness, what is the
upper limit? If one can describe the balance between these
two modes as it represents a phase change with the seed
individuals as shown by Figure 4, perhaps one can determine
the minimum number of generations for robustness.

Can the robustness trade space be modeled for even more
complex problems in an aim to understand if growth is lim-
ited by artificial constraints and thereby constrains the abil-
ity of GP to evolve a solution? Do researchers need a balance
between robustness and the first solution when considering
the more robust solution is likely to take more generations
and memory to evolve?
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