

The Brueckner Network: An Immobile Sorting Swarm
William A. Tozier

bill@williamtozier.com
Michael R. Chesher

Department of Industrial and
Operations Engineering

1205 Beal Avenue
University of Michigan

Ann Arbor, MI 48109-2117

mchesher@umich.edu

Tejinderpal S. Devgan
tsdevgan@umich.edu

ABSTRACT

In many industrial applications, the dynamic control of queuing
and routing presents difficult challenges. We describe a novel ant
colony control system for a multiobjective sorting problem using
an Emergent Sorting Network (ESN) designed by Sven
Brueckner. Here, an immobile population of extremely simple
agents reside at fixed vertices of a network, passing parts through
the network, and as a result sorting a stream of colored parts. We
explore effects of network size, and the effect of task difficulty
(number of colors sorted) on timing and sorting performance. We
demonstrate an unexpected regime shift in the swarm's collective
behavior caused by network filling effects, and show evidence
that this effect is due to the creation of ad hoc buffer regions:
transient task specialties arising among the homogeneous agents.

Categories and Subject Descriptors
I.211 [Artificial Intelligence]: Distributed Artifical
Intelligence—multiagent systems, coherence and coordination

General Terms
Design, Experimentation, Theory

Keywords
Emergent Sorting Network; swarm intelligence; queuing theory;
emergent behavior.

1. INTRODUCTION
We explore and develop an ant-colony optimization (ACO)
approach to sorting a continuous queue, which was first described
by Sven Brueckner [2,3]. As with all ACO algorithms [ref], this
one solves the problem by framing the search in terms of the
dynamics of a system of simple autonomous agents following
local rules, interacting with one another through their
“environment” to produce as an emergent behavior the desired
solution to the global problem.

2. Brueckner networks
The Brueckner ESN is composed of a set of identical routing
robots, connected to one another by channels. Parts with different
characteristics (color, here) arrive in unsorted order and are
inserted into the network via an input queue, pass from channel to
robot to channel in turn, and exit the system via an output queue.

2.1 Robots
Whenever they are activated, a robot executes the following
sequence of rules, in fixed order [2]:
Rule 1. Try to repeat: The robot checks to see if it can move
a part of the same color it moved last time from any input
channel to the same output channel it used last time. If there
are multiple parts of the correct color available, one is chosen
at random. If a part is moved, then the logic terminates; if no
part can be moved, then we continue to Rule 2.
Rule 2. Decide whether to sleep: The robot counts the
proportion of its output channels occupied (blocked) by
parts. This fraction (which will fall in [0,1]) represents the
probability that the robot will sleep (shut down) for a fixed
period. If the robot does go to sleep, the logic ends here; if it
does not, we move to Rule 3.
Rule 3. Move a random part: The robot chooses a part from
any occupied input channel, and moves it to any available
output channel. We can infer that space is available
somewhere downstream, since the robot is not asleep (and
the probability of sleeping when all downstream channels are
full is 1). Parts and channels are chosen with uniform
probability from all possible alternatives. If a part is moved
successfully, the robot memorizes its color and the output
channel into which it was placed; if no part is available to be
moved, the robots memory is retained.

Figure 1. Emergent Sorting Network.

Copyright is held by the author/owner(s).
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
ACM 1-59593-186-4/06/0007.

91

3. DATA COLLECTION
We collected and derived four measures of performance:
Output queue color changes: The total number of times a pair of
adjacent parts in the output sequence had different colors.

Sortedness: Defined as 1− switcheso
switchesi

, where switcheso is the

number of color changes in the output queue, and switchesi the
number of color changes in the input queue.
Average (or max) length of runs: The average (or maximum)
length of a continuous series of any one color.
Average time in system: the average time a part spends between
the time it exits the input queue, and the time it enters the output
queue.

4. RESULTS
4.1 Trade-offs between sortedness and delay
We collected performance data from networks size 2x2 to 9x9,
sorting a series of 2000 parts of 6 colors, using update sequence 2.
The results are shown in Figure 2. The number of color changes in
the output queue of ~2000 parts (dark diamonds) drops, though it
appears to be approaching a limit. The average number of minutes
parts spend in the system rises roughly linearly with the number of
robots.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

0 10 20 30 40 50 60 70 80 90

Number of Robots

O
ut

pu
t S

w
itc

he
s

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 T
im

e
in

 S
ys

te
m

Figure 2: Tradeoff between sortedness and delay

4.2 Phase transitions & emergent buffering
This effect appears to be the one significant qualitative difference
between discrete to continuous-time update schemes, and is we
believe a saturation effect. When parts pass through the system
individually—that is, when there are so few parts moving through
the system that there are no delays, and no parts adjacent to each
other—they are not sorted, even though the memory of the robots
is not ephemeral. That is, a robot that last moved a blue part will
remember the fact regardless of the time until it sees the next. The
sorting effect occurs only when parts are waiting in the network.

5. DISCUSSION & FUTURE WORK
We suspect that the sorting behavior is due to the creation of these
buffers in regions of the network close to the exit. This is
consistent with the delay effects, as well: the lack of delay allows
individual parts to fall through the system alone; no buffers are
created, so no long chains of sorted parts can be constructed by
the last router. At the other extreme, the jammed system is
controlled by essentially random movements of the few active

robots, moving isolated parts as they can. The constraint here is
on available space to repeat actions, and the result is again that
buffers cannot be maintained or managed.
The dynamic balance between filling, sorting, and delay is
striking. The sudden transition between the relatively sparse
regime, in which sorting is poor but retention time is low, and the
crowded regime in which sorting is improved but delays are
experienced, we believe is due to the ESN’s use of ad hoc storage
buffers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Last Step Delay (min)
O

ut
pu

t S
er

ie
s

So
rt

ed
ne

ss

Figure 3: Saturation effect on sortedness

Thus, the effectiveness of the sorting network arises not from a
specialization of certain paths in the network for certain colors,
but rather the dynamic creation of pools of identical color in
congruous channels, which can be drained in single runs. It seems
clear that the principal effect of network topology on performance
will occur through its effect on the structure of these buffers. We
are pursuing this line of inquiry in current work.

6. REFERENCES
[1] Alexander, C. 1977. A Pattern Language : Towns, Buildings,

Construction. Oxford University Press.
[2] Brueckner, S. 2000. Emergent Sorting. Software

Demonstration at the Fourth International Conference on
Autonomous Agents (Agents 2000), Barcelona, Spain. June,
2000. Paper, overview and software are available online at
<http://www.erim.org/~sbrueckner/
publications.html>

[3] Brueckner, S. 2003. Engineering Complex Adaptive Systems
for Real-World Applications., presented at the SIAM
Conference on Mathematics for Industry, Challenges and
Frontiers. October 23-25, Toronto, Canada.

[4] Huberman, B. A. and N. S. Glance. 1993. Evolutionary
games and computer simulations. Proc. Natl. Acad. Sci. USA
90: 7716.

[5] McMullin, B. and F. Varela. 1997. Rediscovering
Computational Autopoiesis. Presented at ECAL-97,
Brighton, UK. Available online via
<http://www.eeng.dcu.ie/~alife/bmcm-ecal97/bmcm-
ecal97.html>

[6] Parunak, H. Van Dyke. 1997. “Go to the Ant”: Engineering
Principles from Natural Multi-Agent Systems. Annals of
Operations Research 75: 69.

92

	INTRODUCTION
	Brueckner networks
	Robots

	DATA COLLECTION
	RESULTS
	Trade-offs between sortedness and delay
	Phase transitions & emergent buffering

	DISCUSSION & FUTURE WORK
	REFERENCES

