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ABSTRACT 

In many industrial applications, the dynamic control of queuing 
and routing presents difficult challenges. We describe a novel ant 
colony control system for a multiobjective sorting problem using 
an Emergent Sorting Network (ESN) designed by Sven 
Brueckner. Here, an immobile population of extremely simple 
agents reside at fixed vertices of a network, passing parts through 
the network, and as a result sorting a stream of colored parts. We 
explore effects of network size, and the effect of task difficulty 
(number of colors sorted) on timing and sorting performance. We 
demonstrate an unexpected regime shift in the swarm's collective 
behavior caused by network filling effects, and show evidence 
that this effect is due to the creation of ad hoc buffer regions: 
transient task specialties arising among the homogeneous agents. 

Categories and Subject Descriptors 
I.211 [Artificial Intelligence]: Distributed Artifical 
Intelligence—multiagent systems, coherence and coordination 

General Terms 
Design, Experimentation, Theory 

Keywords 
Emergent Sorting Network; swarm intelligence; queuing theory; 
emergent behavior. 

1. INTRODUCTION 
We explore and develop an ant-colony optimization (ACO) 
approach to sorting a continuous queue, which was first described 
by Sven Brueckner [2,3]. As with all ACO algorithms [ref], this 
one solves the problem by framing the search in terms of the 
dynamics of a system of simple autonomous agents following 
local rules, interacting with one another through their 
“environment” to produce as an emergent behavior the desired 
solution to the global problem.  

2. Brueckner networks 
The Brueckner ESN is composed of a set of identical routing 
robots, connected to one another by channels. Parts with different 
characteristics (color, here) arrive in unsorted order and are 
inserted into the network via an input queue, pass from channel to 
robot to channel in turn, and exit the system via an output queue. 

2.1 Robots 
Whenever they are activated, a robot executes the following 
sequence of rules, in fixed order [2]: 
Rule 1. Try to repeat: The robot checks to see if it can move 
a part of the same color it moved last time from any input 
channel to the same output channel it used last time. If there 
are multiple parts of the correct color available, one is chosen 
at random. If a part is moved, then the logic terminates; if no 
part can be moved, then we continue to Rule 2. 
Rule 2. Decide whether to sleep: The robot counts the 
proportion of its output channels occupied (blocked) by 
parts. This fraction (which will fall in [0,1]) represents the 
probability that the robot will sleep (shut down) for a fixed 
period. If the robot does go to sleep, the logic ends here; if it 
does not, we move to Rule 3. 
Rule 3. Move a random part: The robot chooses a part from 
any occupied input channel, and moves it to any available 
output channel. We can infer that space is available 
somewhere downstream, since the robot is not asleep (and 
the probability of sleeping when all downstream channels are 
full is 1). Parts and channels are chosen with uniform 
probability from all possible alternatives. If a part is moved 
successfully, the robot memorizes its color and the output 
channel into which it was placed; if no part is available to be 
moved, the robots memory is retained. 

 

Figure 1. Emergent Sorting Network. 
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3. DATA COLLECTION 
We collected and derived four measures of performance: 
Output queue color changes: The total number of times a pair of 
adjacent parts in the output sequence had different colors. 

Sortedness: Defined as 1− switcheso
switchesi

, where switcheso is the 

number of color changes in the output queue, and switchesi the 
number of color changes in the input queue. 
Average (or max) length of runs: The average (or maximum) 
length of a continuous series of any one color. 
Average time in system: the average time a part spends between 
the time it exits the input queue, and the time it enters the output 
queue. 

4. RESULTS 
4.1 Trade-offs between sortedness and delay 
We collected performance data from networks size 2x2 to 9x9, 
sorting a series of 2000 parts of 6 colors, using update sequence 2. 
The results are shown in Figure 2. The number of color changes in 
the output queue of ~2000 parts (dark diamonds) drops, though it 
appears to be approaching a limit. The average number of minutes 
parts spend in the system rises roughly linearly with the number of 
robots. 
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Figure 2: Tradeoff between sortedness and delay 

4.2 Phase transitions & emergent buffering 
This effect appears to be the one significant qualitative difference 
between discrete to continuous-time update schemes, and is we 
believe a saturation effect. When parts pass through the system 
individually—that is, when there are so few parts moving through 
the system that there are no delays, and no parts adjacent to each 
other—they are not sorted, even though the memory of the robots 
is not ephemeral. That is, a robot that last moved a blue part will 
remember the fact regardless of the time until it sees the next. The 
sorting effect occurs only when parts are waiting in the network. 

5. DISCUSSION & FUTURE WORK 
We suspect that the sorting behavior is due to the creation of these 
buffers in regions of the network close to the exit. This is 
consistent with the delay effects, as well: the lack of delay allows 
individual parts to fall through the system alone; no buffers are 
created, so no long chains of sorted parts can be constructed by 
the last router. At the other extreme, the jammed system is 
controlled by essentially random movements of the few active 

robots, moving isolated parts as they can. The constraint here is 
on available space to repeat actions, and the result is again that 
buffers cannot be maintained or managed. 
The dynamic balance between filling, sorting, and delay is 
striking. The sudden transition between the relatively sparse 
regime, in which sorting is poor but retention time is low, and the 
crowded regime in which sorting is improved but delays are 
experienced, we believe is due to the ESN’s use of ad hoc storage 
buffers. 
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Figure 3: Saturation effect on sortedness 

Thus, the effectiveness of the sorting network arises not from a 
specialization of certain paths in the network for certain colors, 
but rather the dynamic creation of pools of identical color in 
congruous channels, which can be drained in single runs. It seems 
clear that the principal effect of network topology on performance 
will occur through its effect on the structure of these buffers. We 
are pursuing this line of inquiry in current work.  
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