
Alternative Evolutionary Algorithms for Evolving
Programs: Evolution Strategies and Steady State GP

Darrell Whitley, Marc Richards
and Ross Beveridge

Computer Science, Colorado State University
Fort Collins, CO 80524

whitley or ross @cs.colostate.edu

Andre’ da Motta Salles Barreto
Programa de Engenharia Civil/COPPE,
Universidade Federal do Rio de Janeiro

Rio de Janeiro, RJ, Brazil

andremsb@coc.ufrj.br

ABSTRACT
In contrast with the diverse array of genetic algorithms, the
Genetic Programming (GP) paradigm is usually applied in
a relatively uniform manner. Heuristics have developed over
time as to which replacement strategies and selection meth-
ods are best. The question addressed in this paper is rela-
tively simple: since there are so many variants of evolution-
ary algorithm, how well do some of the other well known
forms of evolutionary algorithm perform when used to evolve
programs trees using s-expressions as the representation?
Our results suggest a wide range of evolutionary algorithms
are all equally good at evolving programs, including the sim-
plest evolution strategies.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: [Program Synthesis]

General Terms
Experimentation, Performance

Keywords
Genetic Programming, Steady-State Genetic Algorithms, Evo-
lution Strategies

1. INTRODUCTION
Over the last 10 to 15 years, genetic programming has be-

come one of the major subdisciplines within the genetic and
evolutionary-computation community. In genetic program-
ming (GP) the individuals that undergo evolution are typ-
ically hierarchically-structured computer programs [6]. An
intuitive way to represent this kind of data structure is to
use a parse tree whose terminal leafs are the operands and
the internal ones are the operators (see Figure 1).

From both an historical and a practical point of view,
genetic programming borrows many fundamental mecha-
nisms from traditional genetic algorithms. By traditional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

Figure 1: GP individuals represented as parse trees

genetic algorithms, we refer to those originally described
by Holland [5] as well as Goldberg’s “Simple Genetic Al-
gorithm”[3]. One of the characteristics shared by genetic
programming and traditional genetic algorithms is the gen-
erational replacement scheme: the new generation of off-
spring replaces the previous generation of parents. This is
not strictly necessary, though. Steady state genetic algo-
rithms do not use generational replacement, but keep the
best solutions found so far.1 For parameter optimization
and combinatorial optimization problems, steady-state ge-
netic algorithms appear to yield better solutions than gen-
erational approaches [16]. Richards et al. [12] used the Gen-
itor steady-state genetic algorithm to evolve program trees
for an Unmanned Aerial Vehicle (UAV) control application;
the evolved program trees control the behavior of a team of
UAVs flying survey missions over a target area with hidden
hazards and the potential for losing aircraft. Richards et al.
report that the “Genitor” steady state implementation of
GP produced better results than a traditional generational
GP system.

The results of Richards et al. suggest a simple but natural
question: how well do some of the other well known forms
of evolutionary algorithm perform when used to evolve pro-
grams trees using Lisp-like s-expressions as the representa-
tion? This question then invites related questions concern-
ing the use of mutation versus recombination in this search

1The name “steady state” introduced by Gil Syswerda [13] is
somewhat unfortunate, since Syswerda found “steady state
GAs” do not display steady state behavior; Alden Wright
has suggested a more accurate name is “monotonic genetic
algorithms.”

919

space, as well as questions about selective pressure. Going
from generational GP to steady state GP is a relatively mi-
nor code change: the recombination and mutation operators
used do not change.

One of the main contributions of this paper is the use
of relatively standard mutation based evolution strategies
using a wide range of selection and population choices. Be-
sides the replacement strategy, parameters such as popula-
tion size and the selection pressure will have an impact on
the performance of the evolutionary algorithms. An exhaus-
tive search over the parameter space is not feasible, so we
are left to wonder if perhaps another combination of param-
eters would result in better performance. We really cannot
resolve this problem in the current paper, but we do test
different population sizes and vary the selective pressure.

Some of the questions associated with the use of evolution
strategies have been addressed before, but in a different,
piecemeal fashion. We review key background experiments
in the next section. Our results sometime conform with pre-
vious work and reinforce common practices. Other results
were somewhat surprising: the simple (1,10)ES produced
the best overall results.

2. BACKGROUND
Genetic programming almost always refers to what might

be called “Koza-Style” genetic programming. Perhaps this
is because Koza’s work presents such a good, easy to use
“template” enabling one to quickly implement a proven ap-
proach to GP [6].

In the current paper we will ignore alternative represen-
tations, perhaps most notable of which is the linear ge-
netic programming representations used by systems such
as AIM-GP: Automatic Induction of Machine-code Genetic
Programming. Instead of operating on trees, AIM-GP uses
C code operations to act directly on registers. This means
that, in effect, AIM-GP generates a subset of C as its pro-
gram output [1].

Our first question is this: Can steady state genetic pro-
gramming work as well or better than the generational GP
model?

This is a question that Koza explored in 1994 [6] and other
researchers have occasionally used a steady-state form of ge-
netic programming. For example, all the GP experiments in
Langdon’s book [8] Genetic Programming and Data Struc-
tures used steady-state replacement.

This question highlights another issue however. Genetic
Programming typically uses tournament selection with the
tournament size set at 7. Tournament size will be denoted by
T in the paper. This means when parents are being selected
for recombination, 7 individuals are drawn from the popula-
tion, and the best of these is allowed to reproduce; another
tournament of T=7 individuals is used to determine the sec-
ond parent. In regular genetic algorithms the tournament
size is often T=2, producing far less selective pressure. In
steady-state genetic algorithms the selective pressure is also
usually 2 or less. However, Goldberg and Deb [4] showed
that because steady-state genetic algorithms use a selective
strategy similar to truncation selection, when coupled with
regular selection the actual selective pressure is much greater
than the tournament size or the nominal selective pressure
would suggest. In fact, in terms of the time it takes for the
best individual to take over the population under selection,
T=2 under the steady state model behaves more like T=7

under the generational model. Selective pressure less than
2 is often used with steady state genetic algorithms.

Our second question is: How well do evolution strategies
evolve program trees?

This question is more complicated, because it suggests
a potential change in focus with regard to operators: can
a “mutation-only” search of the program tree space be as
effective as one based on recombination? In fact several re-
searchers have addressed this issue. Of those which are more
noteworthy, in 1994 O’Reilly and Oppacher presented results
that indicated a stochastic hill-climber using only mutation
could be competitive with traditional GP [11]. In 1997 Chel-
lapilla [2] reported that a population based form of evolu-
tionary programming using only mutation produced results
similar to traditional generational genetic programming. A
study by Luke and Spector in 1998 [10] suggests there may
not be a simple answer concerning the merits of crossover
versus mutation. There was some evidence that mutation
may work better in small populations and crossover in large
populations.

There are two basic forms of evolution strategies (ES).
In the (µ + λ)-ES the µ best of the combined parent and
offspring generations are retained using truncation selec-
tion, somewhat like a steady-state genetic algorithm. In the
(µ, λ)-ES the µ best of the λ offspring replace the parents,
much like a generational genetic algorithm. The definitions
of the (µ +λ)-ES and the (µ, λ)-ES predates the distinction
between generational and steady state genetic algorithms.

Another interesting question is whether we really need
a population at all. One basic form of evolution strategy
only keeps the best solution seen so far; in fact, the (1 +
λ)ES can be seen as a type of greedy stochastic local search.
It is stochastic because there is no fixed neighborhood and
therefore the neighborhood does not define a fixed set of
local optima, but otherwise it is like local search: sample the
neighborhood and move to the best point. Can a search that
does not use a population (i.e., µ = 1) successfully be used to
discover program trees? This echos O’Reilly and Oppacher’s
early experiments with stochastic hill-climbing. And what
implications does this have with regard to problems such as
code bloat?

Finally, in evolution strategies it is common for the num-
ber of offspring produced (λ) to be larger than the parent
population (µ). What impact does this have? The question
has received some attention in the Genetic Programming
community. Tackett [14] explored the use of brood selection,
specifically implemented as Greedy Recombination. In its
simplest form, the brood is of size 2N where N is the popu-
lation size and crossover produces 2 offspring and both are
initially kept. Tackett also notes that Genetic Programming
could be posed as a state space tree search, and that popula-
tion based methods could be reexpressed as a form of beam
search. The main conclusions of Tackett’s work is that the
use of brood selection could allow the use of smaller popu-
lations. In general, Tackett’s work produced more questions
than answers, but these still remain very good questions.

The current paper is not meant to provide definitive an-
swers. Rather, it re-opens these questions from a slightly
different perspective: what happens when we apply stan-
dard, well-established evolutionary algorithms to the prob-
lem of evolving program trees? The empirical results may
challenge some preconceptions and are an invitation for de-
bate and further research.

920

3. CONFIGURATION OF EXPERIMENTS
The next subsections discuss the test problems and vari-

ous implementation details.

3.1 Test Problems
We use three relatively standard test problems: the artifi-

cial ant problem, the 11-multiplexer and a symbolic regres-
sion problem. After some preliminary analysis of trends,
we added a fourth problem: the pole balancing and cart
centering problem. The following paragraphs describe the
problems used in the experiments as well as the fixed pa-
rameters.

3.1.1 Artificial Ant
The artificial ant problem is formulated as follows: There

is a simulated agent (the “ant”) operating over a toroidal 2D
grid. The grid contains a trail with “food” objects placed
at irregular intervals. The ant is capable of moving forward,
turning 90 degrees left or right, and sensing food that is
directly in front of it. The ant “eats” a piece of food by
moving onto the grid square containing it, at which point
the food is removed from the square. The goal is for the ant
to eat all the food on the trail while taking the fewest num-
ber of actions. To apply GP to this problem, a computer
program that will control the ant is evolved. A typical arti-
ficial ant scenario will use a 32 x 32 unit grid and allow up
to 600 actions before terminating. The fitness score is the
total amount of food consumed by the ant (i.e., minimize
the amount of unconsumed food). For an analysis of the
artificial ant problem, the reader is referred to [9].

3.1.2 11-Multiplexer
The 11-Multiplexer problem involves 3 address bits that

map to the contents of 8 content bits. The terminals set is
made up of the values of the address bits, a0, a1, a2 and of
the variables d0 to d7. The problem is to find a Boolean
function that executes multiplexing over the 3-bit address.
Given a string of bits, the function should return the correct
variable which corresponds to the setting of the address bits.
Since there are 11 bits altogether, there are 2048 test cases.

3.1.3 Symbolic Regression
In symbolic regression, a mathematical formula is evolved

to fit a polynomial expression to a set of known Cartesian
points. Typical GP functions are x, +, -, and *, and the
fitness score is usually computed as the mean squared error
of the evolved expression evaluated over a fixed range. The
target symbolic regression example used in this paper was
x6

− 2x4 + x2 over the range -1 to 1, as used in Koza II
[7]. Symbolic regression is defined over a continuous space,
whereas problems such as the 11-multiplexer is defined over
a discrete finite space.

3.1.4 Pole balancing and Cart Centering
In the pole balancing and cart centering task the goal is

to apply forces to a cart moving along a track so as to keep
a pole hinged to the cart from falling over. The track is of
finite length, so the controller must also avoid hitting the
end of the track. The fitness of an individual is based upon
how many times, out of 50 randomized trials, the individual
is able to keep stay within the limits of the track and keep
the pole balanced for 1, 000 time steps. Each trial begins
with the cart’s configuration chosen at random.

The terminal set in this problem consists of the position
and velocity of the cart along the track, the angle between
the cart and the pole and the angular velocity of the pole,
as in [15]. This information is combined in the Genetic Pro-
gramming trees via standard arithmetic operators, and de-
pending on the sign of the output value a push to the right
or to the left is performed.

3.2 Algorithms and Parameter Settings

3.2.1 Traditional Genetic Programming
Our traditional generational genetic programing code is

based on Sean Luke’s ECJ software environment. We use 4
different population sizes: 250, 500, 1000 and 2000. We use
tournament selection to implement selection. A good deal
of literature suggests that genetic programming works best
with a tournament size of T=7. Genetic algorithms for op-
timization commonly use lower selective pressure: typically
T=2. Both T=2 and T=7 were tested in our experiments.

All of the terminals and functions used in our experiments
are the standard ones used with the standard benchmark
problems. While pole balancing and cart centering is not
as common as a benchmark, it is a problem that Koza has
used genetic programming to solve.

No mutation was used in the experiments reported here.
We experimented with various types and levels of mutation,
but saw no improvement in the results.

3.2.2 Steady State Genetic Programming
Implementing the steady state form of genetic program-

ming was simple; we used the Genitor model. We again
used population sizes of 250, 500, 1000 and 2000. After the
population is first evaluated, it is sorted. Tournament se-
lection is used to select two parents for recombination. We
used both T=2 and T=7 to mirror the traditional GP ex-
periments (even though these will generate greater selective
pressure under the steady state model). Two parents gener-
ate one offspring; this offspring replaces the worst member
of the population. The new offspring is bubbled into place
so that the population remains sorted. The process is then
repeated. The recombination operator remains the same.

3.2.3 Evolution strategies
Because evolution strategies are fundamentally different

from genetic algorithms in many ways, the evolution strate-
gies implemented here also differ from the generational and
steady state genetic programming approaches. We use four
combinations of µ and λ; paralleling the generational and
steady-state approaches, we implemented both comma and
plus strategies: the resulting eight ES combinations were as
follows:

(1,10)-ES (50,250)-ES (100,500)-ES (200,1000)-ES
(1+10)-ES (50+250)-ES (100+500)-ES (200+1000)-ES

We experimented with two forms of mutation: node muta-
tion and subtree mutation. Node mutation changes a single
point in the tree: either an internal function is changed or a
terminal leaf node is changed. Node mutation is obviously
conservative. Subtree mutation is meant to be more like re-
combination: a subtree is selected as if it were being selected
for recombination, except that instead a new subtree is ran-
domly generated (using “grow”) to replace the old subtree.
We found subtree mutation to be more effective, and thus
used it in all of our experiments.

921

4. EXPERIMENTS AND RESULTS
All experiments were run for 100,000 evaluations. We

used 20 runs for each experiment for each problem. Our
preliminary experiments were run on the ant problem, the
11-multiplexer and the symbolic regression problem.

We had certain hypotheses (or at least expectations) be-
fore conducting these experiments. In the box-whisker plots,
major variants are marked A and B, where our expectation
initially was that A would be better than B. Thus, for the
steady-state GP, the smaller tournament T=2 (ss A) was
expected to be better than T=7 (ss B). For the generational
GP, the reverse was expected, with T=7 (gen A) expected
to be better than T=2 (gen B). For the evolutionary strate-
gies, we expected the “plus” evolutionary strategies (es A)
to be better than the comma-ES (es B).

The results are shown in figure 2. A “box and whiskers”
plot summary of the data is presented. The black dot is the
position of the median. The height of the solid white box
is the inter quartile range (IQR) which includes the central
50% of the data. The whiskers extend below and above the
white box to a distance of 1.5 times the IQR. However, they
must terminate on a data point, so the whiskers may be
less than 1.5 times the IQR. This means in some cases the
whiskers disappear in our data.

The population sizes in the box-whisker plots are denoted
T, S, M, L corresponding to tiny, small, medium and large.
For generational and steady state GP, these correspond to
250, 500, 1000 and 2000. For the evolution strategies these
correspond to the population sizes λ and associated µ values
given in section 3.2.3.

We do not explicitly test for statistical significance. Given
our 16 versions of algorithms and 4 problems, one would
expect 3 of the 64 results (i.e., 4.6 percent) to be “signif-
icant” even if the results were purely random. However,
the whisker plots suggest when differences are most likely
significant and when the results appear to be similar.

The first important observation is that all of the evolution-
ary algorithms do relatively well. Overall, the generational
genetic programming paradigm using a tournament size of
T=2 stands out as worst. This supports the common notion
that GP works best with a tournament size of T=7.

As expected, for steady state GP, a tournament size of
T=2 is best, although the tournament size does not have as
much of an impact on steady state GP as it does on gener-
ational GP. The steady state genetic programming results
are arguably just as good as the generational GP with T=7.

Perhaps the most important outcome is how well the var-
ious evolution strategies performed relative to both steady
state and generational genetic programming. It is further
surprising to see that the “comma” evolution strategies were
often better than the “plus” evolution strategies. Even more
surprising, the tiny (1,10)-ES yielded the best overall per-
formance across all algorithms. This is surprising because
in effect there is no population and the search is a form of
stochastic local search.

While it was somewhat surprising that the (µ, λ)-ES was
actually somewhat better than the (µ+λ)-ES, this does echo
the fact that the generational GP approach typically yields
very good performance. There seems to be some advantage
associated with the mobility that comes from turning over
and replacing the population, or in the case of the (1,10)-ES,
of moving to the best point in the stochastic neighborhood
even if this is not an improving move.

ant multi11 symb pole
gen GP t2 250 28.30 238.35 0.228 221.20
gen GP t2 500 30.35 228.60 0.124 229.05
gen GP t2 1000 27.00 277.35 0.202 251.95
gen GP t7 250 29.55 122.00 0.122 388.15
gen GP t7 500 22.05 107.20 0.117 312.50
gen t7 1000 16.30 72.00 0.058 249.25
ss GP t2 250 28.20 177.40 0.104 370.25
ss GP t2 500 25.90 101.60 0.055 292.15
ss t2 1000 15.25 111.70 0.049 214.85
ss GP t7 250 30.05 186.05 0.171 491.10
ss GP t7 500 27.30 195.20 0.119 406.95
ss GP t7 1000 16.05 153.60 0.074 291.25
(1,10)-ES 14.70 63.60 0.039 193.05
(50,250)-ES 25.30 93.60 0.049 283.20
(100,500)-ES 23.35 57.85 0.058 265.25
(200,1000)-ES 23.35 85.00 0.052 256.40
(1+10)-ES 21.55 69.60 0.156 276.40
(50+250)-ES 20.30 110.00 0.054 214.35
(100+500)-ES 15.70 114.80 0.061 237.75
(200+1000)-ES 12.00 79.20 0.034 227.60

Table 1: Final results obtained by select configura-
tions of the GP algorithm. For the ant, multiplexer
and symbolic regression problem, the reported num-
ber is the residual error. The reported results for
the pole-balancing task correspond to how many out
of 625 random initial states the best individual of the
run failed to balance the pole for at least 1, 000 time
steps. All the results were averaged over 20 runs.

Loss of genetic diversity is a common problem with tradi-
tional genetic algorithms. It can also be a problem with tra-
ditional genetic programming and is often even worst when
steady state approaches are used. Loss of diversity would
seem to be less of an issue with the evolution strategies,
since the mutation operator continues to explore the search
space. Of course, evolving program trees is very different
from evolving bit strings, or real valued vectors or permu-
tations, as is common in parameter and combinatorial opti-
mization problems.

4.1 Adding another test domain
Based on these results, we expanded our experiments to

include the pole balancing and cart centering problem. We
wanted to see if another problem showed the same kinds of
trends.

Table 1 presents the average best solution found by select
algorithms on each problem. To focus the reader on the most
important trends, we display in bold face the generational
GP with population size 1000 and T=7 as well as the steady
state GP with population size 1000 and T=2. We also bold
face the (1,10)ES, which appears to have produced the best
overall performance. All problems are minimization prob-
lems. The differences are often not statistically significant
in the current study. The 2000 population generational and
steady state GP results are not shown because these were
no better than the 1000 population results.

The pole balancing problem showed several trends that
are different from the other problems. Generational GP with
T=7 and a population of 1000 was not particularly good for

922

Algorithm Ant Multi11
gen GP, T=7, 1000 1 8
ss GP, T=2, 1000 4 4
(1, 10)-ES 1 11
(1 + 10)-ES 3 8

Table 2: These results report how many time a prob-
lem was solved by a particular method.

the pole balancing problem; generational GP using a popu-
lation size of either 500 or 250 with T=2 was better. The
steady state GP with T=2 and population size 1000 was also
better than generational GP with T=7 and a population of
1000. This leads us to conjecture that the results reported
by Richard’s et al. could have been a function of the appli-
cation domain, as well as a function of the population and
tournament size.

Overall, the (1,10)-ES still produced the best results.
We were also curious how often a particular method ex-

actly “solved” a particular problem. None exactly solved the
symbolic regression problem, and the pole balancing prob-
lem does not have a well-defined exact solution. Thus table 2
reports how often the ant and 11-multiplexer problems were
solved by the best algorithms in each class.

5. DISCUSSION AND CONCLUSIONS
Genetic Programming is usually applied in a relatively

uniform manner, with decisions like replacement strategy
and selection method based on rules of thumb established
over the years. This has been fundamental in the estab-
lishment of GP’s methodology and terminology; conventions
like Koza’s “five steps to use genetic programming” [6] stan-
dardizes and facilitates the application of GP to new prob-
lems.

Our results show few differences between different evolu-
tionary algorithms. In other ways our results are similar
to those of Luke and Spector in as much as mutation-only
evolution strategies are often able to work with smaller pop-
ulation sizes. Unlike the study by Luke and Spector, we did
not find that crossover was somewhat better than mutation
for symbolic regression.

The most important finding is the relatively strong per-
formance demonstrated by the (1,10)-ES. This suggests that
simple local search methods can also be used to evolve pro-
grams. Usually, “code bloat” is a major factor limiting the
use of genetic programming. An extremely interesting ques-
tion is whether the use of a (1,10)-ES would necessarily dis-
play the same “code bloat” problem associated with tradi-
tional GP.

There are also many other questions suggested by these
results: Do the evolution strategies scale up to work in more
complex domains? What kinds of new and different forms
of parallel and portfolio methods are possible given the use
of these different forms of evolutionary algorithms? What
kinds of new hybrid methods might be developed by com-
bining approaches?

These are all interesting and worthwhile avenues for future
research.

6. REFERENCES
[1] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.

Genetic Programming: An Introduction. Morgan
Kaufmann, San Francisco, CA, 1998.

[2] K. Chellapilla. Evolving computer programs without
subtree crossover. IEEE Transactions on Evolutionary
Computation, 1(3):209–216, 1997.

[3] D. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley
Reading, MA, 1989.

[4] D. Goldberg and K. Deb. A Comparative Analysis of
Selection Schemes Used in Genetic Algorithms. In
G. Rawlins, editor, Foundations of Genetic Algorithms
1, pages 69–93. Morgan Kaufmann, 1991.

[5] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975.

[6] J. Koza. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT
Press Cambridge, MA, 1992.

[7] J. R. Koza. Genetic programming II: automatic
discovery of reusable programs. MIT Press,
Cambridge, MA, USA, 1994.

[8] W. B. Langdon. Genetic Programming and Data
Structures. Kluwer Academic Publishers, 1998.

[9] W. B. Langdon and R. Poli. Why ants are hard. In
Genetic Programming 1998: Proceedings of the Third
Annual Conference. Morgan Kaufmann, July 1998.

[10] S. Luke and L. Spector. A revised comparison of
crossover and mutation in genetic programming. In
Genetic Programming 1998: Proceedings of the Third
Annual Conference. Morgan Kaufmann, July 1998.

[11] U. O’Reilly and F. Oppacher. Program search with a
hierarchical variable length representation. In
Y. Davidor, H.-P. Schwefel, and R. Männer, editors,
Parallel Problem Solving from Nature – PPSN III,
pages 397–406, Berlin, 1994. Springer.

[12] M. Richards, D. Whitley, R. Beveridge, T. Mytkowicz,
D. Nguyen, and D. Rome. Evolving cooperative
strategies for uav teams. In Proceedings of the Genetic
and Evolutionary Computation Conference
(GECCO-2006). ACM Press, 2006.

[13] G. Syswerda. Reproduction in Generational and
Steady State Genetic Algorithms. In G. Rawlins,
editor, Foundations of Genetic Algorithms 1, pages
94–101. Morgan Kaufmann, 1991.

[14] W. Tackett. Greedy Recombination and Genetic
Search on the Space of computer Programs. In
D. Whitley and M. Vose, editors, Foundations of
Genetic Algorithms 3, pages 271–297. Morgan
Kaufmann, 1995.

[15] D. Whitley, S. Dominic, R. Das, and C. W. Anderson.
Genetic reinforcement learning for neurocontrol
problems. Mach. Learn., 13(2-3):259–284, 1993.

[16] L. D. Whitley, T. Starkweather, and D. Shaner. The
Traveling Salesman and Sequence Scheduling: Quality
Solutions Using Genetic Edge Recombination. In
L. Davis, editor, Handbook of Genetic Algorithms,
chapter 22, pages 350–372. Van Nostrand Reinhold,
New York, 1991.

923

A
n

t
F

it
 1

0
0

K

L M S T

0

10

20

30

40

●

●

●

●

es

L M S T

●

●

●

●

es

L M S T

●

●

●

●

gen

L M S T

●●
●

●

gen

L M S T

●
●

●

●

ss

L M S T

●

●

●

●

ss
M

u
lt
i
1

1
 F

it
 1

0
0

K

L M S T

0

100

200

300

400

500

●

●

●
●

es

L M S T

●

●

● ●

es

L M S T

●
●

●

●

gen

L M S T

●

●

●
●

gen

L M S T

●
●

●

●

ss

L M S T

●

●

●

●

ss

S
y
m

b
 F

it
 1

0
0

K

L M S T

0.0

0.2

0.4

0.6

0.8

●

●

● ●

es

L M S T

● ●● ●

es

L M S T

●●

●

●

gen

L M S T

●

●

●●

gen

L M S T

●●
●

●

ss

L M S T

●●
●

●

ss

A (+) B (,) A (T=7) B (T=2) A (T=2) B (T=7)

A (+) B (,) A (T=7) B (T=2) A (T=2) B (T=7)

A (+) B (,) A (T=7) B (T=2) A (T=2) B (T=7)

Figure 2: Whisker plots summarizing results for the ant, multiplexer and symbolic regression tasks. The
vertical axis represents fitness in all cases. The three types of algorithms are: evolution strategies (es),
generational genetic programming (gen) and steady-state genetic programming (ss). Four population sizes
are shown: large (L), medium (M), small (S) and tiny (T). Two variants for each algorithm, A and B, are
shown. These variants and population sizes are fully explained in the running text.

924

0 20 40 60 80 100

10
2
0

30
4
0

5
0

60
7
0

80

Evaluations(x1000)

B
e
st
fit
n
es
s

es 1 10
es 50 250
es100 500
es200 1000

THE ANT PROBLEM

0 20 40 60 80 100

10
2
0

30
4
0

5
0

60
7
0

80

Evaluations(x1000)

B
e
st
fit
n
es
s

gen t2 1000
gen t7 1000
ss t2 1000
ss t7 1000

THE ANT PROBLEM

0 20 40 60 80 100

2
0
0

4
00

60
0

8
0
0

Evaluations(x1000)

B
e
st
fit
n
e
ss

es 1 10
es 50 250
es100 500
es200 1000

M ULTIPLEXER

0 20 40 60 80 100

2
0
0

4
00

60
0

8
0
0

Evaluations(x1000)

B
e
st
fit
n
e
ss

gen t2 1000
gen t7 1000
ss t2 1000
ss t7 1000

M ULTIPLEXER

Figure 3: These graphs show the progress of the various runs. Top left shows the process of the various
comma-ES runs on the ant problem, while top right shows the process of generational and steady state GP
using a population of size 1000 and T=2 and T=7. The bottom graphs show the same results respectively
for the 11-multiplexer problem. Results are averaged over 50 runs.

925

0 20 40 60 80 100

0
.0

0.
5

1.
0

1.
5

2.
0

2.
5

3
.0

Evaluations(x1000)

B
es
t
fit
ne
ss

SYM BOLIC REGRESSION

0 20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2.
0

2.
5

3.
0

Evaluations(x1000)

B
es
t
fit
ne
ss

0 10 20 30 40 50

0.
2

0.
4

0
.6

0
.8

1
.0

Evaluations(x1000)

B
e
st
fit
n
e
ss

POLE BALANCING

0 10 20 30 40 50

0
.2

0.
4

0.
6

0
.8

1
.0

Evaluations(x1000)

B
e
st
fit
n
es
s

POLE BALANCING

SYM BOLIC REGRESSION

es 1 10
es 50 250
es100 500
es200 1000

gen t2 1000
gen t7 1000
ss t2 1000
ss t7 1000

es 1 10
es 50 250
es100 500
es200 1000

gen t2 1000
gen t7 1000
ss t2 1000
ss t7 1000

Figure 4: These graphs show the progress of the various runs. Top left shows the process of the various
comma-ES runs on the symbolic regression problem, while top right shows the process of generational and
steady state GP using a population of size 1000 and T=2 and T=7. The bottom graphs show the same results
respectively for the pole balancing problem. Results are averaged over 50 runs.

926

