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Introduction

Throwaway society – why?
Lack of economical incentive for eco-friendly products

Lack of customer awareness

Lack of government regulation

All these are changing….
Limited resource: From throw away society to sustainable 
society

Eco-friendliness became an factor of customer preference

Increased government regulation on eco-responsibility

Improved recycling/reuse technology
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Reduce, recycle, reuse (R3)
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End-of-life (EOL) scenario: economical or 
environmental? 
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Recycle or landfill: which is more economical?
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Disassembly
Not all parts are precious: “gold mining”

Should stop if labor cost  > revenue

Labor intensive – cost depends on 

Disassembly sequence

Spatial configurations of components

Spatial configurations and types of fasteners



Introduction

disassembly button

Product embedded disassembly: idea
Design products with a built-in disassembly means and 
activate when disassembly is necessary

Can reduce disassembly labor cost – just activate it!

No need to know which part to remove first – just activate it!
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Product embedded disassembly: embodiment
Utilization of locators (e.g., catches, tracks) integral to 
components

Self-disintegration of the assembly, much like a domino 
effect

Can dramatically reduce the number of fasteners

“disassembly button”
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Locators
Geometric feature of a component for constraining its 
relative DOF in an assembly

trackcatch

catch track



Method

Cost of disassembly depends on:
Spatial configurations of components in a bin

Spatial configurations and types of locators on each 
component

Spatial configurations of fasteners (assume as unique type)

Bad news:
They depend on each other! need simultaneous decision to 
minimize disassembly cost
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Cost of disassembly
Depends on configuration of component, locators, & fasteners

If            is valuable and          is toxic (must retrieve),

<

<

?
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Locator library
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Component information
& functional information

OptimizerEOL treatments
& associate scenarios

{reuse, recycle, landfill}
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Components 
locators, &

EOL treatments

reuse reuse recycle
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Overview
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Given: 
Component information, Contact & Distance specifications, 
Components to be retrieved, Locator library, and EOL treatments & 
associate scenarios

Find: 
Spatial configurations of components, locators and fasteners

EOL treatments

Subject to:
No overlap among components, No unfixed component prior to 
disassembly, Satisfaction of contact specification, Assemblability of 
components

Minimizing: 
Violation of distance specification among components

Manufacturing difficulty increased by adding locators

Environmental Impact of EOL scenario

Maximizing: 
Profit of EOL scenario



Method

Inputs
Component information

Geometry (voxel representation)

Weights

Materials

Reuse values

Translations (±x, ±y, ±z) only, no rotation during disassembly 

CAD data voxelized data
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Inputs
Contact specification

A set of pairs of components requiring adjacency to each other 

Heat sink HD drive
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Inputs
Distance specification

A set of the weights of importance for the distances between two
components for product function

HD drive Mother board



Method

Inputs
Components to be retrieved

Regulated components that must be retrieved
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Locator library
Id

Parametric geometry

Attachment rules

Constraining direction wrt local coordinates

LugCatch Track Boss Screw Slot
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Inputs
EOL treatments & associated scenarios

Subassembly

LandfillLandfill?

Assembly

Single component?

Disassemble

Reuse?

Shred

Recycle

Refurbish

Reuse

No

Yes

No No

Yes Yes
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Design variables

ti = translation of the i-th component wrt a global reference 
frame

ri = rotation of the i-th component wrt a global reference 
frame

dj = offset values of the j-th face of the i-th component in the 
normal direction
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Method

Design variables

m = n(n-1)/2 = number of pairs of components in assembly

CDi = set of directions in which component c0 of the i-th pair 
(c0, c1) is to be constrained

pi = sequence in which locators are tested during the 
construction of the i-th pair
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Method

Design variables

zi = end of life treatment {reuse, recycle, landfill} of the i-th
component

0 1 1( )n, , , −= …z z z z
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Constraints
No overlap among  components

No unfixed component prior to disassembly

infeasible feasible

infeasible feasible
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Constraints
Satisfaction of contact specification

Assembleability of components

infeasible feasible

infeasible feasible
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Objective functions
Violation of distance specification (to be minimized)

Manufacturing difficulty of locators (to be minimized)

Profit of EOL scenario (to be maximized)

Environmental impact of EOL scenario (to be minimized)
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Disassembly cost 

c(x, y, z) = labor cost [$/h] * disassembly time [h]

Disassembly time is estimated based on:
Number and accessibility of fasteners

Disassembly motion 

Number of orientation changes

Total traveling distance

Disassembly time = ∞ if not 2-disassembleable
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2-disassemblability check (Beasley et at., 1993)
Six translational motions {±x, ±y, ±z} only, no rotational 
motions during disassembly

Illustration with 2D: D = {-x, +x, -y, +y}

x

y

return TRUE (2-disassemblable)

CD = {+x, -y}D\CD = {-x, +y}D\CD = {-x, +y}D\CD = {-x, +y}



Method

Minimum disassembly cost (c*(x, y, z))
1. Construct AND/OR graph (2-disassemblability criterion)

2. Find the most efficient sub-sequence for each sequence

3. Choose the best sub-sequence

Example:
A, B, G, H, I landfill

C, E reuse

D, F, J recycle



Environmental impact of EOL scenario
Energy consumption as the indicator for environmental 
impact (Hula et al., 2003)

Profit

Energy consumption

Method

if reuse

( ) if recycle

if landfill
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recycle trans shred

i i i i i i
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Method 

Optimization algorithm
NSGA-II with geometry-based crossover



Case study

Power Mac G4 cube ®
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Component information

A

BC

D

E

F

G

H

I

J

Regulated 
component
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Material composition [kg]

2.0e-34.0e-33.3e-300001.4e-308.0e-5J (battery)
0.50008.0e-41.2e-34.0e-51.0e-56.4e-30.360.10I (HDD)
0.5000000000.250.25H (CDD)

4.0e-2008.0e-41.2e-34.0e-52.0e-56.4e-302.0e-3G (RAM)

0.10002.0e-33.0e-31.0e-42.5e-51.6e-205.0e-3F 
(circuit board)

8.0e-2001.6e-32.4e-38.0e-52.0e-51.3e-204.0e-3E 
(circuit board)

0.20004.0e-36.0e-32.0e-45.0e-53.2e-201.0e-2D 
(circuit board)

0.30006.0e-39.0e-33.0e-47.5e-54.8e-201.5e-2C 
(circuit board)

0.60000000000.6B (heat sink)
1.2000000001.2A (frame)

TotalLiCobaltLeadTinSilverGoldCuSteelAlComponent
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Material information

7.51.0e31.5e3Lithium
386.0e48.0e4Cobalt
1.04854Lead
6.22.0e22.3e2Tin

2.7e21.4e31.6e3Silver
1.7e47.5e48.4e4Gold
1.28594Cupper
0.221959Steel
0.981.4e22.1e2Aluminum

Material value 
[$/kg]

Recovered energy 
[MJ/kg]

Energy intensity 
[MJ/kg]Material
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Revenue [$], cost [$] and energy consumption 
[MJ]

4.0e21.0e41.0e48.0e22.0e31.6e34.0e36.0e31.2e42.4e4ei
landfill

2.0e-20.500.504.0e-20.108.0e-20.200.300.601.2ei
shred

-2.0e2-23-40-2.7-4.8-3.8-9.5-14-84-170ei
recycle

4.4e-21.11.18.8e-20.220.180.440.661.32.7ei
refurb

2.3e-20.590.594.7e-20.129.4e-20.230.350.701.4ei
trans

-2.6e2-45-68-3.1-5.6-4.5-12-17-1.3e2-2.6e2ei
reuse

4.0e-41.0e-21.0e-28.0e-42.0e-31.6e-34.0e-36.0e-31.2e-22.4e-2ci
landfill

2.4e-36.0e-26.0e-24.8e-31.2e-29.6e-32.4e-23.6e-27.2e-20.14ci
shred

2.53020292065401.8e2N/AN/Aci
refurb

4.1e-30.100.108.3e-32.1e-21.7e-24.1e-26.2e-20.120.25ci
trans

0.120.370.300.360.490.391.01.50.601.2ri
recycle

5.0604057391.3e2803.5e2N/AN/Ari
reuse

J 
(batt.)

I 
(HDD)

H 
(CDD)

G 
(RAM)

F 
(circuit 
board)

E 
(circuit 
board)

D 
(circuit 
board)

C 
(circuit 
board)

B 
(heat 
sink)

A 
(frame)
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Representative optimal designs R1 – R5

R1

R2

R3

R4

R5

fdistance fdifficulty

fprofit fenv

R1 R2

R3

R4 R5
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B

screws

slot

A

landfill

H

reuse
I

reuse

J

reuse

reuse
D

reuse

F

reuse

E

reuse

G

reuse

C

Optimal sequence of R3 with EOL treatments
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Optimal sequence of R5 with EOL treatments

B
screws

slot

A

H

reuse

I
reuse

J

reuse

reuse
D

reuse
F

reuse
Ereuse

G

reuse

C
recycle

recycle
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Current design

CD drive (H)

HD drive (I)

Subsidiary
heat sink

Frame

Body

H H

H

I



Summary

Design for optimal end-of-life via product 
embedded disassembly

Integral locators to constrain parts

Domino-like self-disintegration 

Energy consumption as an indicator for environmental impact

Design spatial configurations and EOL treatments

Trade-offs between profit and environmental impact



Future work

Results take too long (~2 weeks w/ one PC)
Representation

Algorithm

implementation/parallelization

Only simple end-of-life scenario considered
More detailed scenarios 

LCA with accurate data

Only geometry considered
Thermal

Stiffness

Impact

Safety
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