Changes in Genetic Representation

ABSTRACT

A theoretical framework for understanding the repre-
sentation issue is presented. This framework is used to
explain, as a corollary, conditions under which the ge-
netic algorithm may be expected to eventually get to
the absolute maximum of the search space. This frame-
work also explains why utilizing random representations
tends to improve performance in genetic algorithm op-
timization. Numerical simulations illustrating this phe-
nomenon are presented on problems exhibiting complex
fitness landscapes.

track:evolutionary combinatorial optimization

1. INTRODUCTION

The representation problem is an exceptionally diffi-
cult and important problem in the genetic and evolu-
tionary algorithm world. More than that, it is an ex-
tremely important problem in nearly every engineering,
physical science, or theoretical problem. The ability of
the algorithm, theoretical study, physical design, etc.
to complete the desired task is very strongly affected by
the chosen representation.

In recent decades, several authors have explored the
representation problem. Many of them have developed
methodologies for generating representations that seem
to be able to exploit properties of the problem efficiently.
Others have spent time carefully crafting adaptive oper-
ators capable of molding themselves to the design prob-
lem. These methods are extremely effective if applied
properly, but so far, no general methodology has ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

isted.

During the same timeframe, studies have emerged
which have indicated something very different from in-
tuition. Several studies have explored the use of arbi-
trary representations in searching for optima in genetic
algorithms. The analogy to this is a group of diverse
individuals all discussing problems together, but each
one having a vastly different point of view. It has been
shown anecdotally and in various studies that this type
of group action produces performance that can be sig-
nificantly better than that of an expert system despite
the sophistication of the expert.

The main problem with the application of these stud-
ies to the evolutionary algorithm community is the lack
of theoretical backing for these results. While some evo-
lutionary algorithms have been shown to benefit from
the same type of diverse representation, this does not
seem to be enough to warrent the use of this technique
in general. A clear theoretical reason is much more sat-
isfying in that it clearly delineates the conditions under
which the method can be expected to be beneficial.

This paper examines the problem from a theoreti-
cal point of view. Major results of the paper include
a theoretical description of the conditions under which
a genetic algorithm can be expected to converge to the
absolute optimum of the space. It is straightforward
to infer from this an upper limit on the computation
time though this is not attempted here. The discussion
also includes a description of the reason for the random
representation phenomenon in which random changing
representations generate significantly superior results in
comparison to single static representations. We present
the results of the application of this methodology to
several problems found in the literature.

The remainder of the paper is organized as follows.
Firstly, a working knowledge of evolutionary algorithms
is assumed. Section 2 describes the theoretical frame-
work and the theoretical results of the paper. Section 3
presents the optimizations problems we investigate, the
simulations used to carry out the optimizations, and
the data obtained. Section 4 gives a brief discussion

and concluding remarks.

2. BASIC DEFINITIONS

This section will describe the theory used to examine
the dynamics of evolutionary algorithms. The examina-
tion begins with a description of the basic assumptions
of the class of evolutionary algorithms examined here.
Of particular note is that this class does not include
constructive algorithms such as genetic programming
where the ultimate final solution size is unknown and
the algorithm is essentially unbounded.

Once the basic assumptions have been clarified, we
describe an extended diversification operate which is a
generalized mutation/crossover operator. This operator
is tied in with the reproduction operator, and can be
used to understand why the genetic algorithm is not
generally limited to specific subspaces.

We continue with an examination of the meaning of
different representations in optimization algorithms. This
examination leads to the idea that optimization algo-
rithms behaving like evolutionary algorithms tend to
move between regions of the search space. The move-
ment is essentially connected to the connectiveness of
the space, which itself is a result of the representation.
The representation, therefore, is important in the sense
that different regions of the search space may be "fur-
ther" or "closer", according to the number of steps re-
quired to reach them, as a result of which representation
is used. This view of representation is used to determine
the effect of the various random representations.

2.1 Extended Diversification

We assume in the following work that the systems
to which we apply this formalism have the following
properties:

1. The algorithm maintains a population, which is
a set of vectors, that are stored in memory. The
vectors are stored in memory and acted on by op-
erators which define the evolutionary algorithm.
The state of the evolutionary algorithm is defined
by the population and the current operator be-
ing employed. which is a set of individual vectors
stored in memory.

2. The diversification operator(s) introduce new el-
ements to the population using a combination of
crossover and mutation events. Diversification op-
erators do not include selection.

3. Selection culls the population by replacing some
elements with others, preferentially replacing lower
scoring individuals with higher scoring individu-
als.

4. We assume we are working with a finite search
space T'.

The details of these behaviors are not important for
the arguments made below, though the arguments made
from here on out will be true as long as these assump-
tions are true.

There are, of course, two radically different types of
populations. In the first type, the population is finite
(which is required for most practical applications involv-
ing EAs), and in the second, the population is infinite.
In this paper, we will explore the finite population case.
In this case, the population has a specific number of
elements which is maintained by the evolutionary al-
gorithm. Additions of new elements to the population
must be accompanied by removals of elements from the
population. This is an important consideration for what
will follow.

The diversification operator generally operates in the
following way: based on the population (or in some
cases independently of the population), the diversifica-
tion creates new vectors for consideration. These vec-
tors either immediately become part of the population,
replacing vectors in the population, or are subject some
culling. The methods for including these are varied.
They may include finding a vector whose score is lower
than the new vector and replacing it, or randomly choos-
ing a new vector to replace. When this step is combined
with selection one typically finds a lower-scoring vector
to replace with the new vector. If one cannot be found,
the new vector is not added to the population. Gener-
ational selection typically consists of a removal of the
lower scoring individuals from the population and re-
placement either with an individual produced by a di-
versification event or by an individual which is a copy
of an existing individual in the population.

Often times, the diversification operator is limited in
the sense that a single application of this operator can-
not transform any given vector into any other given vec-
tor in the search space. As an example diversification
operators derived from single point mutation and any
finite-point crossover operations cannot change all bi-
nary vectors into any other binary vector. In this case,
it is the repeated action of the diversification opera-
tor which allows the vector to be changed completely
from one vector to another vector. In population-based
search algorithms, it is possible for diversification steps
to act additively, extending the capability of the diversi-
fication operator. We call such a pseudo-operator an ez-
tended diversification operator and each sequence
of connected diversifications an extended diversifica-
tion event.

Let us now take the original population of N elements
and enumerate them. We represent these as {z1,...,zn}.
Then, each element discovered by the extended diversi-
fication operator can be added to this list of elements.
Thus, if M extended diversification events have occurred,
then the sequence of elements is given by {z1,...,ZNm}.

We may think of the current population as being the
subset of elements from this sequence of elements that
is being considered when the next element is developed.
Thus, we may write the next element as a function of
the current sequence, with an emphasis on the current
population. That is, we may write a recursion relation
as

enymt1 = f (P2, .., TN M) (1)

where f is the diversification operator. Let us designate
the entire set of numbers a sequence X.

What this means, then, is that the entire evolutionary
algorithm can be likened to a method for generating an
infinite sequence. The sequence of numbers is complex
to analyze, but it is still a deterministic sequence of
numbers.

The main problem is that the sequence is often times a
repeating sequence of vectors containing multiple copies
of many of the elements. Simply because an element has
been removed from the population does not require this
element to never again reappear in the population. Let
us now consider the subsequence of elements of X which
do not appear earlier in the sequence. Let us designate
this sequence of elements as Y = {y;}17%" where Max
represents the final unique discovery in the sequence X.
For finite spaces, Max is finite; for infinite spaces, Max
may be infinite.!

We can then define different types of algorithms. An
optimization algorithm can be defined as eventually stag-
nant if Maz < |I'| where I" is the number of elements
in the entire search space. An example of an algorithm
that is eventually stagnant no matter the starting point
is a hillclimbing algorithm, no matter the number of
starting vectors or the position of the starting vectors.

One important question is whether or not evolution-
ary algorithms are eventually stagnant. This is depen-
dant on the evolutionary algorithm’s diversification op-
erator. The following proposition addresses the future
of optimization algorithms whose diversification opera-
tors or extended operators have no limitation in their
reach. Let us define the probability of an extended di-
versification operator D changing vector 71 to vector v}

3 Pp (i)

PROPOSITION 1 Suppose that an evolutionary algo-
rithm has an extended diversification operator D such
that given any two vectors 71 and B3 in the search space
T, Pp(at,53) > 0. Then the evolutionary algorithm is

not eventually stagnant.
Proor. To prove that an evolutionary algorithm is

eventually stagnant, we must show that there is a state
in which there is no way to reach elements of the search

!Note that this sequence is identical to the one used in
the arguments for the No Free Lunch theorems.

space that have not been reached using the extended di-
versification operator. However, this would imply that
Pp(7,2) = 0 for some elements v and w in the popula-

tion.. Since this is not true by assumption, the conclu-
sion follows. [

The importance of this proposition comes from its ap-
plication to the optimization, and forms the motivation
for the use of evolutionary algorithms. The following
Corollary illustrates its use in optimization.

COROLLARY 1 An evolutionary algorithm which has

an extended diversification operator d such that given
— — .

any two vectors vi and v3 in the search space T, Po(at,m) >

0 will always find the space’s optimum.

PRrOOF. Since the algorithm is not eventually stag-
nant and the search space I' is finite, the sequence Y
will eventually include the optimum. []

Corollary 1 provides a clear description of the motiva-
tion for using evolutionary algorithms. It is clear that,
using evolutionary algorithms, the optimum will even-
tually be visited by the algorithm. In order to do this,
it is merely necessary to either construct a diversifica-
tion operator that, in one step, has a p which is nonzero
for all possible mutations, or an extended diversification
operator which does the same.

2.2 Representational issues

In fact, most evolutionary algorithms have a limited
diversification capability. Binary mutation operators
and crossover operators can typically not change any
single vector into any other in a single iteration. How-
ever, repeated uses of the operators have this effect, and
so the extended diversification operator can be seen to
also have positive p in this case.

Proposition 1 and Corollary 1 also indicate that the
longer the optimization operator is run, the better the
result, as even those better results that are unlikely to
be visited can be found, given enough time. This result
provides the theoretical motivation for the recent result
of Cantu-Paz and Goldberg [?] who both theoretically
and empirically found the same result.

Despite the positive impact of these considerations,
the simple fact is that no indication is given as to how
long one might expect to wait in order to obtain these
improvements. This is very important because we would
like to know not only that the search will succeed, but
also that the search will take a reasonable amount of
time.

Let us assume that we have a population P, which
is a subset of the sequence of elements X. In general,
this population is made up of copies of the maximal el-
ement in the population, and other members that do
not score as well as the maximal element. We may view

these as two types of elements. The first is the current
best, and the others are intermediate states of a diversi-
fication event seeking a new best. In systems involving
elitism, the current best is a protected element in that
it will not be replaced by a less fit individual. In those
not employing elitism, the best individual is not pro-
tected, and so it can be replaced by a less fit individual,
depending on the selection operator employed. In what
follows, we will assume that the methodology utilizes
elitism.

We define a basin of attraction of a local mazimum to
be the the maximal set of vectors such that

1. the set is an open set in the set theoretic sense,
2. the local maximum is in the interior of the set,

3. the fitness values of all the elements in the set are
lower than that of the local maximum.

We define the depth of a basin of attraction around
a vector ¥ to be the minimum number of diversifica-
tion steps required during a diversification event in or-
der to reach another vector whose fitness value is greater
than the local maximum.

Using these definitions, we can generate the following
immediate consequences.

PROPOSITION 2 Suppose that an evolutionary algo-
rithm utilizes a diversification operator in which each
separate step is uncorrelated, unbiased, and chooses be-
tween the same number of potential alternatives. Then
the computation time required to find a vector outside
of the basin of attraction increases at least exponentially
with the depth of the basin.

PRroOOF. If the assumptions are as given above, then
the probability of each step in the diversification event
is constant. The probability of the extended diversifica-
tion resulting in a specific new individual from the opti-
mum is a function of it’s relative position in the search
space; that is, the probability of making s necessary di-
versification steps is p° . This means that the number
of diversification steps needed to reach the edge of the
basin of attraction from the optimum is]%. In general,
the population will not be completely converged. This
means that each individual will be a specific minimum
distance to the boundary of the basin of attraction. If
this diversity is maintained, then, on average, the pop-
ulation will have individuals a distance of s’ diversifica-
tion steps from the optimum. This then increases the

probability to psfs’. O

This result is important because it indicates that an
evolutionary algorithm is likely to get trapped in a basin
of attraction for an exponentially increasing amount of
time, depending on the depth of the basin. Thus, even
though the algorithm cannot be trapped, as Corollary

2.2 indicated, the algorithm’s completion time tends to
become continually larger.

Note also that this result indicates, implicitly, that
any population with a diversity large enough that s —
s’ < 0 is unstable with respect to the local optimum.
As a result, the population may be expected to very
quickly discover one or more superior vectors, and move
away from the local optimum. This explains why many
researchers have found, anecdotally, that one needs to
keep the diversity of the population high in order for
the algorithm to succeed.

In their 2005 paper, Rand and Riolo [6] demonstrate
that a dynamic re-encoding of the search space has sig-
nificant advantages over a static encoding of a search
space. This result has no theoretical basis to date, but
has been reported by other researchers as well. We turn
now to a description of why this is so.

Since basins of attraction have depths that are func-
tions of the diversification operator, and the diversifica-
tion operator is a function of the encoding of the search
operators, the encoding of the space has a very large ef-
fect on the search algorithm. Some encodings will cause
some basins of attraction to be very shallow. In this
case, the search algorithm should progress very quickly.
However, another encoding might make the basins quite
deep. This would make the optimization happen very
slowly, with a relative speed exponentially related to the
basin depths. As a result, a re-encoding might be able
to increase the speed of the algorithm. This is the topic
of the next corollary.

Before we delve into the corollary, we pause to con-
sider what a re-encoding of the diversification operator
means. The diversification operator may be thought of
as a recursion relation which takes the current popula-
tion and generates a new vector. That is,

D(P) = (2)

where v is some vector. Re-encoding this diversification
operator causes a change in the mapping. Random re-
encoding changes the mapping in a random way, gener-
ating a completely new mapping. The basins of attrac-
tion for specific maxima may be shredded by this pro-
cess, and the new locations of optima may be completely
unrelated to their previous positions. Under these cir-
cumstances, a re-encoding of the diversification operator
will have an unpredictable effect on the overall shape of
basins of attraction around the optima. Moreover, it
the relative distance between any two optima will gen-
erally change, with the new positions unrelated to the
old ones.

The act of re-encoding the diversification operator
can have a profound effect on a continuing optimization.
Not only will the population have completely new con-
nectivity, and therefore be able to spread itself through-
out the space very differently, but this new connectivity

can change the distance (in number of diversifications)
between any two vectors. This means that those reen-
codings which bring them closer together will tend to in-
crease the speed of optimization, while those that make
them further apart will tend to decrease the speed of
optimization.

COROLLARY 2 An evolutionary algorithm employing
nonbiased mizing will converge to an optimum faster
than an evolutionary algorithm which does not employ
mizing with o probability that falls off as 27" with n
mizing events.

PRrROOF. Nonbiased mixing will as often connect two
basins of attraction together via a reduced number of
diversification steps as with an increased number of di-
versification steps. The probability of a random mixing
event causing a beneficial change in the diversification-
distance between two optima’s basins of attraction as
opposed to a neutral or non-beneficial change is % In
the event that this occurs, the probability of moving
to the higher basin will increase exponentially, and the
convergence will be improved. The probability that this
will not happen in n mixing events is (%)n [l

Note that while random mixing events are often times
desired, mixing events that maintain continuity of the
search space might also be beneficial. Mixing events
that maintain the integrity of basins of attraction must
be homeomorphic? transformations, which are a subset
of the possible transformations. Moreover, they cannot
be linear, as we are interested in the number of muta-
tions needed to transform one to another, not their point
in state space. Thus, we must create nonlinear homeo-
morphic transformations of the mutation and crossover
operators in order to improve the performance of the
algorithm. Continuity arguments may be dropped in
discrete spaces, as they have no rigorous meaning.

3. TEST PROBLEMS

The results of the preceding sections would seem to
indicate an approach to genetic search that is not im-
mediately obvious. The "reach" of the evolutionary al-
gorithm is the issue when considering how an EA can
jump from one basin of attraction to another higher
basin. Interestingly the reach is related to the repre-
sentation of the search space. What this means is that
changes in the representation of the search space can
alter the functionality of the algorithm. Moreover, per-
haps the most unintuitive result is that random rep-
resentation changes would seem to be able to have a

2 A homeomorphic transformation is a bijection (one-to-
one and onto) which preserves the neighborhood struc-
ture of the space. In other words, points that are nearby
one another in the first set are still nearby one another
in the transformed set.

beneficial effect on the performance, in much the same
way that uniform crossover had a beneficial effect on ge-
netic algorithms. Since this result is dependent on the
connectivity of the search space, it would seem to be
broad enough to have an effect on the design of nearly
all evolutionary algorithms, not only one of , and that

In this section, we examine the performance of simu-
lations written with the representation alterations and
compare it to that of simulations that do not employ
the representation alteration. Qur simulations are real-
encoded genetic algorithms employing single point mu-
tations and single point crossover. Each simulation con-
tains populations of 100 initially randomly assigned in-
dividuals. The crossover and mutation probabilities are
0.1. The algorithm utilizes an elitest mechanism so as
to stabilize the population against variations that tend
to reverse progress.

In order to examine the effect of change of representa-
tion, we modify the general genetic algorithm by adding
the following structure. At each step we calculate a ma-
trix M and its inverse M. These matrices are used to
"recast" the populations into a new encoding. Initially,
both matrices are assigned to I, the identity matrix.
Once a new set of matrices is created, each element of
the population transforms to another element as

1)’ = IMn+1Mn1). (3)

This "mixes up" the search space according to the ma-
trix M,,, and so changes the effect of both the mutations
and the crossovers. Each successive application reverses
the last transformation and applies the current trans-
formation. As a result of the transformation, the con-
nectivity of the search space becomes affected, making
some vectors "closer" to others in terms of the number
of mutations and/or crossovers required to reach one of
the vectors from the other vector. In our simulations,
the recoding step is applied once every 10,000 iterations.
This makes the total number of recodings 20, as each
simulation runs for 200,000 iterations.

We investigate the method using two problems found
in the literature and two homemade functions. The two
problems found in the literature are the Rastrigin and
the Griewangk problems. The problems that are home-
grown are

Ji = 23+ w34 x100—1421 —16 sin (z1)+10 cos® (z3 — 10)+
4.cos (x4 — 5)+2cos (wg — 1) +5z3 +sin (7 (zs — 11)°) +

sin? (210) + sin (z1) + 5 tan™* (f‘é‘) + 1 cos (%2)
and
Jo = cos(zsz10) + tan~! (ﬁ) — 2cos ((me — x7)2) +

cos ((z3 — $8)2) + Ziﬂl sin (z;) + 4tan™* (E&)

T9

Table 1: This table gives the performance of the modified genetic algorithm on various optimization
problems. The first four columns represent the non transformed search space, while the second four

represent the transformed search space.

| | L[B | @ [R [Jhe || or [G [R |
max_ | 9.28 | 73.77 || -0.015 || 0.00 || 13.03 || 97.29]| 0.00 || 0.00
average | 8.16 | 73.76 || -0.077 || -7.46 || 8.03 || 92.58 || -0.05 || -9.86
stdv | 1.17 | 0.035 || 0.037 || 9.06 || 1.66 || 439 || 0.05 | 8.72

Figure 1: These problems are optimized using
the genetic algorithm described above. The pre-
viously reported functions from the literature
(top) have a very different structure from the
new ones (bottom).

These problems are illustrated in Figure 1. Note that
the gross structure of the J1 and J> functions is very dif-
ferent from that of the Rastrigin and Griewangk func-
tions. As a result, one might expect the performance
of the GA to differ on these two "mini-classes" of func-
tions.

Aside from the GA modifications described above, we
use a generational GA with a standard multi-point mu-
tation operator and uniform crossover operators. The
mutation probability is 0.1 and the crossover probabil-
ity is 0.9. The population is of size 100, and we utilize a
proportional reproduction operator. We also utilize an
elitist mechanism, preserving one vector with the high-
est (to date) score.

We report, for each problem, the average, maximum,
and standard deviation of the final optimal vector with
and without the sparse recoding. These data are given
in Table 1.

In Table 1, we present the data of several optimiza-
tion problems solved using the GA described above,
both employing recoding and not employing recoding.
In each case, the average and standard deviation are
reported, along with the best performace over one hun-
dred runs.

While three of the functions perform statistically iden-
tically, one of the functions (J1) performs vastly better

with the representation change. This is not suprising
as the initial state of the recoded GA is identical to
that of the non-recoded GA. Thus, the performance
can only differ once the recoding takes place. In sev-
eral of the problems, the performance of the recoded
GA is very significantly superior to that of the standard
GA. Tt is interesting that this performance increase can
be achieved with no significant change to the algorithm
outside of the periodic recoding.

4. SUMMARY AND CONCLUDING RE-
MARKS

The main contributions of this paper lie in the ce-
menting of a theoretical understanding of a somewhat
heretofore misunderstood phenomenon in evolutionary
computation. That is that the representation of the var-
ious operators, even if randomly assigned, can lead to
very real improvements in the performance of evolution-
ary algorithms. While this isn’t always the case, some
problems that one can find have fitness landscapes with
structure that doesn’t match with a particular arbitrar-
ily decided upon structure.

This result echoes the work of other researchers ex-
amining the various encodings of the search space [5, 3,
4, 2, 7]. These studies have examined the static rep-
resentation of the genetic operators along with various
dynamic adaptations. In view of the fact that the uni-
form crossover operators apparently needed no specific
encoding to be effective, it would seem to be a straight-
forward result.

Nonetheless, our examples now join a large amount of
previous work that implies what our theoretical results
confirm. The utility of this result lies in its applica-
tion to evolutionary algorithms, indicating that the al-
gorithm could benefit from a random scrambling of the
search space. The design of algorithms routinely utiliz-
ing such a scrambling operator would seem to be useful,
and not obvious from the biological analogy.

5. REFERENCES

[1] E. Cantu-Paz and D. Goldberg. Are multiple runs
of genetic algorithm better than one? Lecture
Notes in Computer Science, 2723, pp.
801-812, 2003.

[7]

[2] H. Kargupta and B. Park. Gene ezpression and
fast construction of distributed evolutionary
representation. Evolutionary Computation,
9(1), 43-69, 2001.

S. Kazadi. Conjugate Schema in Genetic Search.

Proceedings of the Seventh International

Conference on Genetic Algorithms, San

Mateo, Ca: Morgan Kaufmann Publishers, pp.

10-17, 1997.

S. Kazadi. Conjugate Schema and Basis

Representation of Crossover and Mutationi.

Evolutionary Computation, v6(2), 129-160,

1998.

[5] M. Munetomo and D. Goldberg. Linkage
identification by non-monotonicity detection for
overlapping functions. Evolutionary
Computation, 7(4), 377-398.

[6] Rand and Riolo. The problem with a self-adaptive
mutation rate in some environments. A case study
using the shaky ladder hyperplane-defined
functions. Proceedings of GECCO 2005,
Washington D. C., USA, pp. 1493-1500, 2005.

G. Syswerda. Uniform crossover in genetic algorithms.

Proceedings of the Third International Confer-

ence on Genetic Algorithms. D. Schaffer, (Ed.),

Morgan Kaufmann, San Mateo, CA, 2-9, 1993.

3

—_—

[4

—_

