The BQP Problem and Exhaustive Search Algorithms
Based on Evolutionary Algorithms

ABSTRACT

We theoretically explore some of the properties of evo-
lutionary algorithms (EAs). We discover that under
certain conditions, it is more advantageous to utilize
a restarting procedure for the evolutionary algorithm
than to continue to allow the algorithm to run due to
an exponentially increasing time required for transitions
between optima. In the cases that restarting is indi-
cated, we discover that an exhaustive algorithm based
on a given evolutionary algorithm may be able to out-
perform the evolutionary algorithm on which it is based.
We demonstrate the application of this algorithm to the
BQP problem on test problems found in the literature,
recovering the best performance reported in the litera-
ture.

track:evolutionary combinatorial optimization

1. INTRODUCTION

Evolutionary algorithms (EAs) are search methods
that are inspired by natural selection[17, 18], typically
operating on populations of individuals. EAs typically
function in cycles known as generations during which in-
dividuals from one population are used to create a new
population, using a variational process and a selection
process which allow those elements of the population
scoring well on a real-valued evaluation metric to con-
tribute to the next population. Continual application of
these cycles eventually produces populations filled with
high scoring individuals.

Recently, researchers have been using memetic al-
gorithms which combine exhaustive search algorithms
with evolutionary algorithms[11]. The result has been
algorithms that are quite good at discovering optima

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

that neither algorithm can find individually in compa-
rable computation times. This indicates that properties
of evolutionary algorithms exist that can be useful to ex-
haustive algorithms, and vice-versa. We believe that the
completeness of the search of an exhaustive algorithm is
its strength while the adaptivity of the evolutionary al-
gorithm is its strength. Combining these two properties
has proven to be a useful technique in optimization.

While the marriage of these two methodologies seems
to create an algorithm with capabilities that exceed
those of either one, this by no means indicates that it
is impossible to have a similar effect in approaching the
same thing from another point of view. In this paper,
we examine an algorithm that is more exhaustive than
evolutionary, but contains the strong points from both
parts of the standard memetic algorithm. We demon-
strate that the algorithm has performance that is at
worst comparable to an evolutionary algorithm and at
best much superior to that of an evolutionary algorithm
constructed with the same evolutionary operators.

‘We motivate our work in this paper by first theoreti-
cally examining evolutionary algorithms in general. We
explore the performance of an evolutionary algorithm,
characterizing it as a combination of two processes -
traversing a pathway to an optimum and transitioning
from one pathway to another. We demonstrate that
under certain conditions, using long runs can be advan-
tageous, while under other conditions, restarting the al-
gorithm is more advantageous. The transition regions
between local optima are defined and used to explore
the conditions under which either strategy is preferred.

Two corollaries of the current theoretical formalism
give rather suprising results. The first is that under
certain conditions, it is a mathematical certainty that
the genetic algorithm will always find the optimum of
the search space. The conditions under which this is
true are given. The second theoretical result is that a
dynamic change of encoding, under certain conditions,
is advantageous, and can be exponentially so. While
these results are not further explored in this work, they
do serve to clarify some of the empirical results that
have appeared over the years.

In applying our algorithm in this paper, we focus on

the binary quadratic programming (BQP) problem [11,
2, 3, 5] . This problem can be defined in the following
way: Given a real symmetric square matrix M of rank

n, find a rank n binary vector ¥ such that v? M7 is
maximized. The problem finds uses in a wide variety of
fields including financial analysis [9], traffic management
[4], machine scheduling [1], molecular conformation [12],
and many others. BQP has been studied in the context
of both conventional optimization algorithms and evo-
lutionary algorithms[14]. This paper develops a new
optimization method known as Directed Pseudoezhaus-
tive Search and applies it to the BQP problem, demon-
strating the algorithm’s ability to perform the search as
accurately as both conventional and evolutionary algo-
rithms[7, §].

The remainder of this paper is organized as follows.
Sections 2 and 3 examine theoretical issues related to
evolutionary search. Section 4 explores the BQP prob-
lem and describes our search algorithm. Section 5 dis-
cusses the simulation results and their meaning in terms
of the greater EA literature. Section 6 offers some con-
cluding remarks.

2. THEORETICAL CONSIDERATIONS

Our examination begins with a description of the ba-
sic assumptions of the class of evolutionary algorithms
examined here. Once the basic assumptions have been
clarified, we describe an extended diversification oper-
ate which is a generalized mutation/crossover operator.
This operator is tied in with the reproduction operator,
and can be used to understand why the genetic algo-
rithm is not generally limited to specific subspaces[6].

We continue with an examination of the meaning of
different representations in optimization algorithms. This
examination leads to the idea that optimization algo-
rithms behaving like evolutionary algorithms tend to
move between regions of the search space. The move-
ment is essentially connected to the connectiveness of
the space, which itself is a result of the representation.
The representation, therefore, is important in the sense
that different regions of the search space may be "fur-
ther" or "closer", according to the number of steps re-
quired to reach them, as a result of which representation
is used. This view of representation is used to determine
the effect of the various random representations.

In what follows, we omit the proofs of the various
propositions and corollaries as space is limited. The
proofs will be included in an upcoming longer version
of this paper.

2.1 Extended Diversifications

We assume in the following work that the systems to
which we apply this formalism have the following prop-
erties: (1) The algorithm maintains a population, which
is a set of vectors, that are stored in memory. The vec-
tors are stored in memory and acted on by operators
which define the evolutionary algorithm. The state of

the evolutionary algorithm is defined by the population,
which is a set of individual vectors stored in memory,
and the current operator being employed. (2) The di-
versification operator(s) introduce new elements to the
population using a combination of crossover and mu-
tation events. Diversification operators do not include
selection. (3) Selection culls the population by replac-
ing some elements with others, preferentially replacing
lower scoring individuals with higher scoring individu-
als. (4) We assume we are working with a finite search
space I'. The details of these behaviors are not impor-
tant for the arguments made below, though the argu-
ments made from here on out will be true as long as
these assumptions are true.

There are, of course, two radically different types of
populations. In the first type, the population is finite
(which is required for most practical applications involv-
ing EAs), and in the second, the population is infinite.
In this paper, we will explore the finite population case.
In this case, the population has a specific number of
elements which is maintained by the evolutionary al-
gorithm. Additions of new elements to the population
must be accompanied by removals of elements from the
population.

The diversification operator generally operates in the
following way: based on the population (or in some
cases independently of the population), the diversifica-
tion creates new vectors for consideration. These vec-
tors either immediately become part of the population,
replacing vectors in the population, or are subject some
culling. The methods for including these are varied.
They may include finding a vector whose score is lower
than the new vector and replacing it, or randomly choos-
ing a new vector to replace. When this step is combined
with selection one typically finds a lower-scoring vector
to replace with the new vector. If one cannot be found,
the new vector is not added to the population. Gener-
ational selection typically consists of a removal of the
lower scoring individuals from the population and re-
placement either with an individual produced by a di-
versification event or by an individual which is a copy
of an existing individual in the population.

Diversification operators can be limited in the sense
that a single application cannot transform any given
vector into any other given vector in the search space.
As an example diversification operators derived from
single point mutation and any finite-point crossover op-
erations cannot change all binary vectors into any other
binary vector. In this case, it is the repeated action of
the diversification operator which allows the vector to be
changed completely from one vector to another vector.
In population-based search algorithms, it is possible for
diversification steps to act additively, extending the ca-
pability of the diversification operator. We call such a
pseudo-operator an extended diversification opera-
tor and each sequence of connected diversifications an
extended diversification event.

Let us now take the original population of N elements

and enumerate them. We represent these as {z1,...,zn}.
Then, each element discovered by the extended diversi-
fication operator can be added to this list of elements.
Thus, if M extended diversification events have occurred,
then the sequence of elements is given by {z1,...,znv4+r}.
We may think of the current population as being the
subset of elements from this sequence of elements that
is being considered when the next element is developed.
Thus, we may write the next element as a function of
the current sequence, with an emphasis on the current
population. That is, we may write a recursion relation
as

en+m+1 = f (P21, TN+M) 1)

where f is the diversification operator. Let us designate
the entire set of numbers a sequence X.

What this means, then, is that the entire evolutionary
algorithm can be likened to a method for generating an
infinite sequence. The sequence of numbers is complex
to analyze, but it is still a deterministic sequence.

The main problem is that the sequence is often times a
repeating sequence of vectors containing multiple copies
of many of the elements[6, 18]. Simply because an ele-
ment has been removed from the population does not re-
quire this element to never again reappear in the popu-
lation. Let us now consider the subsequence of elements
of X which do not appear earlier in the sequence. Let
us designate this sequence of elements as Y = {y;} /%"
where Max represents the final unique discovery in the
sequence X . For finite spaces, Max is finite; for infinite
spaces, Max may be infinite.!

We can then define different types of algorithms. An
optimization algorithm can be defined as eventually stag-
nant if Maxz < |I'| where I' is the number of elements
in the entire search space. An example of an algorithm
that is eventually stagnant no matter the starting point
is a hillclimbing algorithm, no matter the number of
starting vectors or the position of the starting vectors.

One important question is whether or not evolution-
ary algorithms are eventually stagnant. This is depen-
dant on the evolutionary algorithm’s diversification op-
erator. The following proposition addresses the future
of optimization algorithms whose diversification opera-
tors or extended operators have no limitation in their
reach. Let us define the probability of an extended di-

versification operator D changing vector 71 to vector U3

as pD(v_{,v_ﬁ)'

PROPOSITION 1 Suppose that an evolutionary algo-
rithm has an extended diversification operator D such
that given any two vectors 1 and U3 in the search space
T, Pp(w,3) > 0. Then the evolutionary algorithm is

not eventually stagnant.

The importance of this proposition comes from its ap-
plication to the optimization, and forms the motivation

!Note that this sequence is identical to the one used in
the arguments for the No Free Lunch theorems.

for the use of evolutionary algorithms. The following
Corollary illustrates its use in optimization.

COROLLARY 1 An evolutionary algorithm which has

an extended diversification operator d such that given
— — .

any two vectors vi and v3 in the search space ', Po(at,) >

0 will always find the space’s optimum.

Corollary 1 provides a clear description of the motiva-
tion for using evolutionary algorithms. It is clear that,
using evolutionary algorithms, the optimum will even-
tually be visited by the algorithm. In order to do this,
it is merely necessary to either construct a diversifica-
tion operator that, in one step, has a p which is nonzero
for all possible mutations, or an extended diversification
operator which does the same.

2.2 Representational issues

In fact, most evolutionary algorithms have a limited
diversification capability. Binary mutation operators
and crossover operators can typically not change any
single vector into any other in a single iteration. How-
ever, repeated uses of the operators have this effect, and
so the extended diversification operator can be seen to
also have positive p in this case.

Proposition 1 and Corollary 1 also indicate that the
longer the optimization operator is run, the better the
result, as even those better results that are unlikely to
be visited can be found, given enough time. This result
provides the theoretical motivation for the recent result
of Cantu-Paz and Goldberg [6] in which the same result
was theoretically and empirically found. 2

Let us assume that we have a population P, which
is a subset of the sequence of elements X. In general,
this population is made up of copies of the maximal el-
ement in the population, and other members that do
not score as well as the maximal element. We may view
these as two types of elements. The first is the current
best, and the others are intermediate states of a diversi-
fication event seeking a new best. In systems involving
elitism, the current best is a protected element in that
it will not be replaced by a less fit individual. In those
not employing elitism, the best individual is not pro-
tected, and so it can be replaced by a less fit individual,
depending on the selection operator employed. In what
follows, we will assume that the methodology utilizes
elitism.

We define a basin of attraction of a local mazimum to
be the the maximal set of vectors such that (1) the set
is an open set in the set theoretic sense, (2) the local
maximum is in the interior of the set, and (3) the fitness
values of all the elements in the set are lower than that
of the local maximum. We define the depth of a basin
of attraction around a vector 7 to be the minimum

2Despite the positive impact of these considerations, the
simple fact is that no indication is given as to how long
one might expect to wait in order to obtain these im-
provements.

number of diversification steps required during a diver-
sification event in order to reach another vector whose
fitness value is greater than the local maximum.

Using these definitions, we can generate the following
immediate consequences.

PROPOSITION 2 Suppose that an evolutionary algo-
rithm utilizes o diversification operator in which each
separate step is uncorrelated, unbiased, and chooses be-
tween the same number of potential alternatives. Then
the computation time required to find a vector outside
of the basin of attraction increases at least exponentially
with the depth of the basin.

This result is important because it indicates that an
evolutionary algorithm is likely to get trapped in a basin
of attraction for an exponentially increasing amount of
time, depending on the depth of the basin. Thus, even
though the algorithm cannot be trapped, as Corollary
1 indicated, the algorithm’s completion time tends to
become continually larger.

Since basins of attraction have depths that are func-
tions of the diversification operator, and the diversifica-
tion operator is a function of the encoding of the search
operators, the encoding of the space has a very large ef-
fect on the search algorithm. Some encodings will cause
some basins of attraction to be very shallow. In this
case, the search algorithm should progress very quickly.
However, another encoding might make the basins quite
deep. This would make the optimization happen very
slowly, with a relative speed exponentially related to the
basin depths. As a result, a re-encoding might be able
to increase the speed of the algorithm. This is the topic
of the next corollary.

Before we delve into the corollary, we pause to con-
sider what a re-encoding of the diversification operator
means. The diversification operator may be thought of
as a recursion relation which takes the current popula-
tion and generates a new vector. That is,

D(P) =v (2)

where v is some vector. Re-encoding this diversification
operator causes a change in the mapping. Random re-
encoding changes the mapping in a random way, gener-
ating a completely new mapping. The basins of attrac-
tion for specific maxima may be shredded by this pro-
cess, and the new locations of optima may be completely
unrelated to their previous positions. Under these cir-
cumstances, a re-encoding of the diversification operator
will have an unpredictable effect on the overall shape of
basins of attraction around the optima. Moreover, it
the relative distance between any two optima will gen-
erally change, with the new positions unrelated to the
old ones.

The act of re-encoding the diversification operator
can have a profound effect on a continuing optimization.
Not only will the population have completely new con-
nectivity, and therefore be able to spread itself through-
out the space very differently, but this new connectivity

can change the distance (in number of diversifications)
between any two vectors. This means that those reen-
codings which bring them closer together will tend to in-
crease the speed of optimization, while those that make
them further apart will tend to decrease the speed of
optimization.

COROLLARY 2 An evolutionary algorithm employing
nonbiased mizing will converge to an optimum faster
than an evolutionary algorithm which does not employ
mizing with a probability that falls off as 27" with n
mizing events.

Note that this result does not mean that the improve-
ments cannot themselves still have very long conver-
gence times. Moreover, this does not discount the pos-
sibility that the improvements will form a convergent
chain well below the global optimum. It simply means
that mixing events will have an exponentially decreas-
ing probability that different basins will be brought to-
gether?.

3. EVOLUTIONARY PATHWAYS

Once a problem encoding and a fitness function have
been chosen, the fitness of each of the points in the
space is defined. Once the encoding of the diversifica-
tion operator has been defined, the connectivity of the
search space is defined. Each point has a well-defined
number of positive and negative transitions. That is,
a single diversification event applied to any single point
will generate a new vector whose fitness value is likely to
differ from the original one. A reduction in fitness value
is viewed as a negative transition, while an increase in
fitness is a positive transition. We define a point as a
local mazimum (minimum) if the point has no pos-
itive (negative) transitions. Note that these definitions
mirror similar ones given earlier.

The set of all positive transitions defines a structure
in the search space. This structure defines the way a
hillclimbing algorithm might progress. Evolutionary al-
gorithms tend to follow the same paths that hill- climb-
ing algorithms follow if the improvements are relatively
direct and quick. If, however, the improvements re-
quire more time, the evolutionary algorithm will tend
to spread out in many directions, choosing another op-
timization directon from those built into this structure.
We define a path to be a finite ordered set of points in
which any given point could give rise to the next point
using a single diversification yielding a positive transi-
tion. We define a path bundle between point a and
b to be the set of all paths through state space which
follow positive transitions only, begin at a, and end at

3In their 2005 paper, Rand and Riolo [13] demonstrate
that a dynamic re-encoding of the search space has sig-
nificant advantages over a static encoding of a search
space. This result has no theoretical basis to date, but
has been reported by other researchers as well. We turn
now to a description of why this is so.

b. Let b be fixed. We define the set of all trajectories
ending at b to be the heap of trajectories leading to
b. Let us represent this as H (b). Finally, suppose that
b is a local maximum (minimum). Then, we call the
heap of trajectories leading to b the mazimal (mini-
mal) heap of trajectories leading to b. We denote
this as Hm (b). Note that 0Hy, (b), the boundary of
the mazimal heap of trajectories leading to b, is a
set such that at each point at least one transition is part
of a path that leads to b and at least one is a transition
that is not part of such a path.

Note that the boundary regions can be located within
a basin of attraction. Since individual basins of attrac-
tion can contain smaller basins of attraction, they can
also contain boundary regions. The regions, we will see,
are locations in which "decisions" are made by the al-
gorithm about which path bundle to climb.

PROPOSITION 3 Suppose that Hm (b) N Hy, (b') # 0.
Then at each point in the set H,, (0)NOH,, (b')UOH,, (b)N
H,, (b')a transition is possible which ezcludes (except
with a backward transition) the local mazimum b or b'.

Because of this, we may designate the set Hp, (b) N
0H,, (b')UOH,, (b)N H,, (V') the decision region for
the sets H,, (b) and H,, (). Note that if there are
only two local maxima, this region will always choose
between the two different maxima.

The decision region is an important part of the space,
as it makes an ascending evolutionary algorithm choose
between the quick transitions that lead it to a single
maxima. Asthe population progresses through the search
space, it passes through the transition regions, effec-
tively “choosing” between future maxima. Once the
population has made a decision, it becomes increasingly
unlikely to return to the decision region and to make a
new decision.

The search space can be characterized by the num-
ber of disparate starting points and decision regions a
population will pass through as it moves toward a lo-
cal optimum. As each decision region forces the pop-
ulation to choose between at least two local maxima,
the number of potential end points must be at least
m2* where m represents the number of disparate start-
ing populations possible in the space * and k represents
the number of transition regions that the population is
likely to encounter during the optimization. This forms
a lower limit on the number of times an unbiased evo-
lutionary algorithm would have to be restarted in order
to guarantee that the population visited the optimum.
The value of m is very problem-dependent, and may be
infinite. Moreover, k is highly dependent on the path
bundle taken. These two factors make this type of anal-
ysis rather unreliable in determining a solid lower bound
on the number of attempts one must make.

4Normally the initial population is distributed across
the search space, making m 1.

4. MERGING APPROACHES

In the preceding analysis, we’ve examined properties
of the system that lead to two competing approaches to
the optimization. In the first approach, a single long
run is attempted. Given enough time, we have seen
that the extended diversification operator will produce
vectors that will move the population from one basin of
attraction to another, meaning that this approach will
eventually succeed.

The second approach is generally to start and re-start
the algorithm so as to traverse as many path bundles as
possible. This approach will generally allow the algo-
rithm to make it to basins of attraction that cannot be
easily attained by simply using a single run. As we have
seen, when the basins of attraction are far apart, then
the single run has an extremely hard time finding its
way between basins of attraction. When the number of
path bundles is small compared to the number of evalu-
ations required to transfer from one basin of attraction
to the next, then it is expected to be quicker to start
the algorithm over in order to improve the performance
rather than to wait for the population to make the de-
sired transition.

A third option that has rarely been utilized is to use
a completely exhaustive algorithm. The reason this has
been overlooked is that it is generally assumed that the
search space is so vast that the use of an exhaustive al-
gorithm would be prohibitive. However, as with an evo-
lutionary algorithm, a well-made exhaustive algorithm
might be exhaustive in design, but still exploit the per-
tinent parts of the search space in the same way the an
evolutionary algorithm or other algorithm might.

What we have seen is that the search space is made
up of path bundles leading to local maxima which are
separated by differing step distances. The evolutionary
algorithm will generally explore the search space along
these path bundles, and traverse the intermediate lo-
cations with a much lower probability. Therefore, our
algorithm must be designed to do the same thing. Our
design must have the property that it can search ex-
haustively through the space, but do so in such a way
that it can apply the same advantages one might find
in an evolutionary algorithm.

4.1 Pseudoexhaustive search

Our algorithm is called Directed Pseudoezhaustive Search

(DPS) 5 . This algorithm performs a pseudoezhaustive
search, or a search which does not reach the entire space,
but systematically exhaustively searches a subspace, which
might include the entire space. This algorithm is meant
to utilize the strengths of searches such as evolutionary
algorithms, while avoiding the sometimes debilitating
repetition of evolutionary algorithms.

DPS assumes that the space is discrete, as is the set
of possible variations. Moreover, since the set of di-

5This has also been called Directed Ezhaustive Search
(DES) in earlier work on this subject [7, 8].

versifications is discrete and therefore enumerable, it
is assumed that the diversification operator used can
be invoked using a vector and a chosen diversification
ranging from 1 to the maximum mutation. This makes
it possible to keep track of which mutations have been
attempted with a single vector and which have yet to
be attempted.

Our algorithm utilizes two main data structures. The
first data structure is a linked list. The linked list con-
tains the vectors that are currently being examined.
These vectors are ordered according to a decreasing fit-
ness value. The linked list is augmented with a list
pointer which determines which element in the list will
be utilized at a specific moment. The list pointer’s
control strongly influences the search. We return to it
presently.

Each node in the linked list is a record that contains
three pieces of information. The first is the vector. The
second is an integer known as a variation pointer indi-
cating which variation was last attempted on this vec-
tor. The integer is incremented with every mutation
operation on a given vector. The third is the fitness
value for the vector.

The second data structure used is a lexicographically-
ordered binary tree. The binary tree stores the vectors
that have been visited by DPS. This is utilized so as to
avoid revisiting the vectors. The binary tree is source
of greatest memory consumption, and so care must be
taken to avoid storing too many vectors. This is done by
periodically purging the tree. We describe how this is
done without losing the efficacy of the algorithm shortly.

DPS makes use of a reset threshold, which is a floating
point number initially set to 1, and which controls the
likelihood that the algorithm will "spontaneously" reset
the linked list pointer to the head of the list.

DPS starts by creating a predetermined set of binary
vectors. This initial population is then inserted into the
linked list. Once the initial population is inserted in the
linked list, the list pointer is reset to the top of the list
and DPS enters continual cycles.

During each cycle, the vector to which the list pointer
is pointing is varied, calling on the variation indicated by
its variation pointer. The old vector’s variation pointer
is incremented once the variation occurs. If the old vec-
tor’s variation pointer exceeds the maximum variation
number, it is removed from the linked list. If the new
vector does not exist in the binary tree, it is stored in
the binary tree. If it also has a fitness that exceeds that
of the old vector, it is stored in the linked list with a
newly initialized variation pointer set to 1. The linked
list pointer is reset to the top of the list and the next
cycle begins. If the new vector’s fitness is the highest
thus far found, the reset threshold is reset to 1. Oth-
erwise, it is replaced by the the product of itself and a
number between zero and 1, typically 0.999.

If the new vector does exist in the binary tree or if its
fitness is lower than the old vector’s fitness, then the list
pointer is incremented, and the new vector discarded.

The reset threshold is multiplied by the same number
as used in the previous paragraph in this case. More-
over, if a random number falls between 1 and the reset
threshold, the list pointer is reset to the top of the list.
This serves to bias the search so as to carry out deeper
rather than wider searches if it goes too long without
discovering a new optimum.

The binary tree will eventually expand to fill all the
memory on a computer, even for moderately sized prob-
lems, without maintenance. As a result, we've devel-
oped a procedure for moderating its size. Each time an
element is found in the binary tree (it has been pro-
duced by a mutation earlier), a counter in its node is
incremented. Periodically, the binary tree is updated
by creating a new tree from the old one, while deleting
the old one. The new tree only contains those elements
from the old one that have been visited recently. This
not only removes many of the nodes, but also serves to
include only those that need to be included. Many of
the nodes can only be created by going through other
nodes. If these other nodes are kept in the binary tree,
the nodes created using them can be safely removed
from the tree without fear that they will be added again
to the linked list.

4.2 Application to the BQP

In our simulations, both the GA and BQP use a bi-
nary representation. The genetic algorithm utilized is a
Goldberg style GA with proportional reproduction, and
single or double point mutation, and elitism. As the mu-
tation is assumed to be enumerable, mutations consists
of passing of a vector and a random choice of mutation
from between the minimum and maximum index of mu-
tation. The GA does not use a crossover operator as the
design of a suitable DPS algorithm utilizing crossover re-
quires a tremendous variation operator. This is planned
for a later study.

The DPS utilized is as descibed above. Both the DPS
and the GA utilize the same fitness function, which re-
turns the product of the vector, the matrix, and the
vector’s transpose.

We apply both DPS and the GA to 15 different in-
stances of the BQP; these problems can be found in OR-
LIBJ[2], a computer program library for basic models of
operations. Among these instances are 10 small 50 x 50
instances and 5 medium instances of 100 x 100 prob-
lems. Each problem instance is tested 30 times where
the best fitness for each problem is known.

We give the performance of the two algorithms in Ta-
ble 1. This table gives the best found individual in ten
runs of the each algorithm along with the best known
solution. Interestingly, the new algorithm is capable
of recovering the best known solution in all the exam-
ined cases. Moreover, the DPS algorithm outperforms
the evolutionary algorithm from which it was cast in
terms of optimization and reliability. This indicates a
potential solution to the optimization for problems that
EAs have trouble with, without changing the operators

Table 1: This table gives the average performance of
the GA and the DPS on the various BQP problems. In
all cases, the DPS is capable of finding the optimum.

Figure 1: This figure illustrates the performance of the
GA (left) and the DPS (right) on the BQP optimization
problem. These graphs illustrate the behavior on the

same 50x50 optimization problem.

utilized, and with a relative minimum of programming
complexity.

We also present graphical data indicating the perfor-
mance of the two algorithms during typical runs. The
data, given in Figure 1, illustrates that though the two
algorithms are very different in their details, the data
processing of both is similar. In each case, the opti-
mization may be characterized by periods of inactivity
punctuated by sharp changes in the current best fitness.

5. DISCUSSION

Optimization algorithms such as evolutionary algo-
rithms behave differently according to the part of the
search space that they are currently exploring. How-
ever, the "magical" part of the evolutionary algorithm
is often thought to be tied up in the randomness of the
mutation and crossover operators. It is this random-
ness, it is often times argued, that makes evolutionary
algorithms capable of doing things that are outside of
more standard optimization algorithms, worthy of an
entirely discrete research center.

Recent theoretical work on the No Free Lunch (NFL)
Theorem and its consequences has begun to overturn
this conceptual thinking [15, 16, 10]. Many researchers
interpret the NFL as tending to assign equality among
all problems to every optimization algorithm. However,

Probl [DPS | [[GA J[[[Best | % %
roblem [Best | [[Best | ||[Known | || [DPS | || [GA]
50.01 2098 2098 2098 100% 60%
50.02 3702 3702 3702 100% 100%
50.03 4626 4626 4626 100% 100%
50.04 3544 3544 3544 100% 76.7%
50.05 4012 4012 4012 100% 80%
50.06 3693 3693 3693 100% 100%
50.07 4520 4520 4520 100% 40%
50.08 4216 4216 4216 100% 96.7%
50.09 3780 3780 3780 100% 36.7%
50.1 3507 3507 3507 100% 43.3%
100.01 7970 7970 7970 60% 10%
100.02 11036 11036 11036 90% 30%
100.03 12723 12723 12723 100% 30%
100.04 10368 10368 10368 100% 20%
100.05 9083 9083 9083 100% 30%

this is neither implied nor explicitly stated by the NFL
theorem as it does not include any information about
the repetitive nature of the evolutionary algorithm. In
fact, as all evolutionary algorithms exhibiting eventual
stagnation are not addressed by the NFL Theorem, and
many evolutionary algorithms are, in practice, eventu-
ally stagnant, this analysis does not apply to any of
these.

What the NFL theorem does correctly do is to indi-
cate that evolutionary algorithms capable of being im-
plemented on a computational device and not eventually
stagnant are, in fact, not random at all. Their apparent
randomness is a result of a complex set of equations that
exhibit many of the properties of randomness, but are
not really random. Nonetheless, these algorithms have
an impressive ability to yield the global optimum of a
search space. As a result, it must be concluded that
these algorithms are capable of yielding good results
because of how they process the search space. Their
randomness would seem to be irrelevent.

The search space processing capability of the algo-
rithm can be clarified by examining the search space
structure imposed by the diversification operators (mu-
tation and crossover). This structure defines the dis-
tance in diversification steps between different vectors,
the probability of each of these steps, and indirectly
defines the expected amount of time that will pass be-
tween the various transitions. Therefore, an algorithm
that processes the search space in the same way as evolu-
tionary algorithms should be able to perform similarly,
even if it is not evolutionary in nature.

In our simulations, we have taken care to generate al-
gorithms that are fashioned from the same genetic op-
erators used in our evolutionary algorithms. Because
of the nature of crossover and the difficulty in imple-
menting it in an exhaustive way, we have bypassed the
use of crossover in our evolutionary algorithms. How-
ever, despite the limited capability of our evolutionary
algorithms, both they and the versions of DPS formed
from each EA instantiation performed quite well on the
problems they were applied to.

The BQP problem represents a problem of moderate
computational difficulty. While the problem is certainly
NP complete, recent work using memetic algorithms can
do quite well in completing the optimization. However,
as we’ve seen in this work, some EAs have difficulty in
finding the optimum, particularly in the larger dimen-
sion cases. This finding might be generalized to other
problems that are tackled with more specialized func-
tions. In much the same way that the performance of
our very simple GA has been improved by the DPS for-
mulation, it might be possible to improve other algo-
rithms.

This particular problem is complex enough that it
also illustrates an important property of search algo-
rithms. As we’ve seen, the performance of the two re-
lated algorithms is similar, though there are significant
advantages obtained when the DSP is used for larger

BQP problems. It is interesting that a non-stochastic
algorithm can be generated that seems to have simi-
lar information processing capability and processes that
evolutionary algorithms have, despite being exhaustive
in nature. EAs must be understood in a way that does
not depend on their stochastic nature, but instead fo-
cuses on their ability to extract information, react to the
fitness landscape, and generate more desirable vectors.
This might lead to localized economies on particular
problems, and may make it possible to generate algo-
rithms that self-adapt so as to take advantage of these
economies as they carry out the optimization.

6. CONCLUDING REMARKS

In this paper, we’ve explored some of the theoretical
issues concerning evolutionary algorithms, and applied a
new type of search algorithm to the BQP problem. The
theoretical issues are interesting in the sense that they
validate some of the expected or oft observed but hereto-
fore unexplained behaviors of EAs. The ability of the
genetic algorithm, or for that matter any EA with a di-
versification operator that isn’t eventually stagnant, to
find the global optimum has never before (to our knowl-
edge) been demonstrated theoretically. This serves to
solidify our understanding of the scope and design of
the EA.

Of prime importance in the design of any search al-
gorithm is the representation of the various vectors and
operators. Our theoretical results have demonstrated
that random representations of these operators can be
effective in generating improvements in performance,
This is similar to the use of uniform crossover, which
has various advantages over single point and dual point
Crossover.

Our examination of the search space and characteriza-
tion of it as a set of paths has allowed us to understand
how one might utilize an exhaustive or pseudoexhaus-
tive algorithm which seems to behave similarly to the
EA. Our analysis has indicated that while the EA is an
interesting paradigm that seems to perform well with a
modicum of machinery and using random operators, the
part of the EA which makes it useful and important is its
ability to process information gleaned during the search
and use it to direct its later actions. When this informa-
tion processing capability was utilized by our pseudoex-
haustive algorithm, the algorithm was able to replicate
the performance of the earlier optimized memetic algo-
rithms, though it wasn’t itself optimized.

7. REFERENCES
[1] B. Alidaee, G. Kochenberger, and A. Ahmadian,

0-1 Quadratic Programmin Approach for the
Optimal Solution of Two Scheduling Problems,
International Journal of Systems Science,
25: 401-408, 1994.

[2] J. Beasley. OR-library: Distrubing Test Problems
by Electronic Masl.
http://people.brunel.ac.uk/ matjjb/jeb/orlib /files.

18]

[3] J. Beasley. Heuristic Algorithms for the
Unconstrained Binary Quadratic Programming
Problem, Tech. Rep., Management School,
Imperial College, London, UK, 1998
G. Gallo, P. Hammer, and B. Simeone. Quadratic
Knapsack Problems, Mathematical
Programming, 12: 132-149, 1980.
F. Glover, B. Alidaee, C. Rego, and G.
Kochenberger. One-Pass Heuristics for
Large-Scale Unconstrained Binary Quadratic
Problems
E. Cantu-Paz and D. Goldberg. Are multiple runs
of genetic algorithm better than one? Lecture
Notes in Computer Science, 2723, pp.
801-812, 2003.
S. Kazadi, D. Johnson, J. Melendez, B, Goo.
Ezhaustive Directed Search. Proceedings of the
Genetic and Evolutionary Computation
Conference, 2004 , Seattle, WA, USA, 2004.
S. Kazadi, M. Lee, L. Lee. A Case for Ezhaustive
Optimization. Proceedings of Gecco 2005
Conference, Late Breaking Papers,
Washington D.C., USA, June 2005.
D. Laughunn. Quadratic Binary Programming.
Operations Research, 14: 454-461, 1970.
W. Macready and D. Wolpert. What makes an
optimization problem hard?, Complexity, 5:
40-46, 1996.
P. Merz and B. Freisleben. Genetic Algorithms for
Binary Quadratic Programming. Proceedings of
GECCO 1999, 417-424, 1999.
A. Phillips, and J. Rosen. A Quadratic
Assignment Formulation of the Molecular
Conformation Problem. Journal of Global
Optimization, 4: 301-328, 1994.
Rand and Riolo. The problem with a self-adaptive
mutation rate in some environments. A case study
using the shaky ladder hyperplane-defined
functions. Proceedings of GECCO 2005,
Washington D. C., USA, pp. 1493-1500, 2005.
C. Witsgall. Mathematical Methods of Site
Selection for Electronic System (EMS). NBS
Internal Report, 1975.
D. Wolpert and W. Macready. No free lunch
theorems for optimization. IEEE Trans. Evol.
Comput., 1(1): 67-83, 1997.
D. Wolpert and W. Macready. Coevolutionary free
lunches. IEEE Trans. Evol. Comput., 9(6):
721-735, 2005.
[17] M. Mitchell. An Introduction to Genetic
Algorithms. MIT Press: Boston, MA, 1996.
L. Davis, M. Vose, and K. DeJong. Evolutionary Al-
gorithms. Volumes in Mathematics and its Ap-
plications Vol III. Springer-Verlag: Berlin, 1996.

[4]

(5]

[6]

7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

