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ABSTRACT
When solving real engineering design problems, exploring
the decision space for alternative and near-optimal solutions,
and identifying non-unique solutions are useful. An efficient
way to conduct this search is to identify alternative solutions
that are as far apart as possible in the decision space. This
will help not only provide meaningful design choices, if any
are available, but also assess the degree of non-uniqueness
present in the problem.

This paper describes the development and testing of a
new evolutionary algorithm that extends evolution strate-
gies to generate simultaneously a set of maximally different
alternatives that are efficient solutions for engineering design
problems. The new method, niched co-evolution strategies
(NCES), is demonstrated for a groundwater pollutant source
characterization problem that is known to have a high de-
gree of non-uniqueness. Through an illustrative case study,
NCES is shown to successfully assess and address the non-
uniqueness for an instance of this relatively complex engi-
neering design problem. Track: Evolution Strategies, Evo-
lutionary Programming

General Terms
Algorithms, Design

Keywords
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1. INTRODUCTION
Engineering design problems are solved by synthesizing

domain knowledge of a particular system and identifying
design choices that meet system constraints and require-
ments. Mathematical representations of system objectives,
design choices, and constraints enable the use of mathemat-
ical search methods effectively in the design process. Many
engineering systems require the execution of a complex sim-
ulation model to evaluate potential designs. Evolutionary
algorithms (EA) can easily incorporate simulation models
in solution evaluations and have been useful for design op-
timization in many engineering applications.

Engineering design problems often involve a large set of
design choices, with complex interactions among decision
variables. Further, the fitness landscapes for these prob-
lems are often complex and highly irregular. In addition

to identifying the optimal solution, the design process may
benefit if alternative and near-optimal solutions are gener-
ated. In such an exploration, solutions that are maximally
different from each other, or far apart in the decision space
from other good solutions, would provide more meaningful
design alternatives. This would also help provide insight
about the design problem and its solution space.

System identification is a class of design problems in which
the characteristics of a system are determined using an in-
verse search technique. The goal is to identify system char-
acteristics that will explain observations of the system. These
problems often consist of a high degree of non-uniqueness,
i.e., several solutions would result in an equally good match
for the observations. Thus a single solution, the optimal
solution, may provide misleading or insufficient description
of the system. Exploring the decision space for maximally
different system characteristics that provide similarly cor-
rect prediction of the observations would impart some un-
derstanding of the degree of non-uniqueness in the problem.
For example, if many alternative system characteristics are
found to describe the observations equally well, then one
could conclude that the problem has more non-uniqueness
than when no good alternatives are identified even though
the decision space is effectively explored by a search for dif-
ferent solutions. Such an examination of non-uniqueness
helps ascertain confidence in the prediction of the system
characteristics. Subsequently the non-uniqueness could be
resolved through additional confirmatory observations until
no significantly different solution can be found.

A systematic approach to generating alternatives should
seek solutions that are as different as possible in the deci-
sion space while performing well with respect to the stated
fitness. The search for a set of maximally different alter-
native solutions has been formalized in [1], as the modeling
to generate alternatives approach. A systematic exploration
generates a small number of alternative solutions that per-
form similarly well and are located far apart in the deci-
sion space. An array of studies (e.g., [2], [3], [4], [5], [6],
[8], and [9]) report the development of several alternatives
generation procedures and their application to a number of
realistic problems. In these studies, alternatives generation
capabilities are used to address the presence of subjective
preferences that cannot be included in mathematical ob-
jective statements, and to enhance the search for creative
solutions for design problems.

Evolution strategies (ES) have been lauded as particu-
larly useful for continuous parameter optimization problems
[12]. ES were originally introduced for problem-solving for



civil and mechanical engineering design problems and have
efficiently optimized numerous engineering design problems
[11]. Given the frequent use of ES in engineering design
problems, which could benefit from exploring for design al-
ternatives, the formal alternatives generation procedure is
extended to ES in this paper. A new ES-based alternatives
generation procedure is developed and tested. It is also suc-
cessfully demonstrated for addressing the non-uniqueness
present when solving a groundwater contamination source
char acterization problem.

2. METHODOLOGIES FOR GENERATING
MAXIMALLY DIFFERENT
ALTERNATIVES

2.1 Mathematical Background for Generating
Alternatives

The mathematical definition of modeling to generate al-
ternatives for a search problem has been provided in [1]. An
engineering design problem can be represented as:

Maximize Z = f(X) (1)

Subject to gi(X) ≥ bi∀i = 1, . . . , M (2)

where f(X) is the function representing the objective state-
ment, which is maximized, X is the vector of decision vari-
ables representing the design decisions, and Eqn. 5 repre-
sents the set of constraints. Let X∗ be the best design
identified, and Z∗ is the corresponding maximum objective
value. An alternative solution that is maximally different
from X∗ can be generated by solving the following model:

Maximize D = d(X, X∗) (3)

Subject to f(X) ≥ T (Z∗) (4)

Subject to gi(X) ≥ bi∀i = 1, . . . , M (5)

where D is a difference function based on d(X, X∗), which
represents a “distance” measure between two solutions X
and X∗, and T is a target that is specified in relation to
the fitness value Z∗. T represents an allowable relaxation,
if any, in the objective value.

The target, T , permits a small degredation in the objec-
tive value to provide exploration of very different design de-
cisions. The target may be specified to allow no relaxation
when exploring for alternate optima for highly non-unique
problems. For other problems, a near-optimal solution may
be acceptable, and the target may be set so that the search
identifies solutions that are inferior to the optimal solution.

A set of alternatives can be identified in a sequential ap-
proach. Once the best solution X∗ is found, the first al-
ternative is identified by solving the model represented by
Eqns. 3−4. To identify the second alternative, the difference
function D can be modified to find the solution maximally
different from both the best solution (X*) and the first al-
ternative, while the target function remains the same. The
difference function can be updated for each new alterna-
tive identified, and the search for new alternatives contin-
ues until no significantly different alternatives are found.
Several algorithms have been designed for generating a se-
quence of maximally different alternative solutions to nu-
meric optimization problems, based on mathematical pro-
gramming search methods, including linear programming,

nonlinear programming, integer/binary programming, and
dynamic programming (e.g., [2] and [4]).

2.2 EA-based Approaches for Generating
Alternatives

Several (EA)-based approaches have been developed for
generating a set of alternatives. The most direct method is
to use an EA sequentially. Initial execution of the algorithm
identifies the best solution to the original modeled problem
(Eqn. 1). For each sequential run, Eqn. 3 is used as the ob-
jective statement and the solution identified in the previous
run is included in the distance function. This method is de-
scribed and implemented for a GA in [5]. This approach may
become computationally burdensome due to the repeated
executions of an EA.

The niching operator [7] is a well-established EA-based
approach for identifying a set of solutions for multimodal
problems. Niching is designed to identify a set of peaks in
a fitness landscape by derating the fitness function in re-
gions of decision space where solutions are already located.
Niching is useful for identifying a set of solutions that all per-
form well for the objective statement, but is not designed for
specifically identifying the solutions that are most different
from one another. Niching can be modified to generate a
smaller number of more distant solutions by tweaking pa-
rameters, such as the niche count and the sharing distance,
as explored in [6]. This approach involves extensive param-
eter tweaking or a priori knowledge of the decision space. In
the context of ES, niching has been investigated to a limited
extent [13].

In [6], a new GA-based procedure (GAMGA - Genetic
Algorithms for Modeling to Generate Alternatives) extends
niching to generate maximally different solutions. Niches
are formed around the most different solutions in a popu-
lation, and a neighborhood is defined to restrict migration
between niches. The algorithm introduces several additional
parameters and algorithmic steps that require careful tun-
ing.

An EA-based approach, the Evolutionary Algorithm for
Generating Alternatives (EAGA) [8], was developed to ex-
plicitly identify maximally different alternatives using a set
of subpopulations. The first subpopulation converges to an
optimal solution to the original modeled problem. The re-
maining subpopulations search for solutions that are distant
from all other subpopulations while meeting the specified
target on the objective. The target objective becomes more
restrictive as the search progresses, tightening as the fitness
of the individuals in the first subpopulation improves. Re-
combination, mutation, and selection operators are applied
separately in each subpopulation, and migration is not al-
lowed between subpopulations. EAGA is designed with a
minimal number of additional parameters. The fitness def-
inition of an alternative solution can be defined so that the
search, though parallel, identifies alternatives in a sequential
manner. The advantage of the simultaneous search capabil-
ity provided by the subpopulations is that more exploration
is allowed for the secondary subpopulations and they avoid
local optima, or solutions that are only marginally different
from other subpopulations but meet the target objective.
As the structure of EAGA is independent of the search pro-
cedure employed in the subpopulations, it can be used with
genetic algorithms or evolution strategies for numeric opti-
mization problems.



3. NICHED CO-EVOLUTION STRATEGIES
Niched Co-Evolution Strategies (NCES) uses the basic

concept of cooperative co-evolution to evolve a set of de-
sign solutions. A set of subpopulations is used to collectively
search for different alternative solutions, where each subpop-
ulation is guided toward a region in the solution space that
is distant from other subpopulations. Information about the
location of a subpopulation in the solution space (and there-
fore the set of common solution-characteristics of a subpop-
ulation) is shared such that the subpopulations cooperate
in co-evolving toward different regions of the solution space.
Selection within each subpopulation depends upon how well
the solutions perform with respect to the design optimiza-
tion model (Eqns. 1-2), as well as upon how far they are
from the other subpopulations. NCES is designed to search
explicitly for a set of solutions that are as different as pos-
sible in the design choices and are within a target for the
objective function (Eqn. 4). Building upon the procedure
described for a genetic algorithm in [8], EAGA is extended
to contruct a new algorithm NCES for generating alterna-
tives using evolution strategies. The main steps of the al-
gorithm are described below for a (µ + λ) ES, but could be
easily adapted for any alternative ES configuration.

3.1 Algorithmic Steps
Step 1. Create an initial population with P subpopulations
(each with a population size of K), where P is the number
of alternative solutions being sought. Let SPp (p=1,. . . , P )
represent the index for subpopulation p. The first subpopu-
lation (SP1) is dedicated to the search for the solution with
the greatest objective function value.
Step 2. In each subpopulation SPp (p=1,. . . , P ), apply an
adaptive mutation operator to generate λ offspring.
Step 3. In SP1, evaluate the fitness (Eqn. 1), of each so-
lution, and identify the solution in the subpopulation with
the best fitness. This solution will serve as the benchmark
for setting the relaxation constraint Eqn. 4.
Step 4. In SPp (p=2,. . . , P ), evaluate the fitness of each in-
dividual solution. Solutions that meet the target constraint
Eqn. 4 are assigned a feasible flag, and solutions that fail to
meet the target are labeled infeasible.
Step 5. For each solution k in subpopulation SPp (p 6= 1),
calculate the difference Dk,p (defined in Section 3.2) in the
solution space between that solution and other subpopula-
tions.
Step 6. In each subpopulation SPp, apply a selection op-
erator. In SP1, the selection is based on how well a solution
maximizes the fitness. The solutions are ranked based on
fitness and the top µ solutions survive to the next gener-
ation. In SPp (p 6= 1), the selection is based on how well
the solution meets the constraint Eqn. 3, as well as on the
value of the difference function (as described in Section 3.2).
Feasible solutions are ranked first from highest to lowest dif-
ference function. Infeasible soltuions are then ranked from
best to worst fitness values.
Step 7. Check for termination criteria. Stop the algorithm
if termination criteria (e.g., a maximum number of itera-
tions) are met. Otherwise, go to Step 2.

3.2 Definition of Difference
The difference function for a solution is based on the dis-

tance of that solution to a set of subpopulations. For a
numeric search problem, the distance d between two vec-

tors of numbers may be easily represented, for example, as
the Euclidean distance. The difference function, Dk,p, for
solution k in subpopulation SPp is the minimum of the dis-
tances between solution k and the other subpopulations SPq,
q 6= p. The distance from a solution in one subpopulation to
another subpopulation is defined as the average of the dis-
tances between that solution and each solution in the other
subpopulation, which is a representation of the centroid of
the subpopulation. Thus Dk,p is expressed as:

Dk,p = Min{
PK

j=1 d(Xk,p, Xj,q)

K
; q = 1, . . . , P, q 6= p} (6)

where d(Xk,p, Xj,q) is the distance between the two solu-
tions Xk,p and Xj,q, K is the number of solutions in a sub-
population, and P is the number of subpopulations.

The set difference is a metric defined to evaluate the de-
gree of difference among alternatives. The set difference
can be represented as the minimum difference function value
amoung a set of alternatives.

4. NCES FOR TEST PROBLEM
A test problem is used to demonstrate the use of NCES for

generating a set of alternative solutions. The test function is
a series of decreasing and increasing peaks (Fig. 1). For this
maximization problem, the optimal solution is at x = 0.015,
corresponding to y = 1.0. When the target relaxation is
set at 75%, the two alternative solutions that are maximally
different from the first solution and each other are located
at x = 0.97 and x = 0.77. Both points correspond to the
objective value y = 0.75, as shown in Fig. 1.

Figure 1: Test function. Dashed line represents the
target relaxation of 75% of the best solution. A rep-
resents the best solution (x = 0.015), and B and C
represent the set of two maximally different alter-
native solutions that meet the target relaxation.

NCES was implemented as described in Section 3, and
executed to solve the test problem, using the algorithmic
settings shown in Table 1. Twelve of 30 random trials
successfully identified the three best solutions as shown in
Fig. 1. Eleven trials misidentified the best solution in the
first subpopulation as the peak at x = 0.95, but success-
fully converged to three maximally different peaks in the
design space. The behavior of the algorithm is shown for
one of the eleven successful trials in Fig. 2 over sixteen gen-
erations. The first subpopulation searched for the optimal



solution, which is found by the forth generation. The second
and third subpopulations converged to solutions that are dis-
tant from the first peak and from each other. By Generation
16, the second subpopulation converged to x = 0.77, and the
third subpopulation converged to x = 0.97.

Table 1: NCES algorithmic settings for the test
problem and the groundwater source characteriza-
tion problem

Setting for Setting for
Parameter test problem groundwater problem

µ 15 100
λ 100 200
4σ 0.2 0.2
Generations 20 100
No. alternatives 3 5
Target 0.75 1.5

5. GROUNDWATER POLLUTION
SOURCE IDENTIFICATION
PROBLEM

In managing groundwater systems, the identification and
characterization of a pollutant source is an important step
toward the remediation of a contaminated aquifer. When
contamination is detected in an aquifer, measurements of
contaminant concentration in the groundwater are taken at
observation wells that receive signals from the source of pol-
lution. If a mathematical model of the groundwater sys-
tem is available, the time series of observations can be used
to identify the location and concentration of the contami-
nant source in the aquifer. A simulation-optimization ap-
proach can be used to identify the source characteristics
by coupling a groundwater flow and transport simulation
model and optimization method (Fig. 3). The optimization
method searches for source location, size, and concentration
characteristics that minimize the prediction error in match-
ing the observed concentration data to the simulated con-
centrations.

Evolutionary algorithms have been used for source identi-
fication by [10] for relatively complex and realistic ground-
water systems. Identification of an accurate source char-
acterization is often complicated by the presence of non-
uniqueness. Several different source characterizations may
result in similar observed concentration profiles. A sim-
plified example is used to demonstrate non-uniqueness in
such a source characterization problem. A homogeneous
groundwater field is modeled as a two-dimensional grid of
100 meters (x−direction) by 60 meters (y−direction), shown
in Fig. 4. Observation Wells 1 and 2 are used to collect time
dependent concentration data of the contaminant plume.
Fig. 5 shows the concentration profile at Observation Well 1
resulting from an instantaneous point source contamination
at Source 1. This figure also shows the concentration profile
resulting from an instantaneous point source contamination
at Source 2. The two concentration profiles are very similar,
although the two sources vary considerably in location, size,
and concentration values, which are listed in Table 2. The
non-uniqueness present in the problem thus complicates at-
tempts to characterize the source based on the observations

Figure 2: Convergence of NCES for the test func-
tion shown for a series of generations. The first sub-
population is identified by dark circles, the second
subpopulation, by open triangles, and the third sub-
population, by ×’s.



Figure 3: Source characterization for the ground-
water pollutant problem using a simulation-
optimization approach.

taken at Observation Well 1.
A time series of concentration data may also be taken at

Observation Well 2. Though at Observation Well 1 the con-
centration profiles from both sources are similar, the concen-
tration profiles at Observation Well 2 from the two sources
are highly dissimilar (as shown in Fig. 6). If observations
from more wells are available, the non-uniqueness in the
problem can be reduced and the source of the pollutant can
be accurately identified through the use of additional infor-
mation.

In the presence of non-uniqueness, a single-solution search
may misidentify the source, resulting in a solution that has
a low prediction error, but does not necessarily match the
true source characteristics. A set of possible solutions will
provide insight for the problem and a representation of the
range of sources that could cause the observed contamina-
tion. At the outset of solving such source characterization
problems and other inverse problems, it may not be possible
to determine whether the problem is highly non-unique or a
unique solution exists. An alternatives generation approach
can be used to resolve this non-uniqueness issue.

The computational resources required to use a simulation-
optimization approach for population-based searches may
become impractical. To avoid excessive run-times for this in-
vestigation, a neural network approach was taken to identify
a surrogate model for the finite element simulation model.
A set of data was generated using the groundwater model
and was used to train the neural network surrogate model.
The neural network surrogate model provides quick approx-
imations of the response surface of the model and is able to
imitate the true groundwater model relatively accurately. A
small error is introduced to the prediction error due to the
imperfect approximation of the neural networks and con-
tributes to the non-uniqueness present in the problem.

5.1 Identifying a Set of Alternative Source
Characteristics using NCES

NCES is applied to a synthetic groundwater system man-
agement problem to generate a set of alternative solutions.
A contaminant source is modeled using a groundwater model,
and observations at a well are generated, which are treated
as the set of synthetic observation data. NCES is coupled
with the neural network surrogate model to identify the
source characterization that matches this observation data.
The groundwater field is modeled as a two-dimensional grid
of 100 meters by 60 meters. The true source is the source
characterization used as input to the model to generate the
observation data. It is four meters by four meters, and the

Figure 4: A groundwater contaminant characteriza-
tion example.

Table 2: True Characteristics of Sources 1 and 2

Source. Loc. Loc. Size Size Conc.
# (x) (y) (x) (y) (mg/L)

1 53.0 9.0 2.0 2.0 34.0
2 57.0 39.0 6.0 6.0 100.0

Figure 5: Concentration profiles at Observation
Well 1.

Figure 6: Concentration profiles at Observation
Well 2.



centroid of the source is located at 54 meters on the x-axis
and 34 meters on the y-axis. The concentration of the true
source is 70 mg/L. Observations are simulated at twenty
time-steps.

The settings for the algorithm are given in Table 1. A
solution is represented as a vector of five real numbers be-
tween zero and one, and the allowable ranges of values for
the decision variables are given in Table 3. The distance
between two solutions is the sum of the normalized abso-
lute differences between the x−location, the y−location, the
size, and the concentration. NCES was executed to identify
the best (optimal) solution and another four alternative so-
lutions. The objective value of a solution is the prediction
error, which is the maximum absolute difference between the
observed concentration values and the predicted concentra-
tions for the data set. The distance for a set of solutions, i.e.,
the set distance, is defined as the minimum of the difference
measure between all pairs of the four alternative solutions
in the set.

Table 3: Allowable ranges of decision variable values

Variable Range

Location x−axis 0-80 m
Location y−axis 0-60 m
Size x−axis 2-8 m
Size y−axis 2-8 m
Concentration 0-100 mg/L

5.2 Results

5.2.1 Source Characterization
Using Observation Well 1

NCES was executed for 30 random trials, and each trial
generated five alternative source characterizations. The first
subpoplulation searches for the solution that minimizes pre-
diction error. The four remaining subpopulations identify
solutions most distant from the first subpopulation and the
other secondary subpopulations and with prediction errors
within a specified range of the best solution in the first sub-
population. Eighteen of the 30 trials identified four alterna-
tive solutions with errors within the specified range of the
best solution. The average error of the solutions identified
by the first subpopulation is 0.007 with a standard deviation
of 0.002.

A successful trial, one in which all solutions had prediction
errors within the target relaxation and the set difference was
relatively high, is randomly selected to view the behavior of
NCES. As shown in Fig. 7, the prediction error of the best
solution in subpopulation 1 decreases monotonically. As the
first subpopulation converges, the secondary subpopulations
(subpopulations 2, 3, 4, and 5) identify error values within
1.5 times the error of the best solution in the first subpopu-
lation. The secondary subpopulations evolve toward distant
parts of the decision space, as seen by the increasing trend of
the distance measure for the best solution in the secondary
subpopulations (Fig. 8). The final set distance for the five
alternatives is 0.796. This number represents the difference
among the solutions identified, which is visualized in the 2-D
layout of the solutions Fig. 9. Table 2 lists the characteris-
tics of each alternative and the true source characterization,

as well as the prediction error associated with each alterna-
tive solution. As shown in Fig. 10, the concentration profile
of each alternative solution matched the observations very
closely, even with a generous target relaxation applied to the
alternatives. Three of the five solutions are proximate to the
true solution, with Alternative #4 appearing closest to the
true solution. Had a single-solution search been conducted,
the solution identified by the first subpopulation, Alterna-
tive #1, would be misleading as it is spatially farthest from
the true solution. The generation of alternatives provides
candidate source locations that, in this case, are closer to
the true source.

Figure 7: Convergence of the fitness of the best so-
lutions in the five subpopulations.

Figure 8: Evolution of difference metric for best so-
lutions in subpopulations 2, 3, 4, and 5.

5.2.2 Source Characterization
Using Observation Wells 1 and 2

NCES was applied again to solve the same source charac-
terization problem based on observations from Observation
Wells 1 and 2. Thirty random trials were executed to gen-
erate five alternative source characterizations. Nineteen of
the 30 trials identified four alternative solutions with errors
within the specified range of the best solution. The average
error of the solutions identified by the first subpopulation is
0.013 with a standard deviation of 0.003. The average set
distance over the 30 trials using Observation Wells 1 and 2 is
0.002. The average set distance over the 30 trials using Ob-



Figure 9: Five alternative source locations predicted
using Observation Well 1.

Figure 10: Concentration profiles of the five alter-
native source characteristics.

servation Well 1 (as discussed in Section 5.2.1) is 0.423. The
amount of decision space that will yield similar prediction
errors has decreased significantly by increasing the number
of observations used to identify the source. By identifying
relatively similar solutions as the set of maximally different
solutions for the trials using two observation wells, NCES
quantifies the decrease in non-uniqueness.

One successful trial of the thirty was chosen for analysis.
The five alternative solutions generated had a set distance of
0.005, which is much lower than the set differences for the
case where the source characterization was based only on
Observation Well 1. Table 3 lists the characteristics of each
alternative identified and the true source characterization.
The five alternative sources are all located in approximately
the same place in the x− y space, as shown in Fig. 11.

While the inclusion of observations from the second ob-
servation well helps significantly resolve the location non-
uniqueness, the sizes and concentrations of the alternatives
still vary widely. Though this non-uniqueness remains un-
resolved, the resolution of the non-uniqueness in location
is valuable and important for remediation purposes. This
enables a more accurately targeted contaminant mitigation
action, increasing the effectiveness and confidence of success
of a remediation management strategy.

Figure 11: Five alternative source locations pre-
dicted using Observation Wells 1 and 2.

6. FINAL REMARKS
The new method NCES extends evolution strategies to

generate simultaneously a set of maximally different alterna-
tive solutions to engineering design problems. Exploration
of such alternatives with distinctly different solution charac-
teristics would help identify meaningful design choices. For
problems with non-uniqueness issues, NCES is useful to ad-
dress non-uniqueness efficiently. NCES was tested and il-
lustrated for a multi-modal test function. The method was
also applied to a groundwater contaminant source character-
ization problem that involves an evolution strategies-based
search. As non-uniqueness is a serious issue in such inverse
problems, NCES was employed to successfully address it.
Results demonstrate that when the problem contains a high
degree of non-uniqueness due to limited observations, NCES



Table 4: Characteristics of the true contaminant
source and the five alternative source characteriza-
tions identified by NCES

Sol. Loc. Loc. Size Size Conc. Error
(x) (y) (x) (y) (mg/L) (mg/L)

True 54.0 34.0 4.0 4.0 70.0 −
Source

Alternatives identified based
on Observation Well 1

Alt. 1 51.0 10.3 5.3 4.8 11.9 0.013
Alt. 2 50.6 20.0 2.0 2.0 32.5 0.011
Alt. 3 56.1 39.2 6.9 6.6 92.9 0.018
Alt. 4 54.1 34.0 5.4 4.6 53.1 0.016
Alt. 5 53.2 31.9 2.5 2.0 100.0 0.019

Alternatives identified based
on Observation Wells 1 and 2

Alt. 1 53.8 34.0 4.4 6.8 43.9 0.015
Alt. 2 54.0 33.9 6.1 5.2 42.9 0.023
Alt. 3 54.4 33.9 3.1 3.0 98.2 0.023
Alt. 4 54.2 34.1 7.1 2.0 69.7 0.023
Alt. 5 53.6 34.2 3.5 8.0 44.0 0.023

is able to identify a set of different solutions and indicate the
presence of non-uniqueness. As more observation data are
included, the results show that the non-uniqueness in loca-
tion is resolved, although the size and concentration of the
source are still non-unique. Knowing the location alone is
useful in pinpointing the site for remediation action. While
NCES is demonstrated for a specific application, it is a
generically applicable method to any problem that is solved
using evolution strategies. Use of NCES in an ES-based
solution of engineering design problems is expected to be
greatly valuable in exploring the decision space for alterna-
tive designs. By structure, NCES identifies designs that are
as different as possible from each other with respect to the
design choices included in the different solutions. This pro-
vides design innovation in engineering design problems and
insight to the solution space.
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