
Two Heuristic Operations to Improve the Diversity of
Two-objective Pareto Solutions

Rinku Dewri and Darrell Whitley
Computer Science, Colorado State University

Fort Collins, CO 80524

{rinku,whitley}@cs.colostate.edu

ABSTRACT

Multi-objective evolutionary algorithms using niching strate-
gies fail to provide any information about the global density
of the non-dominated front. This paper shows how the di-
versity of solutions can also be affected without adopting
any explicit niching strategy, and by aiding the evolutionary
algorithm with simple information pertaining to the global
density of the non-dominated front. The concepts here are
formulated for two objective problems and embedded into a
real parameter elitist evolutionary algorithm.
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I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods
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1. INTRODUCTION
Multi-objective Evolutionary Algorithms (MOEAs) have

gained importance for their ability to navigate the entire
decision space in a highly parallel fashion. This trait coupled
with a competent convergence strategy can enable MOEAs
to effectively determine multiple points on the Pareto front.

Under situations where no prior information about the
Pareto-optimal front is available, converging to the true Pareto-
optimal front and maintaining diversity among the solutions
at the same time becomes important issues. Niching op-
erators [1]-[4] are applied to help the MOEAs distinguish
between densely and rarely neighbored solutions, or, clus-
tering techniques are employed to shrink an overgrown pop-
ulation while preserving the diversity. Although these meth-
ods are able to substantially improve the performance of an
evolutionary algorithm, the bottleneck lies in their compu-
tational complexity and the need to specify the parameters
associated with these methods. Algorithms to simplify com-
putationally intensive tasks like non-dominated sorting and
population clustering, as well as self-adaptive mechanisms
to fix niching parameters [5] have been proposed, but no
focus was directed on obtaining an uniform distribution of
the solutions along the Pareto-optimal front.

Most existing evolutionary algorithms rely on genetic op-
erators to accomplish the task of generating new solution

vectors. Fitness assignment and selection strategies are mod-
ified to direct the EA towards better solutions, but no ex-
plicit operators are incorporated to make the EA look for
underexposed portions of the Pareto-optimal front. Intu-
itively, finding uniformly distributed solution vectors along
the Pareto-optimal front becomes easier for an EA if the
population members carry information about underdevel-
oped parts of the front.

This paper suggests the ideas of infusion and mirroring to
address these issues in a two objective problem domain, and
incorporates them into a real parameter elitist evolutionary
algorithm: the Extended-MOEA (EMOEA). These opera-
tions are neither based on any probability measure nor ma-
nipulate randomly selected individuals from a population.

2. INFUSION AND MIRRORING
The non-uniformity of the Pareto front is hard to avoid

even after integrating a diversity operator into the MOEA.
Diversity operators helps the EA evolve solution vectors
with a good spread along the Pareto-optimal front, but no
control is possible over the distribution of these points. This
is primarily because niching operators only help adjusting
the local concentration of the population members and do
not carry any information about the global density of the
population. They mostly rely on the selection strategy to
take care of this global density. Moreover, crossover and
mutation operators are not always effective in quickly dis-
covering unknown parts of the Pareto-optimal front.

The whole process of a MOEA can be viewed as the dis-
placement of the current non-dominated front towards the
Pareto-optimal one. EMOEA tries to uniformize this non-
dominated front at every generation by inserting objective
vector points at intermediate positions on the Pareto front.
With reference to Figure 1, it would be better if the search
could be directed more along ab, rather than fa. We try
to achieve this by explicitly inserting more points along ab.
However, since no direct mapping is available from the ob-
jective space to the decision space, finding solution vectors
that correspond to these objective vector points is also not
possible.

The current non-dominated front can be uniformized us-
ing a simple geometrical concept. The length of a curve
(A1, A2, . . , Am) can be approximated by the line segments
A1A2, A2A3, , and Am−1Am. A set of n uniform points can
then be approximated along this curve, each at a euclidean
distance of,

davg =

Pm−1
i=1 distance(Ai, Ai+1)

n − 1
(1)



Figure 1: Infusion tries to fill in the region acbd;
mirroring tries to convert dominated point k to non-
dominated point k′.

from the previous one. In the context of EMOEA, the non-
dominated population is sorted with respect to an objective
function. The objective function chosen is varied iteratively
to remove bias towards any particular function. Also, since
the drive here is to uniformize the solution vectors in the ob-
jective space, all distance calculations are done in the same
space.

2.1 Infusion
Line search methods [6]-[10] are well known in the classi-

cal optimization community for their ability to exploit the
local convexities present in the search space. These methods
generates iterates based on a step size and a search direc-
tion, obtained suitably to satisfy the sufficient decrease and
the curvature conditions. The idea used for infusion is sim-
ilar in nature, with differences arising in the non-derivative
computation of the search direction. A heuristic approach
is adopted to obtain this direction, and step sizes are chosen
to facilitate the creation of new points in the non-dominated
front.

Given two vectors FA and FB , the parametric equation,

FZ(t) = FA + t(FB − FA), 0 ≤ t ≤ 1 (2)

represents the translation of the vector point FA along the
direction FAFB . In a multi-objective optimization scenario,
if FA and FB are mutually non-dominated objective vec-
tors, then no vector point in the set Vnon−dom = FZ(t) is
dominated by any other vector belonging to the set. This is
an easy way of creating non-dominated objective vectors as
long as we know the mapping from the objective space to
the decision space. Otherwise, even though we are able to
find more non-dominated objective vectors, the correspond-
ing solution vectors will still be unknown. However, this
mapping is not always evident.

The heuristic method suggested here is to extract the di-
rection information from the objective space and apply this
in the decision space. The non-dominated solution vectors
are sorted with respect to one objective function and then
as we move from one solution vector to the successive one,

the corresponding objective vector are also assumed to move
from one to the next. The movement of the solution vectors
can be represented by an equation similar to (2),

Xjk(t) = Xik + t(X(i+1)k − Xik), 0 < t < 1;

i = 1, · · · , η − 1;

k = 1, 2 (3)

where Xik is the solution vector corresponding to the objec-
tive vector Fik, all vectors being sorted with respect to the
kth objective function. η is the size of the non-dominated
population of the current generation. Since all sorting is
done in objective space, while transformations are applied
in the decision space, direction information gets transferred
from one to the other. The parameter t can be varied de-
pending on how many intermediate points are required for
uniformization. Once these solution vectors are obtained,
they can be mapped directly to the objective space by using
the specified objective functions. We refer to this process as
infusion.

2.2 Mirroring
One easily perceivable flaw in the method of infusion is

the non-availability of a dominance check on the newly gen-
erated vectors. Since all transformations are applied in the
decision space, there is no assurance that the resulting ob-
jective vector points will also be non-dominated. Figure 1
sketches the possible areas where new objective vectors may
be formed during infusion in a two dimensional space. a and
b are two non-dominated objective vector points between
whom infusion is carried out. Any point inside the region
acbd is not dominated by either a or b. The shaded region
to the right of the line segment ab constitutes all points in
the space that are dominated by either a or b. Noticeably,
the bi-lateral reflection of this region about the line segment
ab is an area which is greatly desired. The points in this
region dominate either one of a or b, or both.

It is clear that transforming a dominated point to a non-
dominated one requires the flipping of the objective function
values about that of points a and b. If a = (a1, a2) and b =
(b1, b2), then a point k = (k1, k2) in the dominated region
can be converted to a non-dominated point k′ = (k′

1, k
′

2)
using,

k
′

i = ai + bi − ki, i = 1, 2 (4)

Once again, these mirroring transformations are applied
to the solution vectors in the variable space. A solution
vector can be mirrored with respect to the variable bounds,

Xj′k = Xlower + Xupper − Xjk (5)

or the variable values corresponding to the two objective
vector points subjected to infusion,

Xj′k = Xik + X(i+1)k − Xjk (6)

Here Xlower and Xupper are the lower and upper bound vec-
tors for the variables in the problem. The success of a mir-
roring transformation depends on the nature of interaction
present between the decision space and the objective space.
In case of a success, the mirroring operation manages to
push the non-dominated curve towards the Pareto-optimal
front, thus improving the convergence considerably. Mirror-
ing is applied only when infused points fail to satisfy the



dominance criteria, but it can as well be an effective trans-
formation, in terms of convergence, even when the points
are within the non-dominated region abc (in Figure 1).

Mirroring is analogous to the reflection step of Nelder-
Mead’s simplex algorithm [11], used mostly for nonlinear
unconstrained optimization. Nelder-Mead generates a new
test position by extrapolating the behavior of the objective
function measured at each test point arranged as a simplex.
Similar to Nelder-Mead’s algorithm, mirroring replaces the
worst point in the simplex with a point reflected through
the remaining points considered as a plane, provided an im-
provement is obtained by the operation.

2.3 Extended-MOEA
The algorithm starts by creating a random population P0

of size N , which is referred to as the general population. An
elite population Eg is also maintained, where E0 = φ. The
non-dominance check,

Eg = Γ(Eg ∪ Γ(Pg)) (7)

ensures that only the non-dominated solutions are main-
tained in the elite population. Here, Γ(P ) represents the
non-dominated solutions in the population P , and g the
generation counter starting at zero. The elite population
is then sorted with respect to an objective function. An
elite population size η is taken as user input and the sorted
elite population is subjected to uniformization. Fitness is
assigned to members from both the populations and recom-
bination operators are applied to members selected from a
union of the two populations. Child members replace the
old general population.

The uniformization process first calculates the average dis-
tance davg between the points. We then move along the
front, from one population member to the next, until a dis-
tance of davg is covered. If a population member is found
at that location, it is included; otherwise infusion is carried
out to fill in the distance between the two adjacent pop-
ulation members. Upon failure of the infused point to be
a non-dominated point, mirroring is carried out on it; the
outcome is discarded if no improvement is obtained. The
extreme points are always included in the uniformized pop-
ulation.

Once the task of uniformization is complete, the elite set
Eg contains approximately η members. A general popula-
tion member is assigned a fitness value equal to its mini-
mum distance from the elite set. For the elite population,
fitness is assigned based on its distance from the two neigh-
boring population members. The neighborhood is defined
in terms of the value of one of the objective function. The
extreme points of Eg are assigned a fitness value less than
all the others (ideally −∞). Fitness comparisons assume we
are minimizing. All elite member fitness values are negated
to give them more preference than the general population
members.

3. SIMULATION RESULTS
A set of six test problems is taken from past studies. Two

performance metrics introduced by Deb in [12] are used to
quantitatively estimate the convergence and diversity mea-
sures. It should be noted that better values on such perfor-
mance measures can at best indicate that an algorithm is not
worse than another, but does not help infer the superiority
of the algorithm [13]. Simulation results are compared with

that of NSGA-II [12] and SPEA [14] using these two metrics.
These methods are chosen for their relative simplicity and
effectiveness in obtaining a diverse set of solutions in the
Pareto optimal front. The effect of infusion and mirroring
on the performance of EMOEA are also reported.

The EMOEA simulation for these problems is run for 250
generations with a population size of 80. The elite popu-
lation size, η, is set at 20. Probability of crossover is set
at pcross = 0.9 and that of mutation at pmut = 1

n
, where

n is the number of variables in the problem. The results
in Table 1 and Table 2 are averaged over 20 runs for each
problem.

3.1 Comparative results
Out of the six test problems used, FON in [15], KUR in

[16] and POL in [17] are two objective minimization prob-
lems. Zitzler, Deb and Thiele suggested a systematic pro-
cedure to construct two objective minimization problems in
[18], out of which we chose ZDT3, ZDT4 and ZDT6 for
our study. These problems pose difficulties to an MOEA
in terms of diversity maintenance, convergence and irregu-
lar density mappings between the objective space and the
decision variable space.

Table 1: Convergence metric values on test prob-
lems. Values shown as mean over variance.

Problem NSGA-II SPEA EMOEA

FON 0.001931

0.000000

0.010611
0.000005

0.004051
0.000000

KUR 0.028964

0.000018

0.049077
0.000081

0.076553
0.001450

POL 0.015553

0.000001

0.054531
0.000179

0.075542
0.000779

ZDT3 0.114500
0.007940

0.044212
0.000019

0.005317

0.000015

ZDT4 0.513053
0.118460

9.513615
11.321067

0.001002

0.000000

ZDT6 0.296564
0.013135

0.020166
0.000923

0.019356

0.000082

Table 1 shows the convergence metric values for the six
two objective problems, obtained using NSGA-II, SPEA and
EMOEA. The diversity metric for the same is listed in Ta-
ble 2. EMOEA performs well in almost all the six problems,
although NSGA-II performs better on KUR and POL. For
the ZDT series of problems, EMOEA’s performance is much
better than both NSGA-II and SPEA. We show typical sim-
ulation runs of the algorithm on a few problems (Figure 2-7).

The Pareto-optimal set in KUR is non-convex and has
three distinct disconnected regions. These regions are con-
stituted with a disconnected set of decision variable vec-
tors. Such a discontinuity in the mapping between the deci-
sion space and objective space can create difficulties for an
MOEA in finding Pareto-optimal solutions in all the regions.
Although EMOEA’s convergence is not poor in this problem,



Table 2: Diversity metric values on test problems.
Values shown as mean over variance.

Problem NSGA-II SPEA EMOEA

FON 0.378065
0.000639

0.804113
0.002961

0.054982

0.001239

KUR 0.411477

0.000992

0.880424
0.009066

0.418119
0.005973

POL 0.452150
0.002862

0.954327
0.013170

0.361416

0.002507

ZDT3 0.738540
0.019706

0.732097
0.011284

0.575132

0.002975

ZDT4 0.702612
0.064648

0.732097
0.011284

0.081626

0.008399

ZDT6 0.668025
0.009923

0.900793
0.004124

0.242728

0.013266

both NSGA-II and SPEA perform better than EMOEA.
Figure 2 shows the non-dominated solutions obtained by
SPEA. Given the constraint of finding only 20 points along
the Pareto-optimal region, EMOEA performs better in find-
ing a diverse set of solution vectors (Figure 3) in all the re-
gions of the Pareto-optimal front. EMOEA’s ability to find
more uniformly distributed non-dominated vectors is better
demonstrated when we ask for a higher number of points
along the Pareto-optimal front. Figure 4 shows the non-
dominated solutions obtained by EMOEA with the same
general population size and η=80.

Problem ZDT4 has 219 local Pareto-optimal solutions,
each corresponding to 0 ≤ x1 ≤ 1 and xi = 0.5m, where m is
any integer in [-10,10] and i = 2, · · · , 10. The global Pareto-
optimal front corresponds to m = 0. The presence of multi-
ple local Pareto-optimal fronts creates many obstacles for an
MOEA. This is verified by the convergence metric values of
both NSGA-II and SPEA. EMOEA’s performance is much
better in this problem, and the solution vectors obtained
are almost on the global Pareto-optimal front (Figure 5).
The diversity of the solutions obtained is near uniform and
better than both NSGA-II and SPEA. This is achieved by
the mirroring operation which locally forces the local non-
dominated front to move towards the global optima.

Figure 6 shows the non-dominated solutions in ZDT6 ob-
tained by NSGA-II and SPEA. ZDT6 has a non-convex
Pareto-optimal set with a variable density of solutions across
the Pareto-optimal region. Such adverse density mappings
coupled with the non-convex nature of the Pareto-optimal
front can also cause difficulties to an MOEA. NSGA-II and
SPEAs performance suffers in terms of convergence and di-
versity. However, EMOEA is able to maintain an almost
uniform set of non-dominated solution points along the true
Pareto-optimal front (Figure 7).

Noticeably, the diversity metric values for EMOEA are
much better than both NSGA-II and SPEA in almost all
the problems. The diversity can be improved by taking a

Figure 2: Non-dominated solutions with SPEA on
KUR.

Figure 3: Non-dominated solutions with EMOEA
on KUR.

Figure 4: Non-dominated solutions with EMOEA
on KUR (η=80).



Figure 5: Non-dominated solutions with NSGA-II
and EMOEA on ZDT4.

Figure 6: Non-dominated solutions with NSGA-II
and SPEA on ZDT6.

Figure 7: Non-dominated solutions with EMOEA
on ZDT6.

bigger elite population. Also, it may be noted that ZDT3
and ZDT4 are problems where one of the objective functions
is directly mapped to one of the decision variables, and so
they are somewhat biased towards getting a good spread of
solutions. However, we have also considered other problems
where such linearity is not present and the simulation results
corroborates that the better diversity obtained is not solely
due to this factor.

3.2 Effect of Infusion
In order to study the effect of infusion, separate EMOEA

runs were taken with and without the uniformization pro-
cess. Mirroring is disabled to see if infusion alone can take
care of the convergence requirement. Single simulation runs
are shown for ZDT4 and ZDT3 to help visualize the effects.

As seen in Figure 8, EMOEA (without uniformization)
has found a number of non-dominated points for ZDT4 but
these points are mostly accumulated in a section of the non-
dominated front. The diversity obtained after enabling uni-
formization is quite promising. Apart from giving a bet-
ter spread, uniformization also helped attain further conver-
gence of the non-dominated points. However, infusion alone
was insufficient to find the Pareto-optimal front for ZDT4.
ZDT4 has multiple local Pareto-optimal fronts and whenever
the non-dominated solutions lie on one of these local fronts,
infusion, by definition, is not able to create new values for
the variables xi; i = 2, · · · , 10 and hence the new points gen-
erated are points on the old front itself. Mirroring, however,
helped avoid such a situation and the non-dominated curve
easily converged to the Pareto-optimal front.

Uniformization also helped discover the five discontinuous
regions of ZDT3. Even though the convergence at the end
of 50 generations (Figure 9) is poorer in this case, a wider
stretch of the front has been discovered in a relatively shorter
number of generations. Figure 10, which shows the simu-
lation results after 250 generations, corroborates the slow
rate of progress of the non-dominated curve if not supple-
mented by the uniformization process. On the other hand,
EMOEA (with uniformization) has converged to a set of op-
timal solutions well dispersed along all the five regions of the
Pareto-optimal front.

3.3 Effect of Mirroring
The effect of mirroring on the performance of EMOEA is

well evident from the simulations of ZDT4. Figure 8 clearly
shows that mirroring considerably helped the convergence of
ZDT4. ZDT4 is a problem having a number of parallel local
optima; any success in a mirroring operation creates a dent
in the non-dominated front and locally forces the front to
move towards optimality. The mirroring operation could be
successful in only a fraction of all instances, but can result
in much better convergence.

3.4 Computational complexity
EMOEA starts by finding the best non-domination front

which requires at most O(NlogN) time [19]. The non-
dominated solutions thus obtained are compared for dom-
inance with the existing elite set - an O(Nη) task. The
sorting operation performed on the elite population can be
done in O(ηlogη) computations. The infusion process it-
erates over the elite population requiring O(η) operations.
Fitness assignment can be accomplished in O(Nη) time for
the general population and in O(η2) time for the elite pop-



Figure 8: Non-dominated front for ZDT4 obtained
after 250 generations with population size 80 and
η=40.

Figure 9: Non-dominated front for ZDT3 obtained
after 50 generations with population size 80 and
η=40.

ulation. All other steps in the algorithm do not have com-
putational complexities more than the above computations.
Assuming that N and η are of the same order, the overall
complexity of a single generation of EMOEA is no less than
O(N2). This complexity compares equivalently to the clus-
tering algorithm of SPEA, but is worse than the crowding
distance assignment procedure of NSGA-II (O(NlogN)).

In contrast to NSGA-II and SPEA, EMOEA actively gen-
erates solutions in the least populated areas of the front.
This leads to an O(η) more function evaluations as an ex-
pense to obtaining better diversity. These excess number
of function evaluations would be an overhead as the non-
dominated set approaches the Pareto optimal front. The
mirroring step should be avoided then as it would only gen-
erate infeasible solutions.

4. EMOEA ISSUES

Figure 10: Non-dominated front for ZDT3 obtained
after 250 generations with population size 80 and
η=40.

EMOEA depends on a regular, or well-ordered, mapping
between the objective space and the decision variable space.
Transformations applied during the infusion and mirroring
operations assume that any sort of ordering of the points in
objective space also regulates the decision variable points in
accordance to some order. The absence of this mapping may
cause EMOEA to not be able to produce a good distribution
of solutions.

Problems where the density of the solutions across the
Pareto-optimal front is not uniform may pose similar dif-
ficulties for the algorithm. As the number of generational
passes increase, the adverse density regions gets divided into
regularly mapped intervals. When dealing with such prob-
lems, a number of generations is required by the algorithm
to identify these regions of regular mapping before stabiliz-
ing on a uniform distribution of solutions. The number of
generational runs should thus be sufficiently large to ensure
that the algorithm has effectively dealt with such situations.

EMOEA does not use a sharing parameter to determine
the crowdedness of a solution vector. It is always assumed
that the uniformization process will take care to see that
the solution vectors are evenly distributed across the non-
dominated front. However, the credibility of this assump-
tion is highly dependent on the success of the infusion and
mirroring operations performed, and no assurance can be
given as to what fraction of these operations will be success-
ful. In order to compensate for this, the fitness assignment
scheme in EMOEA incorporates the requisite measures to
give preference to isolated or rarely populated members of
the non-dominated set. The fitness of the elite members
being based on its distance from the neighbors, population
members spaced far apart from nearby solution vectors gain
a higher selection pressure in an evolutionary run.

Beyer and Deb argued in [20] that the selection operator
reduces the population diversity because it creates dupli-
cates of a few population members and eliminates a few
others. Crossover and mutation operators are employed to
enhance this population diversity. An adaptive search using
an evolutionary algorithm is viable because of this charac-
teristic balance between exploitation and exploration of the



population.
However, these operators are generally probabilistic in na-

ture. Apart from being applied to randomly selected popu-
lation members, the applicability of these operators is also
probabilistically determined. They boost the search power
by introducing heterogeneity with respect to the randomly
selected parent members. Such a random selection process
is of significance in discovering new solution vectors, but
not necessarily solutions that maintain diversity with the
ones generated during a previous instance of the operation.
Here we present infusion and mirroring as aiding operations
to genetic operators which follow some heuristics to trans-
form a dominated solution into a non-dominated one. These
operations are not applied to random members of the pop-
ulation. Instead, the entire set of population members to
which they are to be applied is prearranged in some order
to suit the objectives of the algorithm, better diversity in
this case. In EMOEA, the uniformization process decides
the relative proportion of heterogeneity between two parent
vectors and this knowledge is then utilized by the infusion
operation to fill in the gap between the two vectors. Mir-
roring tries to rectify any faults that might have occurred
during infusion. It has to be noted that these operators
are designed to aid the usual evolutionary framework and
do not act as a replacement for the crossover and mutation
operators.

5. CONCLUSIONS
We presented a method that can positively affect the con-

vergence and diversity of solutions obtained in a two ob-
jective problem domain. Infusion and mirroring operations
enforce some form of uniformity in the non-dominated pop-
ulation before the usual genetic operators act on it. The re-
sults indicate that such operations can help an evolutionary
algorithm harness its search power better; in addition, the
need for explicit niching strategies has been avoided. The
method suggested here cannot be directly applied to higher
dimensional problems but brings forth the question whether
similar operations could be devised for such problems.
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