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ABSTRACT
The paper describes an improved method for the decision
support during the selection of partners in a Virtual En-
terprise. This needs a method for choosing the most ca-
pable offers (of the partners) for a customer inquiry from
a pool of potential partners. The offers consist of more
than one criterion and have to fulfil the tasks of a value
chain. Especially on the popular field of supply chains, ap-
plicants are more and more confronted with the search for
non-sequential paths which could contain parallelism. The
problem arises to a Multiobjective Parallel Path Problem.
Because complexity of those problems exceeds the capacities
of exact procedures, the Ant Family Heuristic was developed
[6]. Improving the performance in the multiobjective case
the Look-Ahead-Heuristic will be introduced in this contri-
bution. With the usage of this new heuristic, clearly better
results can be achieved.

Categories and Subject Descriptors
Track [Ant Colony Optimization and Swarm Intel-
ligence]: New hybrids between ACO/SI algorithms and
other methods for optimization

Keywords
Multiobjective Optimization, Ant Colony Optimization, Par-
allel Path Problem, Hybridization

1. INTRODUCTION
Specialization and global acting are very important for the
competitiveness of an enterprise in the 21st century. Thereby,
the concentration on core competences implies the increase
in enterprise-spanning cooperations having the objective of
releasing cost reduction potentials and being present on global

market places [11]. The pressure to face those challenges
increases considerably especially for small- and medium-
sized enterprises in order to secure their own survival. This
also represents the reason for the high occurrence of supply
chains or Virtual Enterprises in practice. At Chemnitz Uni-
versity of Technology, a virtual enterprise model has been
developed in order to improve the competitiveness of small-
and medium-sized enterprises.
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Figure 1: The Phase Model for the Genesis and Op-
eration of a Competence Cell Network

Each net building process is triggered by a customer-inquiry
for a desired product. Starting from a Process Variant Plan
as a result of decomposing the value chain (see figure 1)
of the product’s manufacturing process, partners that are
able to execute the contained process steps are searched.
Therefore, a database holding a description of all partici-
pating partners is used. For getting the suitable candidates
the technological feasibility is the only selection criterion
at this stage. After all possible candidates are identified,
they will be asked to submit an offer. The offer refers to
a certain semi-manufactured product or end-product and
must ensure the delivery of the whole material amount at a
specified date. The partners will then schedule the required
production to determine whether it is possible to deliver the
inquired amount in time. If so, price, probability of delivery
[12, 13] and other important criteria are submitted. Conse-



quently, a multiobjective optimization problem arises. After
all inquired partners responded, the offer graph will be cre-
ated. Therefore, each process step will be replaced by the
corresponding partner offers. The task is to choose these
orders that cover the economic objectives best.

2. PROBLEM DESCRIPTION
The resulting Parallel Path Problem is formally defined as
follows [6]:

G = (V, E) (1)

V = {vip : i = (1, . . . , n); p ≤ n} (2)

E = {eij = (vi, vj , c
k
ij , gij) : vi 6= vj , c

k
ij ∈ R+, (3)

gij ∈ {1, . . . , gi}, k = {1, . . . , K}}
@Q = {(vi, vi+1), (vi+1, vi+2), . . . , (vm, vi)} ⊆ E (4)

The graph G contains a set of nodes (V ) and a set of edges
(E). Each node belongs to a nodegroup p (2) like each
edge belongs to an edgegroup g (3). To rate the quality of
a path, every edge contains a heuristic information ck

ij for
each criterion k. This could, for instance, be the path length
or the production costs. All nodes of a found solution have
to be connected so that every node can be reached from
the source node by using the selected edges. Equation (4)
expresses the condition of cycle-free tours.

The offer graph is considerably different. The occurring
heuristic values and the contained path lengths of the Pro-
cess Variant Plan are varying in a significant manner. This
depends for example on the used material or assemblies and
the utilization of the partners.

Applying optimization algorithms on Parallel Path Prob-
lems like the offer graph raises the question of how to con-
struct a feasible solution. In a TSP-instance, a solution is a
singular path that is a permutation of nodes and a subset of
edges. To build a solution in Parallel Path Problems, it is
necessary to respect one of each available alternative nodes
in each nodegroup.

First, it is necessary to describe a few specific terms. An
edge coming from a node is assigned to an edgegroup. A
feasible solution has to cover the condition of containing one
edge of each edgegroup of a chosen node. Like the edges,
each node is assigned to a nodegroup. Nodes in the same
nodegroup are representatives of complete alternatives. Be-
cause of that, a solution has to contain exactly one node out
of each nodegroup. Another conclusion is that all edges of
an edgegroup lead to a common nodegroup. For the practi-
cal use, quality of solutions and the aspect of how fast they
are computed are very important [10]. The acceptance of a
partner’s offer has a far-reaching impact on a firm’s produc-
tion planning since it has to re-serve material and production
capacity. Since the multiobjective problem is NP-complete,
it should be solved approximately with an Ant Colony Op-
timization algorithm [7, 5]. It should enable the ants to use
the new concept of the Look-Ahead-Heuristic to improve the
quality of the optimization run.

3. SOLVING THE PROBLEM WITH ANT
COLONY OPTIMIZATION AND LOOK-
AHEAD-HEURISTIC

In the first stage of the optimization run via Ant Colony Op-
timization (ACO), the most important issue is to lead the
artificial ants into promising regions of the solution space
that will be searched through more intensely in later stages
(More details in [3, 2]). However, in the beginning the
pheromone values are not significant enough to have mean-
ingful local decisions based on them. To avoid a purely
stochastic search in the beginning, heuristic values are used
to control the exploration. The exact specification of the
used algorithm will be introduced in the last section. In
the following, an approach of a new heuristic - the so-called
Look-Ahead-Heuristic - for the Parallel Path Problem will
be introduced. It is designed to be applied on problems
that on the one hand are NP-complete in multicriteria en-
vironment and on the other hand are efficiently solvable in
polynomial time for the special case of only one regarded
criterion. First the well known standard method with local
edgeweights will be discussed.

3.1 Initial Situation
In the standard case, local edgeweights are used as heuristic
information for the ants’ decision support in Parallel Path
Problem as well as in Shortest Path Problems. For mini-
mization problems, the inverted edgeweights ck

ijk of the cri-
terion k of the edge between the nodes i and j as heuristic
values are used. The heuristic value of the edge, which has
an influence on the probability distribution for local deci-
sions of an ant, is thus calculated according to the following
equation [8]

ηk
ij =

1

ck
ij

(5)

However, if a Greedy-Heuristic based on these heuristic val-
ues constructs relatively bad solutions for the specific prob-
lem instance, a problem might also occur when using these
values by ACO. The Greedy-Heuristic’s solution construc-
tion is done with decisions based on solely local values. If
edges with very high weights are frequently followed by edges
with very low weights, such subpaths cannot be found by the
Greedy-Heuristic. Especially if the solutions’ path lengths
vary strongly and the edgeweights scatter over a much wider
range, this problem will be additionally intensified. By using
these values by ACO a similar situation arises.

In the application of the Parallel Path Problem, in which an
offer network should be optimized, such cases are very prob-
able. This is due to the fact that offers not requiring any
additional preliminary products cause clearly higher costs
than offers offering merely an assembly of preliminary prod-
ucts and demand accepting several additional offers. Ac-
cording to this, the application of the described standard
heuristic values ck

ij in ACO would on average clearly prefer
longer paths to shorter paths. This can cause a falsification
of selection probabilities.

Therefore, it is possible to construct problem instances in
which the standard method fails completely. This can even



effect on the one hand that the optimal path would be rated
as the worst path and on the other hand that the worst path
as the best path.

3.2 Look-Ahead-Heuristic based on Dynamic
Programming

The Parallel Path Problem similar to the Shortest Path
Problem is efficiently solvable with an algorithm from the
field of the Dynamic Programming. Therefore, it is possible
to use a Dynamic Programming-algorithm to develop Look-
Ahead-Heuristik values in a pre-processing phase by which
the problem of the standard heuristic value can be avoided.
For this, starting from the initial node, the problem is re-
cursively split up into subproblems. These are subsequently
solved separately by backward calculation. The (partial)
solutions find their way into the solution of superordinate
subproblems. Analogously to Bellman’s Principle of Opti-
mality, all subpaths that can not be part of the optimal so-
lution for criterion k, which is to optimize, can be gradually
excluded [1].

The graph of a problem instance is always topologically
sortable. According to this, a graph can be split up into
n different stages. Every node v gets assigned the stage
number which is equal to the number of edges of the longest
way from the start node to the node v. Each stage m with
1 ≤ m < n includes a finite set of subproblems which can
be solved with simple decisions at this stage if all subprob-
lems of the stage m + 1 have already been solved. Since the
decisions at stage m is depending on the objective function
values of the optimal solutions of depending subproblems
at stage m + 1 it is essential that the subproblems at stage
m + 1 have been solved before. The solution of the problem
has to start at the highest stage n. The set of all decisions at
a stage m can be described with the system state Zm. The
optimization function transfers the system state Zm to the
next state Zm−1 by making all required decisions at stage m
and returns the objective functions values of the subprob-
lems to the next stage m− 1. Since there is no dependence
of the decisions at the stage m to any decisions at previous
stages i < m the Markov property is present. Therefore,
all conditions that Bellman has described for the structure
of dynamic programming processes are complied. Bellman’s
Principle of Optimality is as follows:

“An optimal policy has the property that what-
ever the initial state and initial decision are, the
remaining decisions must constitute an optimal
policy with regard to the state resulting from the
first decision.” [1]

The decomposition of a problem in n stages with a final set
of subproblems and the solution of the several stages from
n, ..., 1 is realizable with a recursion beginning at the chosen
start node. The function OPTIMIZE in algorithm 1 solves
instances of the Parallel Path Problem for the objective k
exactly and constructs an optimal path. The split up of a
problem in n steps and the solution of the single steps from
n, ..., 1 is possible beginning with the chosen start node.
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Figure 2: Comparison of standard heuristic values
and Look-Ahead-Heuristic values.

The bold gray arrows show the resulting par-
allel path by using the Greedy Heuristic’s solution
construction. Such a construction is similar to the
construction of the q0 - rule in ACS in the first
iterations.



Algorithm 1 Determination of the singleobjective Parallel Path Problem’s exact solution with a Dynamic Program by the
function Optimize and calculation of Look-Ahead-Heuristic values within the scope of a pre-processing phase by using the
function BuildHeuristic.

1: function BuildHeuristic(start node s, target node t)
2: foreach objective k
3: Optimize(solution, s, t, k)
4: foreach edge eij in graph
5: heuristicvalues[eij ]← heuristicvalues[eij ] + solution[j]
6: end for
7: end for
8: end function

9: function Optimize(path[] solution, node n, node target, objective k)
10: if n marked
11: solution [n] ←empty
12: if n 6= target then
13: foreach edgegroup group ∈ n
14: foreach edge enj ∈ group
15: subpaths [enj ] ←Optimize(j, k)
16: Add edge enj to subpaths [enj ]
17: end for

18: Add all edges of that path with best objective function value fk in subpaths to solution [n]
19: end for
20: end if
21: end if
22: Mark node n
23: return solution [n]
24: end function

ηk
ij =

1

ck
ij

+ fk (j)∗ (6)

With the help of this method an optimal subpath is calcu-
lated for each node v to a target node with the appropriate
objective function values fk(v)∗. From these information,
a Look-Ahead-Heuristic-value for all edges in the graph can
be calculated according to the equation (6) for minimizing
problems. This is shown by the function BUILDHEURIS-
TIC in algorithm 1.

4. SPECIFICATION OF THE APPLIED AL-
GORITHM

For the evaluation of the new heuristic values a simple Ant
Colony algorithm was used deliberately to illustrate how the
solution quality can vary strongly depending on the used
heuristic. For this, the basic version Ant Colony System
as a multiobjective algorithm in combination with the Ant
Family Heuristic was used. The evaluation was based on
biobjective problems. The heuristic’s aim is to determine
the Pareto-front of the problem instance.

4.1 Ant Colony System
The algorithm is based on the Ant Colony System [4]. One
heterogeneous colony whose ants look for solutions regarding
their importance of the different criteria was employed. For
a biobjective optimization problem the i-th ant of the colony
with the size s has the following weights, whereas i ∈ {1...s}
is. [9]

w0
i =

i− 1

s− 1
and w1

i = 1− w0
i (7)

Simply the artificial ants that have constructed a solution
that lies in the non-dominated front may perform a pheromone
update. To ensure the same importance of each iteration,
the approach described by Merkle was used and extended by
an additional weight wk [9]. Each ant is allowed to modify
the pheromone values of the criterion k for all edges of its
path about the value

∆τk
ij =

1

m
· wk (8)

whereas m is the number of one iteration’s ants that can
perform an update, and wk is the importance of the crite-
rion k to the ants. K is the total number of objectives the
problem has. For local decisions the Pseudorandom Pro-
portional Rule is used [4]. The probability distribution for
the selection of local decisions is made according to equa-
tion (9), whereas g illustrates the edgegroup to which all
edges eij belong that are alternatively available in the local
decision.

pij =

∑K
k=1 wk · (ηk

ij

)α · (τk
ij

)β

∑
eij∈g

∑K
k=1 wk · (ηk

ij

)α · (τk
ij

)β
(9)



The values α and β serve the control of the influence of
pheromone and heuristic values. To antagonize a too fast
convergence of the method, relatively high initial values are
chosen for the pheromone. The evaporation is performed
after each iteration with a steady factor ρ ∈ [0, 1].

4.2 Ant Family Heuristic
Since in the Parallel Path Problem not only singular paths
have to be determined, the approach of the Ant Family
Heuristic is additionally used [6]. This heuristic describes
the construction of feasible solutions in Parallel Path Prob-
lems by introducing an ant-replication strategy for ACO. In
the Ant Family Heuristic, each ant has the ability to create
clones of itself for each path that has to be visited. This is
necessary if the leaving edges of the current node belong to
more than one edgegroup. So for each node-group one clone
will be created. All clones and the original ant exchange
information by sharing a common family mind. After the
cloning, each individual chooses one node of its delegated
edgegroup by applying the decision rule of the underlying
base-algorithm. In case of the convergence of two or more
paths meeting at a common nodegroup additional conditions
have to be considered. An ant that has to select an edge of
an edgegroup has to look up in the family mind whether the
edge-group’s target nodegroup has already been visited by
another family member. If so, the ant takes the edge be-
tween its current position and the selected node of the next
nodegroup. After that, the clone is no longer useful for the
construction process and will be eliminated. If the node-
group has not been visited, the ant’s task is to continue the
construction process. The solution construction ends if the
only left family member’s current position is at a leafnode
of the graph.

5. RESULTS
Within the scope of the evaluation, problems were examined
that are also solvable multiobjectively with an algorithm of
the dynamic programming at appropriate time in order to
calculate the correct Pareto-optimal front. This way, it was
possible to examine the ACO’s behavior in detail. The un-
derlying problem is about a biobjective problem with a tree
of 17050 nodes and edges apiece, whereas the edges are ar-
ranged to 5664 edgegroups as a total. The solution space
covers . ·  solutions of which 242 are Pareto-optimal.
The local edgeweights c0

ij and c1
ij for the objectives were ran-

domly distributed in [..] and [..], respectively.
The value q for the pseudorandom proportional rule was
set with ., the evaporation rate with ρ = .. The colony
size s was set to 20 ants and the parameters α and β were
both set to 1.

In Figure , the several results are presented. The same base-
algorithm with the same parameter settings was used in the
application of the standard heuristic values as well as in the
application of Look-Ahead-Heuristic-values. The homoge-
neous run of the λ−branchingfactor [4] illustrates that the
algorithm’s behavior with different heuristic values is funda-
mentally similar Figure part b. The initial value is based on
the fact that between 3 and 5 alternatives are available to
each ant at one local decision. The basic difference between
the methods is shown both by the aver-age solution qual-
ity of the found non-dominated solutions and in the size
of the non-dominated front. The average distance of the
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Figure 3: Some Characteristics of the Ant Colony
Optimization with the usage of the standard heuris-
tic values and the Look-Ahead-Heuristic.



found non-dominated front declines from ca. 15% to ca.
2% after the convergence of the algorithm. The size of the
non-dominated front almost doubles from 43 to 85 solutions.
Since in the underlying problem 242 solutions belong to the
Pareto-front, the front sizes are relatively small. However,
this can be ascribed to the fast convergence of the ACS-
method on the one hand and to the applied update strategy
on the other hand, because in Figure 1 it becomes apparent
that also restart strategies do not entail any further im-
provements. Therefore, the behavior of an ACO algorithm
can be clearly improved by the application of Look-Ahead-
Heuristic-values since both larger non-dominated fronts and
a much better approximation of the Pareto-front can be
achieved. Additionally, all marginal solutions of the Pareto-
front, which are exclusively optimal regarding one objective,
can be determined by the application of the dynamic pro-
gram.

6. CONCLUSION AND OUTLOOK
The Look-Ahead-Heuristic present a very promising alter-
native for the solution of the Multiobjective Parallel Path
Problem as well as the Shortest Path Problem. Very good
results were already achieved by using a very simple, fast
converging ACS algorithm. This allows to conclude that
the application of the Look-Ahead-Heuristic in combina-
tion with ACS has a clearly higher efficiency than the ap-
plication of the standard heuristic information combined
with ACS. In order to improve the behavior of the opti-
mization further and to avoid a too fast convergence, the
Look-Ahead-Heuristic should be applied with a MAX-MIN-
Ant System [4] and under the use of several colonies. Us-
ing restarts, it was furthermore observed that the update
strategy is in need of improvement as well. Since singleob-
jective problems are efficiently solvable with the Dynamic-
Programming-algorithm, it is also possible to determine up-
per and lower limits for the single objective function values
of a criterion. This way, scales can be derived on which so-
lutions can be rated by percentage regarding their quality.
As a result of this rating, an update strategy is possible with
which the exploration and exploitation of the optimization
run by artificial ants can possibly be controlled in a much
higher degree than at the application of the present strategy.
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