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ABSTRACT 
The steelmaking process consists of two phases: primary 
steelmaking and finishing lines.  The scheduling of the continuous 
galvanizing lines (CGL) is regarded as the most difficult process 
among the finishing lines due to its multi-objective and highly-
constrained nature.  In this paper, we present a multi-population 
parallel genetic algorithm (MPGA) with a new genetic 
representation called kth nearest neighbor representation, and with 
a new communication operator for performing better 
communication between subpopulations in the scheduling of 
CGL.  The developed MPGA consists of two phases. Phase one 
generates schedules from a primary work in process (WIP) 
inventory filtered according to the production campaign, 
campaign tonnage, priorities of planning department, and the due 
date information of each steel coil. If the final schedule includes 
the violations of some constraints, module two repairs these 
violations by using a secondary WIP inventory of steel coils. The 
developed scheduling system is currently being used in a steel 
making company with encouraging preliminary results. 

 

1. INTRODUCTION 
The steelmaking process (for steel sheet products) consists of two 
phases: primary steelmaking and finishing lines.  In the primary 
steelmaking, slabs created by the upstream processes are 
transformed to hot coils at a hot strip mill. Although some papers 
have been published on production scheduling in primary 
steelmaking ([2], [4], [5], [7]), there could be found only one 
research related to the finishing line scheduling [6]. Okano, et al., 
[6] have worked on the problem of creating production campaigns 
and sequencing of coils within each campaign so that productivity 
and product quality are maximized and tardiness is minimized. 
They have proposed a construction heuristic and an improvement 
heuristic to generate schedules for finishing lines excluding CGL 
which is regarded as the most difficult process in the finishing 
lines in terms of sequencing [6].  
Multi-population GAs are the most popular parallelization method 
with numerous publications. A detailed discussion of parallel 
GAs, including multi-population (or multiple-deme) GAs, can be 
found in [1]. Basically, multi-population GA work with more than 
one population called subpopulations, and facilitates some sort of 
communication between the subpopulations with a 
communication operator based on a topology of connections. In 
our previous study [3], a multi-population structure with a new 
genetic representation, called kth nearest neighbor representation, 
was used to generate a number of local optimum solutions quickly 
by using a greedy GA over each subpopulation. However, in the 

MPGA approach we present here, GAs are designed to maintain 
different levels of greediness over different subpopulations. The 
level of greediness supports the robustness and efficiency of GAs.  
We also developed (i) a new communication operator which 
works on a fully connected topology, and controls the knowledge 
transfer and the communication frequency by incorporating 
certain tabu search features, and (ii) a greedy mutation operator 
which preserves feasibility after mutation.  

2. CONTINUOUS GALVANAZING LINE 
SCHEDULING  
The considered problem is the scheduling of a continuous 
galvanizing line (CGL) in a flat steelmaking plant with the one-
million-tone annual production capacity. CGL scheduling is an 
extremely complex problem in steelmaking industries due to the 
following challenges. (i) Coil changeover requirements: 
Succeeding steel coils must comply with the changeover 
requirements of each equipment of CGL with respect to the 
preceding coils, (ii) Planning requirements:  Further constraints 
such as the order due dates, and the priorities of the planning 
department, and (iii) Multi-objectivity: Schedules are subject to 
the optimization of objectives related to the product quality and 
the line productivity. 
 

Production in the CGL is carried out in production campaigns 
constructed based on a selected campaign type for a given 
campaign tonnage. A campaign type is a cluster of coils of a 
particular type, with respect to quality and thickness.  A 
production campaign is a production run with specific start and 
end times in which coils are processed continuously.  A 
production campaign is constructed from the primary and 
secondary WIP inventories.  The primary WIP inventory is the 
first N coils that fill the campaign tonnage when the coils of a 
campaign type are sorted according to the due dates and the 
predefined priorities.  The remaining coils from the selected 
campaign type and the coils of different campaign types that can 
be used to improve the quality of the schedule are called the 
secondary WIP inventory. First, the coils of the primary WIP 
inventory are taken into the production campaign and scheduled.  
If the schedule violates any constraint(s), then the coils of the 
secondary WIP inventory are taken into the production campaign 
to fix the transition violations with a minimum increase in 
campaign tonnage. The relationship between the production types, 
primary WIP inventory, secondary WIP inventory, and the 
production campaign is shown in Figure 1. In Figure 1, the white 
coils are the coils of selected campaign type that fills the 
campaign tonnage. These white coils form the primary WIP 



inventory. All the remaining coils in the selected campaign type 
are colored gray. Also the coils which belong to different 
campaign types but can be produced with the selected campaign 
type are colored gray. These gray coils form the secondary WIP 
inventory. Firstly, a production campaign is constructed with 
primary WIP inventory, i.e., with white coils. If there are 
constraint violations in production campaign, then these 
violations are fixed by using the secondary WIP inventory.  

To make a schedule compatible with the last coil of the previous 
schedule and the first coil of the next schedule, it is needed to 

define two coils as an input: starting coil and ending coil. The 
starting coil is the last coil of the previous schedule. Since the 
next schedule is not known beforehand, the ending coil is an 
artificial (dummy) coil that can be compatible with the schedule 
of the next campaign type. Now the scheduling process can be 
summarized in the following steps: 

 

Step 1.  Determine primary and secondary WIP inventories. 
Step 2.  Construct a production campaign compatible with the 
starting and ending coils by scheduling the primary WIP 
inventory. 
Step 3.  If the schedule obtained is feasible, go to Step-5. 
Step 4.  Repair the schedule by adding minimum number of coils 
from the secondary WIP inventory 
Step 5.  Stop and report the final schedule of the current 
production campaign to the decision maker. 
 

The CGL scheduling, as stated above, is an interesting problem 
since it includes many kinds of theoretical problems from the 
literature.  In Step 2, if the starting and the ending coils are same, 
the problem is the shortest Hamiltonian cycle problem (i.e., well-
known Traveling Salesman Problem). However, if the starting and 
the ending coils are not same, then the problem corresponds to the 
shortest Hamiltonian path problem. In Step 4, if the starting and 

the ending coils are same, problem turns out to be a special case 
of Prize-Collecting Traveling Salesman Problem in which a 
traveler must visit minimum number of external nodes to find a 
legal tour. In Step 4, if the starting and the ending coils are 
different, then the problem can be defined as a "prize-collecting" 
Hamiltonian path problem in which a traveler must visit minimum 
number of nodes to find a legal path from initial node to the 
ending node. 

The constraints of the CGL scheduling problem are presented 
below. 
i. The thickness difference between the two consecutive 

coils can be Pthickness1% of the thickness of thinner coil 
while getting thinner and Pthickness2% of the thinner coil 
while getting thicker at maximum. 

ii. The width difference between the two consecutive coils 
can be Pwidth1 mm while getting narrower and Pwidth2 mm 
while getting wider at maximum. 

iii. Coating thickness difference between the two consecutive 
coils can be Pcoating gr per meter square at maximum. 

iv. The annealing cycle type of the two consecutive coils 
must correspond to a permitted transition in the annealing 
cycle transition matrix. The annealing cycle transition 
matrix shows the allowed and restricted transitions among 
annealing cycle types. 

v. The width enlargement in the schedule can only be made 
with the special coils, those with lower quality 
specifications or those that are non-skin-passed.  

vi. There must be at least one non-skin-passed coil between 
two coils requiring different skin-pass mills to operate. 

vii. The exiting inner diameter of a coil that will be side 
trimmed must be the same with the preceding and 
succeeding coils.  

 
The objectives of the CGL scheduling problem are stated as 
follows: 
i. Minimize the total number of the width-increase chains 

where a width-increase chain is defined as a sub-schedule 
in which the widths of the coils continuously increase. 

ii. Minimize the total length of the width-increase chains 
where the length of a width-increase chain is the number 
of coils in a chain. 

iii. Minimize the total number of the exiting inner diameter 
changes. 

iv. Minimize the total number of the passivation type change. 
v. Minimize the total deviations of thickness. 
vi. Minimize the total number of oil type changes.  
vii. Minimize the total number of coils used from secondary 

WIP inventory. 
 
All the constraints and the objectives are unified into a single 
objective function by adding up the penalized constraint 
violations and the weighted objective values for minimization.  
The objective function with user-supplied penalties and weights 
can be represented as follows: 
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Figure 1. The relationship between the campaign type, 
primary WIP inventory, secondary WIP inventory and 
the production campaign 



where Ci and pi represent the violation amount of the constraint i, 
and its associated penalty; and Oj and wj represent the value of the 
objective j and its assigned weight respectively. This approach 
allows constraint violations proportional to their relative 
penalties.  If preemptive priorities are preferred for constraints 
and objectives, then penalties and the weights must be chosen 
accordingly. 

3. DEVELOPED MPGA 
We have developed a multi-population parallel genetic algorithm 
using the kth nearest neighbor representation [3], for preparing 
schedules for the CGL. This representation has previously been 
presented in [3] for the Euclidean traveling salesman problem 
with high performance. In this paper, we introduce a new 
approach with some extensions and modifications for a highly 
constrained multi-objective real CGL scheduling problem.  
 
The multi-population GAs are the most popular parallel method 
among the parallel GAs with numerous publications [1].  The two 
important characteristics of multi-population parallel GAs are a 
number of subpopulations and a communication operator with a 
topology that defines the connections between the subpopulations.  
Probably the most important part of the multi-population parallel 
GAs is the communication operator.  If there is no communication 
among subpopulations, then the multi-population GA exhibits an 
equivalent performance to running a number of individual GAs in 
parallel, or running a GA in multiple times sequentially.  In our 
MPGA we have developed a new communication operator which: 
 

• uses a fully connected topology for communication, 
• exchanges some parts of two individuals selected from 

different subpopulations, 
• utilizes a communication length parameter (comlength) 

which controls the amount of knowledge transfer among 
individuals, 

• utilizes a tabu list to control and restrict the communication 
among the subpopulations which have recently 
communicated, 

• preserves the transferred knowledge against the evolution 
process for a number of generations. 
 

The main framework of MPGA is given in Figure 2. A fully 
connected topology is used for the communication operator and 
communication takes place among randomly selected two 
subpopulations. 

In [3], multi-population structure is used to generate a number of 
local optimum solutions quickly by using a greedy GA over each 
subpopulation. In our MPGA approach, we have used GAs that 
have different levels of greediness over different subpopulations. 
Different levels of greediness for GAs are obtained by using a 
different probability distribution for each subpopulation which is 
utilized by the kth nearest neighbor representation.  By this way, a 
GA with a lower level of greediness becomes more robust than a 
GA with a higher level of greediness. As the level of greediness 
decreases, the exploration capability of GA increases. While the 
level of greediness increases, the exploitation capability of the 
GA increases. Therefore, the communication among 
subpopulations enables GAs to operate on the imported 
knowledge with different levels of greediness. We also developed 
a greedy mutation operator which performs an improvement 
heuristic to preserve feasibility after mutation. In the following 
subsections we have described the genetic representation and the 
operators used in MPGA. 

3.1 kth nearest neighbor representation 
The kth nearest neighbor representation extends the nearest 
neighbor heuristic to the kth nearest neighbor for TSPs.  A fully-
connected Hamiltonian graph can be constructed where the coils 
are nodes, and the distances are the transition costs for scheduling 
CGL.  The transition costs from one coil to another are computed 
based on penalized violations of the constraints and the weighted 
objectives.  Therefore, each GA searches for a schedule of 
maximum fitness in which the next coil that will be taken into the 
schedule can be selected from out of the unscheduled nearest k 
coils. The parameter k can be considered as the maximum 
adjacency degree due to its restrictiveness over the neighborhood 
of a coil. Since a gene represents the gth unvisited nearest 
neighbor of the current coil to schedule next where 1<g<k, the 
maximum values of genes must be determined depending on the 
total number of coils, the value of k, and the position of the gene 
as follows;  

max gi =  
⎩
⎨
⎧

<+−+
≥+−

kiN if     1 i-N
kiN if               k

1
1

where gi represents the value of a gene in the ith position of a 
chromosome, and N represents the total number of coils that will 
be scheduled. By using the kth nearest neighbor representation for 
k = 3, a chromosome for a 5 coil problem, with the maximum 
value limits for each gene, is illustrated as follows. 
 

Maximum value 
limits  

3 3 3 2 1 

Chromosome 1 3 2 1 1 

 
The starting coil is the last coil of the previous schedule. Since the 
last coil of the previous schedule (i.e., our starting coil) that is 
currently in production line, and the first coil of the current 
schedule that will be prepared must be compatible with each 
other, we will decide which coil to take the schedule first 
according to our starting coil. Since the allele of first gene is 1, 
we select the first nearest neighbor of the starting coil. Suppose 
that the first nearest neighbor of the starting coil is coil 5, now the 

Figure 2. The framework of MPGA. 



current schedule is {5}. Since the allele of the second gene is 3, 
we select the third unvisited nearest neighbor of coil 5. Suppose 
that this coil is coil 2, now the current schedule is {5, 2}. Since 
the allele of the third gene is 2, we select the second unvisited 
nearest neighbor of coil 2, namely coil 3. Therefore, the current 
schedule is {5, 2, 3}. As the subsequent chromosome is decoded 
in the same manner, the schedule {5, 2, 3, 1, 4} is obtained. 
 
Since the frequency of visiting the nearest neighbor, and the kth 
nearest neighbor in the optimal solution can not be the same, the 
kth nearest neighbor representation utilizes a probability 
distribution for the degree of neighborhood. This probability 
distribution is used in the initialization of the subpopulation 
phase, and in the mutation operator to determine the new allele of 
a gene. Therefore, these probability distributions, each one for a 
subpopulation, also describe the greediness of GAs. We have 
defined these probability distributions according to the ratio of 
probabilities of adjacent closeness degrees. For example, a ratio 
of R indicates that the probability of visiting the first nearest 
neighbor is R times more than the probability of visiting the 
second nearest neighbor and R2 times more than visiting the third 
nearest neighbor and so on. These ratios are given in Table 1 for 
each subpopulation. 

Table 1. The ratios used to generate probability distributions 
for kth nearest neighbor representation. 

Subpopulations Ratio 
1 1.5 
2 1.4 
3 1.3 
4 1.2 
5 1.1 

 

Since we have many constraints related to the adjacency of coils 
in CGL scheduling, a feasible transition from one coil to another 
is often limited to a degree of closeness. By restricting the 
available connections from a coil to at most its kth nearest 
neighbors, we reduce the size of the search space, and eliminate 
most of the infeasible transitions among coils. 

3.2 The communication operator 
We have proposed a new communication operator which acts like 
a crossover operator to perform knowledge exchange among 
individuals. The proposed operator also utilizes a tabu list and a 
tabutenure parameter to store the recently communicated 
subpopulations and to restrict them to not to re-communicate for a 
number of generations, respectively. By this way, subpopulations 
are prevented against the imported knowledge influx. Also the 
communicated individuals are preserved against the evolution 
process if their subpopulations are still in the tabu list (i.e., for 
tabutenure generations). The waiting times in the tabu list are 
updated by GAs. Each GA checks the index of its subpopulation 
at the tabu list after every generation and updates its waiting time 
if its subpopulation index exists in the list. If the index of its 
subpopulation doesn’t exist in the tabu list, it sends a 
communication request to the communication operator with a 
probability of communication (pcom). The communication 
operator is activated when a request is received from a 
subpopulation. The operator randomly selects another 

subpopulation that is not in the tabu list, then performs 
communication among two individuals randomly selected from 
corresponding subpopulations, and finally updates the tabu list. 

The communication operation works on the phenotypes of the 
selected chromosomes. To illustrate the communication operation, 
assume that the solutions decoded from the selected chromosomes 
are as follows: 
 
A = (1  2  3  4  5  6  7  8  9 ) 
B = (2  5  4  6  9  1  3  7  8 ) 
 
It randomly selects a communication site (comsite) from interval 
[0, N-comamount] where, comamount represents the 
communication amount (i.e., the length of substring that will be 
exchanged). Assume that comsite = 2 and comamount=4. Then, 
the substrings that will be exchanged are s1 = (3, 4, 5, 6) and s2 = 
(4, 6, 9, 1). Now we will produce the second substring in parent 
A, and the first substring in parent B. While completing this 
operation, our purpose is to protect the relative positions of the 
sub-strings in the parents in which they will be produced. To 
accomplish this goal, all the elements, except the first one, in the 
second substring are deleted from parent A, and similarly all the 
elements, except the first one, in the first substring are deleted 
from parent B. After this operation, current  schedules are  
reduced to (2  3  4  5  7  8) and (2  9  1  3  7  8) . Adding the 
remaining elements of the substrings after their first element in 
the corresponding offspring yields the following two new 
schedules: 
 

 a = ( 2  3  4  6  9  1  5  7  8 ) 
 b = ( 2  9  1  3  4  5  6  7  8 ) 
 
Preserving the relative starting positions of the exchanged 
substrings is the main advantage of this communication operator. 

3.3 Genetic operators and parameters 
The operators and the parameters of the designed GA are 
described below. 
 

• The maximum nearest neighborhood degree allowed: k = 
10.   

• Population size: popsize = 20.  
• Initial population: Initial subpopulations are generated 

randomly according to the predefined probability 
distributions for each subpopulation, computed based on 
Table 1.  

• Selection operator: We used the tournament selection 
operator with tournament size tsize = 3. The tournament 
selection operator simply selects tsize chromosomes from the 
current population and places the fittest one to the new 
population until the new population is filled.  

• Crossover operator: We have used the single point crossover 
operator with probability pcross = 0.1.  

• Mutation operator: We have proposed a new mutation 
operator. The mutation simply selects a gene, and mutates its 



current value according to the probability distribution 
generated according to the ratios given in Table 1. The 
mutation operation is performed on the genotype. Since 
mutating a gene may result in a complete change in the 
phenotype succeeding the mutated position, we only 
consider the jump effect of the mutation on the phenotype. 
To illustrate this case, consider the following phenotype and 
assume that the gene at the third position is to be mutated. 

 
1-2-3-4-5-6-7-8-9 
 
Mutating the gene at the third position corresponds to a jump 
from the second position in the phenotype. 
 
 
1-2-3-4-5-6-7-8-9 
 
In this case the coils 3, 4 and 5 will be excluded from the 
schedule. To restore these coils to the schedule, we perform 
a cheapest insertion operation which inserts these coils to the 
cheapest available location while preserving the newly 
produced connection, i.e., the connection from coil 2 to 6. In 
cheapest insertion operation, we do not care about the “k” 
restriction over the neighborhood. Therefore, if needed, it is 
allowed to exceed “k”. The final schedule is then re-encoded 
into the chromosome.  

• Elitism: Elitist strategy is used to preserve the best solution 
obtained against the selection, crossover and mutation 
operators. Elitism simply saves the best-so-far chromosome 
throughout generations, and replaces the worst chromosome 
with the elite after each generation. 

 

4. CONCLUSION 
CGL scheduling in steelmaking is a challenging real-world 
problem incorporating multiple objectives, and multiple 
constraints into various types of TSP and Hamiltonian path 
problems.  In this study, a multi-population parallel genetic 
algorithm with a new genetic representation and new operators is 
developed for this challenging problem.  The developed approach 
produces a schedule in two phases: (i) schedule construction 
phase, and (ii) schedule improvement phase.  Phase one schedules 
the primary WIP inventory which includes N coils selected 
according to the campaign type, campaign tonnage, priorities of 
the planning department and the due dates.  Phase two is designed 
to repair violations by using a secondary WIP inventory for 
improving the quality of the schedules. Secondary WIP inventory 
includes the remaining coils from the selected campaign type, and 
some of the coils of other campaign types that are compatible 
with the ones in primary WIP inventory.  

The developed MPGA has already been put to practice at a major 
steelmaking plant in Turkey. Although no detailed comparison 
has been completed yet to prove the contribution of the MPGA to 
the scheduling of CGL experimentally, the preliminary results are 
encouraging. High quality schedules have already been generated 
by using MPGA within very reasonable computational times (2-3 
minutes for scheduling 150-200 coils in roughly 25-30 

generations) when compared to those of the human scheduling 
experts. 

Our intention to perform a comparison of our approach faces two 
drawbacks: (i) No prior research is found on CGL scheduling as 
highlighted in the first section.  Therefore, a literature-based 
comparison of the performances of our MPGA and any other 
technique including standard GA is not available.  (ii) The human 
scheduling experts have psychological reactions against the early 
successful results of MPGA which caused them to avoid many 
attempts in comparing their performances with MPGA’s.  
Although this is an on-going evaluation process that can take 
more than a year, a typical performance of MPGA versus human 
experts is presented in Table 2 for a smaller size sample case.  For 
instance, MPGA was able to schedule all 66 coils of the primary 
inventory while only Expert#2 could schedule the same number 
of coils.  Since the reason behind missing coils is to avoid some 
important violations, number of missing coils can also be counted 
as violations.  Table 2 does not include all the constraints and the 
objectives as addressed in Section 2 due to the incapability of the 
human experts to evaluate more than nine criteria concurrently.  
For this case, the schedule obtained by using MPGA achieved 10 
violations while the best expert resulted in 16 violations.   

Table 2 A sample case of 66 coils: MPGA vs. human 
scheduling experts 

Evaluation Criteria MPGA SE* #1 SE* #2 SE* #3

Number of coils  66 63 66 65

No. of violations on  

width differences 0 1 0 0

No. of violations on  

Thickness differences  0 1 1 0

No. of violations on widening 0 2 0 0

No. of violations on  

Annealing cycle type 1 0 1 1

No. of violations on skin-pass mill 0 0 0 0

No. of violations on inner  

diameter changes 8 8 10 10

No. of violations on inner diameter  

changes with side-trimmed coils  1 5 5 5

No. of violations on coating 
thickness 0 1 1 0

Total number of violations 10+0 18+3 18+0 16+1

*SE: Scheduling Expert 

 

According to our preliminary results, 60% to 75% improvement 
in the number of constraint violations, and 5-25% improvement in 
the objective values can be expected in a realistic realm. 
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