
A Multi-Population Parallel Genetic Algorithm for
Continuous Galvanizing Line Scheduling

Muzaffer Kapanoglu
Department of Industrial Engineering

Eskişehir Osmangazi University
26030, Eskisehir, Turkey

+90 222 2303972

muzaffer@ogu.edu.tr

Ilker Ozan Koc
Department of Industrial Engineering

Eskişehir Osmangazi University
26030, Eskisehir, Turkey

+90 222 2303972

ikoc@ogu.edu.tr
ABSTRACT
The steelmaking process consists of two phases: primary
steelmaking and finishing lines. The scheduling of the continuous
galvanizing lines (CGL) is regarded as the most difficult process
among the finishing lines due to its multi-objective and highly-
constrained nature. In this paper, we present a multi-population
parallel genetic algorithm (MPGA) with a new genetic
representation called kth nearest neighbor representation, and with
a new communication operator for performing better
communication between subpopulations in the scheduling of
CGL. The developed MPGA consists of two phases. Phase one
generates schedules from a primary work in process (WIP)
inventory filtered according to the production campaign,
campaign tonnage, priorities of planning department, and the due
date information of each steel coil. If the final schedule includes
the violations of some constraints, module two repairs these
violations by using a secondary WIP inventory of steel coils. The
developed scheduling system is currently being used in a steel
making company with encouraging preliminary results.

1. INTRODUCTION
The steelmaking process (for steel sheet products) consists of two
phases: primary steelmaking and finishing lines. In the primary
steelmaking, slabs created by the upstream processes are
transformed to hot coils at a hot strip mill. Although some papers
have been published on production scheduling in primary
steelmaking ([2], [4], [5], [7]), there could be found only one
research related to the finishing line scheduling [6]. Okano, et al.,
[6] have worked on the problem of creating production campaigns
and sequencing of coils within each campaign so that productivity
and product quality are maximized and tardiness is minimized.
They have proposed a construction heuristic and an improvement
heuristic to generate schedules for finishing lines excluding CGL
which is regarded as the most difficult process in the finishing
lines in terms of sequencing [6].
Multi-population GAs are the most popular parallelization method
with numerous publications. A detailed discussion of parallel
GAs, including multi-population (or multiple-deme) GAs, can be
found in [1]. Basically, multi-population GA work with more than
one population called subpopulations, and facilitates some sort of
communication between the subpopulations with a
communication operator based on a topology of connections. In
our previous study [3], a multi-population structure with a new
genetic representation, called kth nearest neighbor representation,
was used to generate a number of local optimum solutions quickly
by using a greedy GA over each subpopulation. However, in the

MPGA approach we present here, GAs are designed to maintain
different levels of greediness over different subpopulations. The
level of greediness supports the robustness and efficiency of GAs.
We also developed (i) a new communication operator which
works on a fully connected topology, and controls the knowledge
transfer and the communication frequency by incorporating
certain tabu search features, and (ii) a greedy mutation operator
which preserves feasibility after mutation.

2. CONTINUOUS GALVANAZING LINE
SCHEDULING
The considered problem is the scheduling of a continuous
galvanizing line (CGL) in a flat steelmaking plant with the one-
million-tone annual production capacity. CGL scheduling is an
extremely complex problem in steelmaking industries due to the
following challenges. (i) Coil changeover requirements:
Succeeding steel coils must comply with the changeover
requirements of each equipment of CGL with respect to the
preceding coils, (ii) Planning requirements: Further constraints
such as the order due dates, and the priorities of the planning
department, and (iii) Multi-objectivity: Schedules are subject to
the optimization of objectives related to the product quality and
the line productivity.

Production in the CGL is carried out in production campaigns
constructed based on a selected campaign type for a given
campaign tonnage. A campaign type is a cluster of coils of a
particular type, with respect to quality and thickness. A
production campaign is a production run with specific start and
end times in which coils are processed continuously. A
production campaign is constructed from the primary and
secondary WIP inventories. The primary WIP inventory is the
first N coils that fill the campaign tonnage when the coils of a
campaign type are sorted according to the due dates and the
predefined priorities. The remaining coils from the selected
campaign type and the coils of different campaign types that can
be used to improve the quality of the schedule are called the
secondary WIP inventory. First, the coils of the primary WIP
inventory are taken into the production campaign and scheduled.
If the schedule violates any constraint(s), then the coils of the
secondary WIP inventory are taken into the production campaign
to fix the transition violations with a minimum increase in
campaign tonnage. The relationship between the production types,
primary WIP inventory, secondary WIP inventory, and the
production campaign is shown in Figure 1. In Figure 1, the white
coils are the coils of selected campaign type that fills the
campaign tonnage. These white coils form the primary WIP

inventory. All the remaining coils in the selected campaign type
are colored gray. Also the coils which belong to different
campaign types but can be produced with the selected campaign
type are colored gray. These gray coils form the secondary WIP
inventory. Firstly, a production campaign is constructed with
primary WIP inventory, i.e., with white coils. If there are
constraint violations in production campaign, then these
violations are fixed by using the secondary WIP inventory.

To make a schedule compatible with the last coil of the previous
schedule and the first coil of the next schedule, it is needed to

define two coils as an input: starting coil and ending coil. The
starting coil is the last coil of the previous schedule. Since the
next schedule is not known beforehand, the ending coil is an
artificial (dummy) coil that can be compatible with the schedule
of the next campaign type. Now the scheduling process can be
summarized in the following steps:

Step 1. Determine primary and secondary WIP inventories.
Step 2. Construct a production campaign compatible with the
starting and ending coils by scheduling the primary WIP
inventory.
Step 3. If the schedule obtained is feasible, go to Step-5.
Step 4. Repair the schedule by adding minimum number of coils
from the secondary WIP inventory
Step 5. Stop and report the final schedule of the current
production campaign to the decision maker.

The CGL scheduling, as stated above, is an interesting problem
since it includes many kinds of theoretical problems from the
literature. In Step 2, if the starting and the ending coils are same,
the problem is the shortest Hamiltonian cycle problem (i.e., well-
known Traveling Salesman Problem). However, if the starting and
the ending coils are not same, then the problem corresponds to the
shortest Hamiltonian path problem. In Step 4, if the starting and

the ending coils are same, problem turns out to be a special case
of Prize-Collecting Traveling Salesman Problem in which a
traveler must visit minimum number of external nodes to find a
legal tour. In Step 4, if the starting and the ending coils are
different, then the problem can be defined as a "prize-collecting"
Hamiltonian path problem in which a traveler must visit minimum
number of nodes to find a legal path from initial node to the
ending node.

The constraints of the CGL scheduling problem are presented
below.
i. The thickness difference between the two consecutive

coils can be Pthickness1% of the thickness of thinner coil
while getting thinner and Pthickness2% of the thinner coil
while getting thicker at maximum.

ii. The width difference between the two consecutive coils
can be Pwidth1 mm while getting narrower and Pwidth2 mm
while getting wider at maximum.

iii. Coating thickness difference between the two consecutive
coils can be Pcoating gr per meter square at maximum.

iv. The annealing cycle type of the two consecutive coils
must correspond to a permitted transition in the annealing
cycle transition matrix. The annealing cycle transition
matrix shows the allowed and restricted transitions among
annealing cycle types.

v. The width enlargement in the schedule can only be made
with the special coils, those with lower quality
specifications or those that are non-skin-passed.

vi. There must be at least one non-skin-passed coil between
two coils requiring different skin-pass mills to operate.

vii. The exiting inner diameter of a coil that will be side
trimmed must be the same with the preceding and
succeeding coils.

The objectives of the CGL scheduling problem are stated as
follows:
i. Minimize the total number of the width-increase chains

where a width-increase chain is defined as a sub-schedule
in which the widths of the coils continuously increase.

ii. Minimize the total length of the width-increase chains
where the length of a width-increase chain is the number
of coils in a chain.

iii. Minimize the total number of the exiting inner diameter
changes.

iv. Minimize the total number of the passivation type change.
v. Minimize the total deviations of thickness.
vi. Minimize the total number of oil type changes.
vii. Minimize the total number of coils used from secondary

WIP inventory.

All the constraints and the objectives are unified into a single
objective function by adding up the penalized constraint
violations and the weighted objective values for minimization.
The objective function with user-supplied penalties and weights
can be represented as follows:

∑ ∑
= =

+=
7

1i

7

1j
jjii OwCpzmin

Selected campaign type

Figure 1. The relationship between the campaign type,
primary WIP inventory, secondary WIP inventory and
the production campaign

where Ci and pi represent the violation amount of the constraint i,
and its associated penalty; and Oj and wj represent the value of the
objective j and its assigned weight respectively. This approach
allows constraint violations proportional to their relative
penalties. If preemptive priorities are preferred for constraints
and objectives, then penalties and the weights must be chosen
accordingly.

3. DEVELOPED MPGA
We have developed a multi-population parallel genetic algorithm
using the kth nearest neighbor representation [3], for preparing
schedules for the CGL. This representation has previously been
presented in [3] for the Euclidean traveling salesman problem
with high performance. In this paper, we introduce a new
approach with some extensions and modifications for a highly
constrained multi-objective real CGL scheduling problem.

The multi-population GAs are the most popular parallel method
among the parallel GAs with numerous publications [1]. The two
important characteristics of multi-population parallel GAs are a
number of subpopulations and a communication operator with a
topology that defines the connections between the subpopulations.
Probably the most important part of the multi-population parallel
GAs is the communication operator. If there is no communication
among subpopulations, then the multi-population GA exhibits an
equivalent performance to running a number of individual GAs in
parallel, or running a GA in multiple times sequentially. In our
MPGA we have developed a new communication operator which:

• uses a fully connected topology for communication,
• exchanges some parts of two individuals selected from

different subpopulations,
• utilizes a communication length parameter (comlength)

which controls the amount of knowledge transfer among
individuals,

• utilizes a tabu list to control and restrict the communication
among the subpopulations which have recently
communicated,

• preserves the transferred knowledge against the evolution
process for a number of generations.

The main framework of MPGA is given in Figure 2. A fully
connected topology is used for the communication operator and
communication takes place among randomly selected two
subpopulations.

In [3], multi-population structure is used to generate a number of
local optimum solutions quickly by using a greedy GA over each
subpopulation. In our MPGA approach, we have used GAs that
have different levels of greediness over different subpopulations.
Different levels of greediness for GAs are obtained by using a
different probability distribution for each subpopulation which is
utilized by the kth nearest neighbor representation. By this way, a
GA with a lower level of greediness becomes more robust than a
GA with a higher level of greediness. As the level of greediness
decreases, the exploration capability of GA increases. While the
level of greediness increases, the exploitation capability of the
GA increases. Therefore, the communication among
subpopulations enables GAs to operate on the imported
knowledge with different levels of greediness. We also developed
a greedy mutation operator which performs an improvement
heuristic to preserve feasibility after mutation. In the following
subsections we have described the genetic representation and the
operators used in MPGA.

3.1 kth nearest neighbor representation
The kth nearest neighbor representation extends the nearest
neighbor heuristic to the kth nearest neighbor for TSPs. A fully-
connected Hamiltonian graph can be constructed where the coils
are nodes, and the distances are the transition costs for scheduling
CGL. The transition costs from one coil to another are computed
based on penalized violations of the constraints and the weighted
objectives. Therefore, each GA searches for a schedule of
maximum fitness in which the next coil that will be taken into the
schedule can be selected from out of the unscheduled nearest k
coils. The parameter k can be considered as the maximum
adjacency degree due to its restrictiveness over the neighborhood
of a coil. Since a gene represents the gth unvisited nearest
neighbor of the current coil to schedule next where 1<g<k, the
maximum values of genes must be determined depending on the
total number of coils, the value of k, and the position of the gene
as follows;

max gi =
⎩
⎨
⎧

<+−+
≥+−

kiN if 1 i-N
kiN if k

1
1

where gi represents the value of a gene in the ith position of a
chromosome, and N represents the total number of coils that will
be scheduled. By using the kth nearest neighbor representation for
k = 3, a chromosome for a 5 coil problem, with the maximum
value limits for each gene, is illustrated as follows.

Maximum value
limits

3 3 3 2 1

Chromosome 1 3 2 1 1

The starting coil is the last coil of the previous schedule. Since the
last coil of the previous schedule (i.e., our starting coil) that is
currently in production line, and the first coil of the current
schedule that will be prepared must be compatible with each
other, we will decide which coil to take the schedule first
according to our starting coil. Since the allele of first gene is 1,
we select the first nearest neighbor of the starting coil. Suppose
that the first nearest neighbor of the starting coil is coil 5, now the

Figure 2. The framework of MPGA.

current schedule is {5}. Since the allele of the second gene is 3,
we select the third unvisited nearest neighbor of coil 5. Suppose
that this coil is coil 2, now the current schedule is {5, 2}. Since
the allele of the third gene is 2, we select the second unvisited
nearest neighbor of coil 2, namely coil 3. Therefore, the current
schedule is {5, 2, 3}. As the subsequent chromosome is decoded
in the same manner, the schedule {5, 2, 3, 1, 4} is obtained.

Since the frequency of visiting the nearest neighbor, and the kth
nearest neighbor in the optimal solution can not be the same, the
kth nearest neighbor representation utilizes a probability
distribution for the degree of neighborhood. This probability
distribution is used in the initialization of the subpopulation
phase, and in the mutation operator to determine the new allele of
a gene. Therefore, these probability distributions, each one for a
subpopulation, also describe the greediness of GAs. We have
defined these probability distributions according to the ratio of
probabilities of adjacent closeness degrees. For example, a ratio
of R indicates that the probability of visiting the first nearest
neighbor is R times more than the probability of visiting the
second nearest neighbor and R2 times more than visiting the third
nearest neighbor and so on. These ratios are given in Table 1 for
each subpopulation.

Table 1. The ratios used to generate probability distributions
for kth nearest neighbor representation.

Subpopulations Ratio
1 1.5
2 1.4
3 1.3
4 1.2
5 1.1

Since we have many constraints related to the adjacency of coils
in CGL scheduling, a feasible transition from one coil to another
is often limited to a degree of closeness. By restricting the
available connections from a coil to at most its kth nearest
neighbors, we reduce the size of the search space, and eliminate
most of the infeasible transitions among coils.

3.2 The communication operator
We have proposed a new communication operator which acts like
a crossover operator to perform knowledge exchange among
individuals. The proposed operator also utilizes a tabu list and a
tabutenure parameter to store the recently communicated
subpopulations and to restrict them to not to re-communicate for a
number of generations, respectively. By this way, subpopulations
are prevented against the imported knowledge influx. Also the
communicated individuals are preserved against the evolution
process if their subpopulations are still in the tabu list (i.e., for
tabutenure generations). The waiting times in the tabu list are
updated by GAs. Each GA checks the index of its subpopulation
at the tabu list after every generation and updates its waiting time
if its subpopulation index exists in the list. If the index of its
subpopulation doesn’t exist in the tabu list, it sends a
communication request to the communication operator with a
probability of communication (pcom). The communication
operator is activated when a request is received from a
subpopulation. The operator randomly selects another

subpopulation that is not in the tabu list, then performs
communication among two individuals randomly selected from
corresponding subpopulations, and finally updates the tabu list.

The communication operation works on the phenotypes of the
selected chromosomes. To illustrate the communication operation,
assume that the solutions decoded from the selected chromosomes
are as follows:

A = (1 2 3 4 5 6 7 8 9)
B = (2 5 4 6 9 1 3 7 8)

It randomly selects a communication site (comsite) from interval
[0, N-comamount] where, comamount represents the
communication amount (i.e., the length of substring that will be
exchanged). Assume that comsite = 2 and comamount=4. Then,
the substrings that will be exchanged are s1 = (3, 4, 5, 6) and s2 =
(4, 6, 9, 1). Now we will produce the second substring in parent
A, and the first substring in parent B. While completing this
operation, our purpose is to protect the relative positions of the
sub-strings in the parents in which they will be produced. To
accomplish this goal, all the elements, except the first one, in the
second substring are deleted from parent A, and similarly all the
elements, except the first one, in the first substring are deleted
from parent B. After this operation, current schedules are
reduced to (2 3 4 5 7 8) and (2 9 1 3 7 8) . Adding the
remaining elements of the substrings after their first element in
the corresponding offspring yields the following two new
schedules:

 a = (2 3 4 6 9 1 5 7 8)
 b = (2 9 1 3 4 5 6 7 8)

Preserving the relative starting positions of the exchanged
substrings is the main advantage of this communication operator.

3.3 Genetic operators and parameters
The operators and the parameters of the designed GA are
described below.

• The maximum nearest neighborhood degree allowed: k =
10.

• Population size: popsize = 20.
• Initial population: Initial subpopulations are generated

randomly according to the predefined probability
distributions for each subpopulation, computed based on
Table 1.

• Selection operator: We used the tournament selection
operator with tournament size tsize = 3. The tournament
selection operator simply selects tsize chromosomes from the
current population and places the fittest one to the new
population until the new population is filled.

• Crossover operator: We have used the single point crossover
operator with probability pcross = 0.1.

• Mutation operator: We have proposed a new mutation
operator. The mutation simply selects a gene, and mutates its

current value according to the probability distribution
generated according to the ratios given in Table 1. The
mutation operation is performed on the genotype. Since
mutating a gene may result in a complete change in the
phenotype succeeding the mutated position, we only
consider the jump effect of the mutation on the phenotype.
To illustrate this case, consider the following phenotype and
assume that the gene at the third position is to be mutated.

1-2-3-4-5-6-7-8-9

Mutating the gene at the third position corresponds to a jump
from the second position in the phenotype.

1-2-3-4-5-6-7-8-9

In this case the coils 3, 4 and 5 will be excluded from the
schedule. To restore these coils to the schedule, we perform
a cheapest insertion operation which inserts these coils to the
cheapest available location while preserving the newly
produced connection, i.e., the connection from coil 2 to 6. In
cheapest insertion operation, we do not care about the “k”
restriction over the neighborhood. Therefore, if needed, it is
allowed to exceed “k”. The final schedule is then re-encoded
into the chromosome.

• Elitism: Elitist strategy is used to preserve the best solution
obtained against the selection, crossover and mutation
operators. Elitism simply saves the best-so-far chromosome
throughout generations, and replaces the worst chromosome
with the elite after each generation.

4. CONCLUSION
CGL scheduling in steelmaking is a challenging real-world
problem incorporating multiple objectives, and multiple
constraints into various types of TSP and Hamiltonian path
problems. In this study, a multi-population parallel genetic
algorithm with a new genetic representation and new operators is
developed for this challenging problem. The developed approach
produces a schedule in two phases: (i) schedule construction
phase, and (ii) schedule improvement phase. Phase one schedules
the primary WIP inventory which includes N coils selected
according to the campaign type, campaign tonnage, priorities of
the planning department and the due dates. Phase two is designed
to repair violations by using a secondary WIP inventory for
improving the quality of the schedules. Secondary WIP inventory
includes the remaining coils from the selected campaign type, and
some of the coils of other campaign types that are compatible
with the ones in primary WIP inventory.

The developed MPGA has already been put to practice at a major
steelmaking plant in Turkey. Although no detailed comparison
has been completed yet to prove the contribution of the MPGA to
the scheduling of CGL experimentally, the preliminary results are
encouraging. High quality schedules have already been generated
by using MPGA within very reasonable computational times (2-3
minutes for scheduling 150-200 coils in roughly 25-30

generations) when compared to those of the human scheduling
experts.

Our intention to perform a comparison of our approach faces two
drawbacks: (i) No prior research is found on CGL scheduling as
highlighted in the first section. Therefore, a literature-based
comparison of the performances of our MPGA and any other
technique including standard GA is not available. (ii) The human
scheduling experts have psychological reactions against the early
successful results of MPGA which caused them to avoid many
attempts in comparing their performances with MPGA’s.
Although this is an on-going evaluation process that can take
more than a year, a typical performance of MPGA versus human
experts is presented in Table 2 for a smaller size sample case. For
instance, MPGA was able to schedule all 66 coils of the primary
inventory while only Expert#2 could schedule the same number
of coils. Since the reason behind missing coils is to avoid some
important violations, number of missing coils can also be counted
as violations. Table 2 does not include all the constraints and the
objectives as addressed in Section 2 due to the incapability of the
human experts to evaluate more than nine criteria concurrently.
For this case, the schedule obtained by using MPGA achieved 10
violations while the best expert resulted in 16 violations.

Table 2 A sample case of 66 coils: MPGA vs. human
scheduling experts

Evaluation Criteria MPGA SE* #1 SE* #2 SE* #3

Number of coils 66 63 66 65

No. of violations on

width differences 0 1 0 0

No. of violations on

Thickness differences 0 1 1 0

No. of violations on widening 0 2 0 0

No. of violations on

Annealing cycle type 1 0 1 1

No. of violations on skin-pass mill 0 0 0 0

No. of violations on inner

diameter changes 8 8 10 10

No. of violations on inner diameter

changes with side-trimmed coils 1 5 5 5

No. of violations on coating
thickness 0 1 1 0

Total number of violations 10+0 18+3 18+0 16+1

*SE: Scheduling Expert

According to our preliminary results, 60% to 75% improvement
in the number of constraint violations, and 5-25% improvement in
the objective values can be expected in a realistic realm.

5. REFERENCES
[1] Cantú-Paz, E. A survey of parallel genetic algorithms.

IlliGAL Report 97003, University of Illinois, 1997.
[2] Fang, H.-L. and Tsai, C.-H. A Genetic Algorithm Approach

to Hot Strip Mill Rolling Scheduling Problems. In
Proceedings of the International Conference on Tools with

http://www-illigal.ge.uiuc.edu/

Artificial Intelligence, IEEE, Piscataway, NJ, 1998, 264 –
271.

[3] Kapanoglu, M., Koc, I.O., Kara, İ., Aktürk, M.S. Multi-
population genetic algorithm using a new genetic
representation for the Euclidean traveling salesman problem.
In Proceedings of the 35th International Conference on
Computers & Industrial Engineering (Istanbul, Turkey, June
19-22, 2005). 2005, Vol. 1, 1047-1052.

[4] Lee, H.-S., Murthy, S.S., W. Haider, S., and Morse, D. V.
Primary Production Scheduling at Steelmaking Industries.
IBM J. Res. & Dev., 40 (1996), 231–252.

[5] Lopez, L., Carter, M.W. and Gendreau, M. The Hot Strip
Mill Production Scheduling Problem: A Tabu Search
Approach, Eur. J. Oper. Res., 106 (1998), 317–335.

[6] Okano, H., Davenport, A.J., Trumbo, M., Reddy, C., Yoda,
K. and Amano M. Finishing line scheduling in steel industy.
IBM J. Res. & Dev., 48, 5/6 (2004), 811-830.

[7] Yasuda, H., Tokuyama, H., Tarui, K., Tanimoto, Y., and
Nagano, M. Two-Stage Algorithm for Production Scheduling
of Hot Strip Mill. Operations Research, 32 (1984), 695–707.

	1. INTRODUCTION
	2. CONTINUOUS GALVANAZING LINE SCHEDULING
	3. DEVELOPED MPGA
	3.1 kth nearest neighbor representation
	3.2 The communication operator
	3.3 Genetic operators and parameters
	4. CONCLUSION
	5. REFERENCES

