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ABSTRACT
Quantum-inspired Evolutionary Algorithm (QEA) with mi-
gration strategy is a coarse-grained parallel algorithm, and
involves many parameters that must be adjusted manually.
This paper proposes a simple pair-swap method which ex-
changes good solution information between two individuals,
and demonstrates that the method can find good solutions
constantly. Our experimental results in Knapsack Problem
have shown that the proposed pair-swap strategy could find
similar or even better quality solutions than the migration
strategy in the QEA.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; F.2.2 [Analy-
sis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

General Terms
Algorithms

Keywords
quantum computing, quantum bit, genetic algorithm, pair-
swap, knapsack problem

1. INTRODUCTION
Quantum computer[1, 2, 3] is a computation model us-

ing quantum mechanical principles such as superposition
state, interference effect, and entanglement state. Recently,
stochastic combinatorial search algorithms combined with
evolutionary algorithm have been recently proposed by in-
corporating quantum mechanical principles or quantum bits[4,
5, 6, 7].

Narayanan et al.[4] have proposed Interference Crossover
(IX) for Classical Genetic Algorithm (CGA) in Traveling
Salesman Problem (TSP), and have shown that IX can re-
duce search cost to 2/3 in CGA with a problem involving 9
cities. We have also shown that the combination of IX and
Immune Algorithm (IA) shows better search performance
than classical IA in TSP problems involving more than 50
cities[5].
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Table 1: The relationship among CGA, IGA, QEA
and QEAPS.

Subpopulations
Granularity Genetic representation

(groups)
of parallel definite Quantum bit
processing value (Stochastic)

None Fine-
CGA QEAPS(1 population) grained

Plural Coarse-
IGA QEAsubpopulations grained

Han et al.[6, 7] have proposed Quantum-inspired Evolu-
tionary Algorithm (QEA) in which each gene is represented
by a quantum bit. QEA can do single-point search and
automatically shift from global search to local search like
Simulated Annealing (SA)[8, 9]. QEA can also perform
multi-point search like CGA in order to solve large-scale
optimization problems.

In QEA, there are more than one subpopulations (groups)
like Island GA (IGA)[10, 11, 12, 13, 14], and inter- and
intra-group migration procedures are performed. Evolution
in each group enables coarse-grained parallelization and pre-
vents premature convergence[13, 14, 15, 16], and the migra-
tion procedures can control search diversification and in-
tensification. However, the adjustment of a number of pa-
rameters is required for the number of group and migration
intervals for each problem. In fact, Han et al. [6, 7]had to do
vast experiments in order to get guidelines for the parameter
adjustment in KP.

In this paper, we propose a simpler algorithm which is re-
ferred to as Quantum-inspired Evolutionary Algorithm with
Pair-Swap strategy (QEAPS). QEAPS involves just one pop-
ulation and a simple genetic operation which exchanges each
best solution information between two individuals chosen
randomly. Therefore, QEAPS involves less parameters nec-
essary to be adjusted than QEA.

Table 1 shows the relationship between the proposed QEAPS
and conventional QEA in contrast with the relationship be-
tween CGA and IGA. QEAPS is the algorithm in which
subpopulations and migration procedures are removed from
QEA, whereas IGA is the algorithm in which subpopulations
and migration procedures are introduced into CGA.

We evaluate the search performance of QEAPS on 0-1
Knapsack Problem (KP), and show that QEAPS can find
similar or even highly qualified solutions more efficiently and
stably than QEA.



2. EVOLUTIONARY ALGORITHM USING
QUANTUM BIT REPRESENTATION

2.1 Quantum Bit Representation of Gene
CGA usually uses the definite value of binary, integer, real

number, or character as a gene expression. However, quan-
tum bit (qubit) can be used as a gene in QEA and QEAPS.
In general, the qubit is described by two-dimensional col-
umn vector in the complex vector space where the inner
product is defined. It uses the following standard bases as
orthonormal base vectors.

|0〉 =

»
1
0

–
, |1〉 =

»
0
1

–
. (1)

The qubit can has a stochastic superposition state (vector
sum) of the two vectors |0〉 and |1〉 with each complex prob-
ability amplitude. The superposition state q of the quantum
bit can be illustrated by the Bloch sphere and shown as fol-
lows,

q = α |0〉 + β |1〉 =

»
α
β

–
, (2)

where α, β are the complex probability amplitudes to ob-
serve the state of 0 or 1, respectively. They are normalized
as |α|2 + |β|2 = 1. |α|2 is the probability that the state of 0
is observed, and |β|2 is the probability that the state of 1 is
observed.

As shown in Figure 1, CGA with binary genes uses an
individual expression of a binary chromosome, but QEA
and QEAPS with qubit genes use an individual expression
of a qubit chromosome qi and the best solution informa-
tion bi. The chromosome composed of the genes with the
qubit expression is described as a tensor product of the
qubits, qi = qi1 ⊗ qi2 ⊗ · · · ⊗ qim. If each qubit is quantum-
mechanically observed. then binary information of 0 or 1
can be obtained according to the probability amplitude of
each qubit in the chromosome. In the same way as CGA,
the fitness of the chromosome can be calculated from the bi-
nary information. When we repeat the process and change
the generation, the chromosome keeps the best solution in-
formation (fitness) bi = [bi1, bi2, . . . , bim] as Personal Best
obtained until the present generation. Here, m is the num-
ber of genes or qubits included in an chromosome and i
shows the number of chromosomes or individuals when we
use multiple chromosomes or individuals.

The chromosome qt
i of the individual i in the generation

t is written by the tensor product of the qubits as follows:

qt
i =

»
αt

i1

βt
i1

–
⊗

»
αt

i2

βt
i2

–
⊗ · · · ⊗

»
αt

im

βt
im

–
. (3)

2.2 Evolution Mechanism for Single-Point
Search

Evolutionary algorithm of QEA with the qubit represen-
tation can search a solution by using one individual like
Stochastic Hill-Climbing or Simulated Annealing (SA). It is
noted that QEA has a characteristic of evolving automati-
cally from global search to local search like SA.

We will describe the evolution mechanism by using one
individual with the qubit expression as follows. To begin
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Figure 1: Individual representations in CGA, QEA,
and QEAPS.
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Figure 2: Evaluation of an individual.

with, the initialization is carried out by setting αik and βik

to 1/
√

2 in order to equally observe the states of |0〉 and |1〉
in the individual i(= 1). This will prepare the equal super-
position state of |0〉 and |1〉. In this paper, the probability
amplitudes of αik and βik are supposed to be real number for
simplicity. Next, the evolution of an individual with qubits
and the exchange of the best solution information in the in-
dividual are repeated according to the following procedure,
until a given termination condition is satisfied.

The observation for each qubit in an individual is carried
out, and then the binary information with 0 or 1 can be ob-
tained depending on the probability amplitude of each qubit
in a qubit string as shown in Figure 2. In quantum mechan-
ics, the observation of the qubit results in the contraction
of wave packet to the state of 0 or 1. By producing the uni-
form random number r from 0 to 1, if r < |α|2 then the state
will be observed to be 0, and if r ≥ |α|2 then the state will
be observed to be 1 in QEA and QEAPS. The fitness value
f(pi) of the individual i can be calculated from the binary
information pi like CGA, and then it is used as a fitness of
the individual even in QEA and QEAPS.

Next, by comparing the current fitness of pi with the past
best fitness of bi, the rotation angle list ui = [θi1, θi2, . . . , θim]
can be created by rotating the superposition state of each
qubit to the direction of |0〉 or |1〉 depending on the large or



Table 2: Lookup table of the rotation angle θik

θik
pik bik f(pi) > f(bi) αikβik αikβik αik βik

> 0 < 0 = 0 = 0
0 1 false θC -θC — ±θC

1 0 false -θC θC ±θC —
Otherwise 0 0 0 0

small relation of f(pi) and f(bi) for each qubit.
The rotation angle θik(k = 1, . . . , m) for k-th qubit deter-

mines to increase the probability amplitude of observing 0
or 1 by comparing the fitnesses, as shown in Table 2[6, 7].
Unitary transformation can be used to change the ratio of
the probability amplitudes αik and βik of the superposition
state. To do the unitary transformation, the following rota-
tion matrix can be used and the rotation angle θik is used
in the rotation matrix.

»
α′

ik

β′
ik

–
=

»
cos(θik) −sin(θik)
sin(θik) cos(θik)

– »
αik

βik

–
. (4)

For example, the probability amplitude β of observing the
1 is supposed to be increased in the case of not renewing the
best solution, i.e., f(pi) < f(bi) with pik = 0 and bik = 1.
When the superposition state with α =

√
3/2 and β = 1/2

is located in the first quadrant (α > 0, β > 0) as shown
in Figure 3, the rotation angle θik is set to θC because of
rotating the superposition state to the direction |1〉 in order
that the probability |β|2 of observing the 1 will be updated
to be increased.

If the rotation angle θC is bigger, then the global search
becomes dominant. If the rotation angle θC is smaller, then
the local search is carried out. According to the paper [6],
θC [rad] is experimentally found to be an adequate value
ranging from 0.001π to 0.05π.

If the rotation angle θC is too big, then the probability
amplitudes do not converge and sometime vibrate, or pre-
mature convergence to local maximum will occur. If the
rotation angle θC is too small, then the search efficiency is
confirmed to decrease[6]. We have also confirmed the same
effect at our experiments for the 0-1 Knapsack Problem.

In order that the probability |β′
ik|2 becomes to be greater

than the previous probability |βik|2, the rotation angle θik

in the rotation matrix is determined depending on positive,
negative, and zero signs of the probability amplitude αik and
βik as shown in Figure 3. For example, the state vector in
the first and second quadrants shown in Figure 3 is rotated
to come close to the axis |1〉, the vector in the third and
forth quadrants shown in Figure 3 is inversely rotated to
come close to the axis − |1〉. The vector ± |0〉 (βik = 0)
in the horizontal axis will show the same effect, even if it
is rotated to any directions. The vector ± |1〉 (αik = 0) in
the vertical axis will not need to be rotated and then the
rotation angle θik should be naught.

Therefore, the rotation angle list ui will be made by doing
the same procedure, and the qubit chromosome qi is evolved
by the unitary transformation of the rotation matrix with
the rotation angle list ui and updated for the next gener-
ation. At the same time, if f(pi) > f(bi), then the best
solution of the new individual is replaced by the currently
observed binary information.

1
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Figure 3: Rotation direction to amplify the obser-
vation probability of the state |1〉.

3. EVOLUTION MECHANISM FOR MULTI-
POINT SEARCH

Although evolutionary algorithm with qubits can evolve
by using only one individual as the single-point search, it
can also evolve by using a population with several individ-
uals as well as multiple-point search algorithms like genetic
algorithm or genetic programming in order to solve a major-
scale combinatorial optimization problem.

3.1 Algorithm Comparison between
QEA and QEAPS

QEAPS proposed in this paper is the algorithm which
mainly makes the following improvement for QEA of Han et
al.[6, 7].

• The groups are made in the population of QEA, while
the groups are not made in the population of QEAPS.

• In QEA, local migration in each group and global mi-
gration in the whole population are carried out in the
given period, while, in QEAPS, we only exchange each
best solution information between two randomly-selected
individuals in every generations.

The algorithm of QEA proposed by Han et al.[6, 7] is
shown in Figure 4, and the algorithm of QEAPS proposed
here is shown in Figure 5. The different processes between
QEA and QEAPS in Figures 4 and 5 are shown in gray and
black colors, respectively.

3.2 Migration strategy of QEA
Migration strategy of QEA involves local migration and

global migration as shown in Figure 6. The local migration
is a process of distributing the best solution information of
an individual with the highest fitness in each group, to all
other individuals in each group, and repeated in every gener-
ations. The global migration is a process of distributing the
best solution information of an individual with the highest
fitness in all groups, to all other individuals in all groups,
and repeated in every fixed generations.

QEA is carried out by using two kinds of migrations such
as the local and global migrations. QEA shows the central-
ization of the search, but must determine two parameters of



the number of groups and the timing of global migration by
considering problem characteristics and scale, convergence
speed in a group, rotation angle as QEA fundamental pa-
rameter[6, 7].

3.3 Pair Swap method of QEAPS
We propose pair swap strategy in the proposed QEAPS

which exchanges each best solution information between two
randomly-selected individuals instead of the migration strat-
egy as shown in Figure 7. To begin with, two individuals
are randomly selected as a pair from all individuals in the
whole group. Then, n/2 pairs are generated by selecting two
individuals from n (even number) individuals with no over-
laps in the group. Only each best solution information is
exchanged in each pair without carrying out any operation
on the qubits in the individual. The pair swap is preceded
as follows: The two individuals i and j exchange each best
solution information bt

i and bt
j in the generation t, respec-

tively. Each new best solution information made by the pair
swap will be bt+1

i = bt
j and bt+1

j = bt
i for each individual i

and j, respectively. Here, we assume that f(bt
i) ≥ f(bt

j).
The pair swap is expected to cause that the individual

j of which the fitness is lower than that of the individual i
increases the probability amplitude to come close to the best
solution information bt

i, and then the fitness is expected to
be improved. On the other hand, in the individual i which
has the best solution information bt+1

i with the fitness lower
than that in the generation t, the best solution information
bt+1
i will be updated immediately in the generation (t + 1)

if f(pt+1
i ) > f(bt+1

i ). The better the probability amplitudes
αik and βik(k = 1, . . . , m) of the individual i converge to
0 or 1, the worse the individual i is unlikely to become.
This is because, even if pt+1

i of the binary string like pt
i or

bt
i (Figure 8(1)) becomes temporarily worse (Figure 8(2))in

the case that αik and βik converge, pt+1
i will be immediately

renewed by the individual with the qubits (Figure 8(3)). If
f(pt+1

i ) < f(bt+1
i ), then the best solution information is not

renewed and the probability amplitudes will be changed to
become closer to bt

j .
While the migration strategy stimulates the centralization

of the search, the pair swap strategy promotes the diversifi-
cation of the search in the initial stage that the probability
amplitudes are not converging, and then it will stimulates
the centralization of the search in the final stage that the
probability amplitudes are converging. Although the chro-
mosome with the qubits has features of automatically shift-
ing to the local search from the global search[6], the pair
swap strategy is regarded as intensifying the features fur-
ther.

4. EVALUATION EXPERIMENTS OF PAIR
SWAP STRATEGY FOR 0-1 KNAPSACK
PROBLEM

4.1 Preparation for Evaluation Experiments
The 0-1 Knapsack Problem (KP) is used for the evalua-

tion experiments in order to prove the effectiveness of the
proposed QEAPS. The KP in the paper [13] is used as a
benchmark problem. The number N of items in the KP is
used as 100 (the first 100 items are used in the benchmark
problem), 250 (the first 250 items are used in the bench-
mark problem), and 500 (the first 500 items are used in the

For each individual i in group gFor each individual i in group g

Make pi by observing qiMake pi by observing qi

Evaluate piEvaluate pi

Update qiUpdate qi

Update personal best biUpdate personal best bi

Local migration

Global migrationIs global migration 
condition satisfied?

Make initial population

Until evaluation time reaches the limit Until evaluation time reaches the limit 

For each group g

Figure 4: The algorithm of conventional QEA.

Make pi by observing qiMake pi by observing qi

Evaluate piEvaluate pi

Update qiUpdate qi

Update personal best biUpdate personal best bi

Make initial population

Until evaluation time reaches the limit 

For each individual iFor each individual iFor each individual i

For each pair i and j generated randomly

Swap bi and bj

Figure 5: The algorithm of proposed QEAPS.

benchmark problem). The weight limit in the KP is set to
be 50% of the total weight of all items. IGA[13] and QEA[7]
are used to compare with QEAPS. Parameters such as the
population and the number g of groups in IGA and QEA
are followed by the previous researches[13, 7], respectively.
Parameters used in QEAPS were followed by QEA as shown
in Table 3. If the sum weight of selected items happens to
exceed the weight limit, then we adjust them by random
repair method[6].

The termination condition of search is defined by the eval-
uation frequency for the individuals in order to compare
a few techniques with different experimental conditions of
the population. That is to say, the search is finished when
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Figure 6: Local and global migration strategy of
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the frequency with which the individual fitness is calculated
reaches to a given frequency. We did the same experiments
30 times using each technique for each problem.

Figure 9 shows the evolution of the fitness and the proba-
bility amplitudes of 100 qubits of an individual as a function
of generations in the KP with N = 100 items, where the
shading colors show the strengths of the probability ampli-
tude. In the initial stage of the search, the shading colors
look gray and blurred which means that the probabilities are
near 0.5. In the final stage of the search, the shading colors
look black and white which means that the probabilities are
near 0 (white) or 1 (black).

4.2 Comparison between IGA and QEAPS
The proposed QEAPS is compared with IGA. Since IGA

avoids the premature convergence at the initial stage in
CGA, and carries out the search while keeping a diversity
of the group. it is an algorithm for discovering the solution
with the quality better than CGA. The experimental results
of IGA were taken from our paper [13]. The population is 50
in QEAPS, and the upper limit of the evaluation frequency
is 250,000 time in order to use the same experimental con-
ditions with the paper [13]. The number N of items is 500.
The averages mf of the fitness of the best solution as a
function of evaluation frequency in QEAPS and IGA are
shown in Figure 10. As seen in Figure 10, IGA improved
the quality of the discovered best solution by increasing the
island number, but the fitness is lower than the optimum
solution. However, it should be noted that QEAPS can dis-
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cover the solution of the quality which is optimum solution
or is equivalent to optimum solution. The qubits in QEAPS
are considered to discover the solution with the good qual-
ity in order to accumulate the information of good items
with high values for the weights on continuing the search.
As well as Ant Colony Optimization [17, 18] which accumu-
lates pheromone in effective partial routes, the affirmative
feedback on the good partial solution is considered to con-
tribute to the improvement on the search performance even
in QEAPS.

4.3 Comparison between QEA and QEAPS
The proposed QEAPS is compared with QEA in the search

performance. Regarding evaluation criteria, we focus on the
discovery rate Opt[%] of the optimum solution per trial num-
ber, the average fitness mf and standard deviation σf of the
best solution obtained in each trial, and the average mt of
evaluation frequency which discovered the optimum solution
in each trial. The upper limit of evaluation frequency is set
to N × 103 as a termination condition of the search.

As a function of the individual total numbers, Opt, mf ,
σf , and mt are shown in Figure 11. The error bars shown in
Figure 11(b), (d) and (f) are the confidence interval with the
degree of reliability 95%. According to the discovery rates
Opt seen in Figure 11(a), (c) and (e), QEAPS can show a
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Figure 11: Comparison between QEA and QEAPS

drastically better improvement in the optimum solution dis-
covery rate than QEA, although the overall discovery rates
decrease with increasing the number of the items in both of
QEA and QEAPS. Moreover, according to Figure 11(b), (d)
and (f), QEAPS can significantly improve the discovery rate
of the optimum solution which is higher than that obtained
by QEA. We have confirmed the significant difference of the
average fitnesses mf in QEA and QEAPS by t-verification
with the significant level of 5%. In this experiment, we have
examined the average fitnesses mf by increasing the number

of individuals to 100. As a result, the more the number of in-
dividuals, the higher the average fitnesses mf in QEA. This
is because QEA uses several groups. On the other hand,
the average fitnesses mf in QEAPS is almost the optimum
solution if we use the number of individuals more than 60
even in the problem of N = 500 where the discovery rates
Opt is deteriorated. Regarding the standard deviation σf

of the best solution, QEAPS shows a significantly smaller
standard deviation than QEA, constantly produces the sta-
ble good solution, and has a high robustness.



Table 3: Parameter configurations.

Parameter names
Values used

IGA QEA QEAPS
Number of individ-
uals

500 10, 20, 30, . . . , 100

Number of subpop-
ulations (groups)
(g)

5, 10, 30 5 –

Number of individ-
uals in a subpopula-
tion

500
g

2, 4,. . . , 20 –

Rotation angle (θC) – 0.01π 0.01π
Number of observa-
tions – 1 1

Interval of global
migration

1 (every
generation) 100 –

Crossover rate 1 − 3×g
500

– –
Mutation rate g

2.5×105 – –
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Figure 9: Evolution of probability amplitudes of
qubits as a function of generations where the shad-
ing colors show the strengths of the probability.

Moreover, QEAPS can efficiently discover the solution of
the equivalent or better quality than QEA. In the problem
of N = 100, the average fitnesses mf in QEA is 21,385
at maximum in the case of 100 individuals, on the other
hand, the average fitnesses mf in QEAPS is 21,388 in the
case of 20 individuals. Regarding the average evaluation
frequency mt shown in Figure 11(a), mt in QEA with 100
individuals is 48,357, and mt in QEAPS with 20 individuals
is 15,811. Therefore, QEAPS can discover the solution of
the equivalent quality in one-third smaller search time than
QEA. In the same way, QEAPS can discover the solution of
the equivalent quality in one-forth smaller search time than
QEA, in the problem of N = 500.

4.4 Considerations
The IGA with gene expression having the definite value

of integers or bits makes it possible to keep in low commu-
nication frequency, to run in a parallel process with coarse
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Figure 10: Fitness transitions in QEAPS and IGA
(N = 500).

grain, and to avoid the premature convergence [13, 14] in the
initial search. Since QEA with gene expression of the qubits
uses local migrations for each group in every generations, it
is necessary to adjust the number of groups and the timing
of the global migration in order to avoid the convergence to
the local solution.

On the other hand, the pair swap strategy used in QEAPS
makes the degree of the centralization in the search region
lower than the migration, and can be expected to maintain
the diversity in the group, even if several groups are not set
up.

In the problem of N = 500, the overall optimum solu-
tion discovery rate was low even in QEAPS. This is because
the diversity in the group gets low in the final stage of the
search. It is necessary to use more individuals in a larger
scale of problem or to use another mechanism for maintain-
ing the diversity in the group. This paper has just shown
the basic effectiveness of the pair swap method, and then
the detailed examination must be carried out for the main-
tenance method of the diversity in the large-scale problem
in future.

5. CONCLUSION
We have discussed about the combinatorial optimization

using the gene expression of the qubits, and have proposed
the combinatorial optimization algorithm QEAPS with the
pair swap strategy. The introduction of the pair swap in
QEAPS which exchanges each best solution information be-
tween two individuals makes it unnecessary to adjust the
number of groups and the migration timing necessary for
the conventional QEA. The pair swap strategy promotes the
global search in the initial stage of the search, and stimu-
lates the local search in the final stage of the search where
the probability amplitude is converging. Moreover, the pair
swap strategy intensifies the features that the gene expres-
sion of the qubits works to automatically shift from the
global search to the local search .

It is confirmed that QEAPS obtains the solution of the
higher quality than IGA by the evaluation experiment us-
ing 0-1 Knapsack Problem. Moreover, it is confirmed that



QEAPS can discover the optimum solution at the higher
probability than QEA, that the dispersion of the quality of
solution obtained by QEAPS is smaller, and that the solu-
tions with the equivalent quality can be discovered in 1/3 to
1/4 of the search time of QEA.

In the future, the verification and improvement of the
search performance in the larger-scale problem should be
carried out and the application to the other combinatorial
optimization problems should be examined, and the charac-
teristics of the problem where QEAPS is effective should be
made clear.
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