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ABSTRACT 
Production planning is a core function in manufacturing systems 
and is gaining even greater attention in supply chain environments 
where many mutually dependent and cooperative manufacturers 
are involved. Lot sizing is one of the most important and difficult 
problems in production planning. While optimal solution 
algorithms exist for this problem, only very small problems can 
be solved in a reasonable computation time because the problem 
is NP-hard. 

In this paper we present a meta-heuristic approach, which we call 
“Memetic Algorithm based on Refinement Procedure”, to solve 
multi-level lot sizing (MLLS) problem. We use a local refinement 
procedure based on benchmarking to facilitate the solution search. 
The benchmark-based refinement procedure proposed by this 
study is also applicable to other problems where solutions are 
difficult to refine. 
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1. INTRODUCTION 
Production planning and scheduling is a core function within the 
management of process and assembly systems for the 
manufacture of final products from raw materials and component 
parts. Their importance has been strengthened by the growing 
attention directed toward supply chain management and ERP 
(Enterprise Resource Planning) software.  

 

 

 

 

 

 

 

 

Lot sizing is a segment of the production planning procedure 
which decides the quantities of what items have to be produced at 
what time to meet the known (or estimated) demand without 
backlogs and stockouts. Lot means the quantity of a product 
manufactured on a machine continuously without interruption, so 
establishing a large lot can reduce the setup cost by requiring less 
frequent changeovers. However, a larger lot increases the holding 
cost because more items which are produced in a period to meet 
some future demand must be stored in inventory. Thus lot sizing 
is a trade-off between low setup costs, which favor large 
production lots, and low holding costs, which favor a lot-for-lot 
like production. 

Table 1 presents an example of a lot sizing problem. The first 
production lot of size 30 which covers demands up to period 2 is 
produced in period 1 (a). We also see that items which are 
produced in advance occupy inventory (b). 

Table 1. An example of lot sizing  

 
 

It is not difficult to find the optimal production lot when only an 
end item is considered (single-level case). However in a real 
production system in which complex product structures are taken 
into account, a production plan must respect the precedence 
relationships of operation. When multi-level structures are taken 
into account, this problem is termed multi-level lot sizing (MLLS). 
MLLS problems have greater importance under the environment 
in which production plants in a supply chain can cooperate to 
make a production plan for the master production scheduling 
(MPS) of each facility unit in the aspect of supply chain 
optimization. Figure 1 shows the environment of an MLLS 
problem. 



 
Figure 1. Environment of an MLLS problem 

 

Material Requirements Planning (MRP) is the most popular lot 
sizing procedure used in industry for planning the production of 
the end items, as well as the production (or purchase) of its 
components. By taking the anticipated build schedule from the 
MPS and ‘‘exploding’’ it through the Bill of Materials, the 
purchase and/or production of the items and its components is 
established, in order to create a demand forecast [2]. However, 
MRP is not enough, as its basic philosophy is only to ensure that 
the right number of components is planned at the right time to 
meet the demand for the end items. MRP therefore only provides 
a feasible solution to the MLLS problem. 

Optimal solution algorithms exist for this problem, but only very 
small problems can be solved in reasonable computation time for 
the problem is NP-hard, not to mention the mathematical 
complexity of the technique that might deter many potential users. 
Several approaches have been developed to solve variants of the 
MLLS problem, with further assumptions made on the product 
and/or cost structure, but execution times remain excessively high 
for application to real problems. Hence heuristic techniques that 
offer a reasonable trade-off between optimality and computational 
feasibility are highly desirable [3].  

The main objective of this study is to reduce the execution time 
while maintaining a relatively good quality production plan, so 
we assume the simple MLLS problem. The demands for the final 
products in the supply chain are assumed to be deterministically 
known by forecasting. The demand for components is derived 
from the production plan for final products. It is also assumed that 
no backlogging is allowed for all component parts and final 
products and that no external demand for components is allowed. 
For the sake of simplicity, we assume that neither positive initial 
inventories nor scheduled receipts are introduced. Furthermore, it 
is assumed that linear holding, production and transportation costs 
occur for carrying inventory and producing items, respectively. 
Setup cost is incurred if there is a positive produced quantity in a 
given period. We also assume that there are no more than two 
production facilities which produce the same item.  

This text is organized as follows. Section 2 presents a literature 
review about solution approaches to the MLLS problem. A 
generic MLLS problem is formulated by means of a mixed-
integer program in Section 3. Section 4 introduces a memetic 
algorithm (MA) and Section 5 refines the refinement procedure in 
our algorithm. In Section 6 a computational study is performed. 
Section 7 summarizes the work. 

2. LITERATURE REVIEW  
The MLLS problem has been continuously studied since the 
1960s. Of the three basic approaches to MLLS that have been 
described in the literature, one focuses on developing an 
algorithm to obtain the optimal solution.  

Zangwill modeled the MLLS problem for a serial system as a 
single-source network problem, and devised a dynamic 
programming recursion to obtain the optimal solution [4]. Love 
also considered a serial system and proposed an alternate 
algorithm, which shows the nested property of the solution [5]. 
Steinberg and Napier expressed the MLLS problem in general 
systems as a network model and solved the problem using the 
branch and bound method [6]. However, these methods require 
significant computational effort for solving large-scale problems.  

The second approach using heuristic lot-sizing has started to gain 
attention in this area, since all these optimization algorithms for 
MLLS are only applicable to unrealistically small scale problems. 

Yelle et al. suggested a sequential approach method which 
ignores the interdependencies between stages of the process and 
applies a single-stage lot-sizing method sequentially. This 
suboptimal approach, while computationally simple, may yield 
substantial cost penalties as it does not consider the 
interdependency between the items in stages [7]. Blackburn and 
Millen considered the relationship between each level of the 
assembly system and suggested some improved heuristics by 
modifying cost meters to reflect those relationships between each 
stage [8]. Heinrich and Schneeweiss devised a stage by stage 
heuristics based on the concept of the modification of the cost 
parameters suggested by Graves [9].  

The third approach is to use the meta-heuristic method which has 
shown very attractive performance in many combinatorial 
problems. Kuik and Salomon applied the simulated annealing 
search method to the MLLS problem [10]. Their experiments 
showed that good solutions can be found by simulated annealing 
in a reasonable amount of time. They also suggested 
incorporating more problem-specific features in designing an 
efficient, simulated annealing, search method for future research. 
Recently, Dellaert and Jeunet have proposed a heuristic method 
based on the genetic algorithm (GA) which can be applied to the 
MLLS problem for general product structures [3]. They 
developed a binary encoding GA and designed some genetic 
operators. Although they demonstrated the efficiency of their 
solution method in their research, further refinements are still 
possible in light of further improvement.  

The primary purpose of this research is to propose new methods 
to improve the previous cost-effective evolutionary algorithm in 
order to provide higher quality solutions to large-scale problems 
which occur in real manufacturing environments.  

3. MATHEMATICAL FORMULATION 
The following, well-known, mixed-integer model gives a precise 
specification for the MLLS problem.  

 
 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective function (1) minimizes the total sum of purchase or 
production costs, setup and inventory holding costs for all items 
over the planning horizon. The constraint (2) is the conservation 
equation for items in the inventory, and the constraint (3) 
calculates the required component item i for production of its 
direct predecessor item j. Notice that the demand for end items in 
each time period is assumed to be predetermined as mentioned 
above. Constraint (4) assures that a setup cost will be incurred 
when a lot size is produced. Finally, constraint (5) states that 
backlog is not allowed and that production is either positive or 
zero. 

The main objective of this paper is to present heuristic methods 
based on evolutionary algorithms to address the MLLS problem, 
including setup costs and setup times. More specifically, we 
developed a MA, an evolutionary algorithm that makes use of 
local search techniques. This technique has been shown to be 
highly effective for several problems in production planning and 
scheduling  

4. THE PROPOSED MEMETIC 
ALGORITHM(MA) 
4.1 Representation Scheme 
An MA is an evolutionary algorithm, similar to the GA, which is 
based on a population of agents. However, the method is less 
constrained than GA, since it does not use any biological 
metaphor that would restrict the design of its components. As a 
consequence, each agent can make use of previous knowledge of 
solution results [11]. 

To design a GA for a particular problem, we first need to devise a 
suitable representation scheme that shows the solution 
characteristics. In the application of GA to lot sizing problems, 
previous researchers usually defined the setup status called 
‘meme’ [3] [10]. Let us assume that production quantities and 
inventories for the item i at time period t are given respectively. 
The property known as “zero-switch” indicates that an optimal 
solution exists for MLLS, which enables the effort to contrive the 
encoding scheme for MLLS to be reduced. The setup status 
information alone for all items over the planning period in each 
facility is enough to generate a perfect production plan. Let us 
assume that the meme yi,t represents the setup status in which it 
takes value 1 if a setup for item i in time period t is introduced 
and 0 otherwise. Figure 2 shows the meme representation. 

 

 
Figure 2. Meme representation 

 

4.2 Memetic agent 
Each memetic agent maintains the information structure shown in 
figure 3 which represents the solution for MLLS in supply chain 
management. Meme represents the core information to establish 
the solution. Through the decoding and repairing procedure, 
meme information is transformed into a specific production plan 
comprising production quantities, inventories and demands for all 
items over the predicted planning horizon in each facility. Based 
on the decoded production plan, the total cost, consisting of 
inventory, setup, production and transportation costs incurred for 
all the items over the planning horizon, can be calculated. 

 
Figure 3.  Memetic agent 

 

4.3 The procedure of the memetic algorithm 
Figure 4 shows the procedure of our proposed MA. In the first 
step, a number of memetic agents are generated, each of which 
has meme information which represents a specific solution for a 
given problem. This meme information is improved to generate 
the high quality solution through a recombination, mutation and 
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local refinement procedure. Whenever the meme information of 
each memetic agents is considered convergent, some of the 
memetic agents are replaced by new agents whose meme 
information is generated randomly. These procedures are iterated 
until they meet the termination criterion. In the next subsection, 
we explain each procedure in more detail. 

 
Figure 4.  The procedure of the memetic algorithm 

 

4.3.1 Recombination procedure 
The recombination procedure plays a similar role to that of the 
crossover operation in GA. In the recombination procedure, we 
select two agents using a roulette wheel method, determine a 
specific time period as a criterion and exchange the meme 
information based on the determined time period. Two child 
agents are introduced, after which the best among those four 
agents is selected and put it in the new agent set. This process is 
iterated until the population size of the new agent set reaches that 
of the current one.  

4.3.2 Mutation procedure 
Mutation has the general purpose of introducing new information 
not possessed by the parent solution set which thereby expands 
the search space. A random set of 0 and 1 is created for selected 
meme based on the predetermined mutation rate. This study 
selects the non-uniform mutation. It gradually increases the 
mutation rate to the predetermined point as the algorithm 
proceeds and thereby delays the convergence speed of the 
solution with the unfolding evolution. 

4.3.3 Refinement procedure 
As mentioned above, we devise the benchmark procedure as the 
refinement for the MLLS problem. This is the most important 
procedure in our proposed MA which is described in detail in the 
following section.  

 

4.4 Refinement procedures based on 
benchmarking procedure 
4.4.1 Basic concept 
We have noted above that lot sizing is a trade-off between setup 
costs and holding costs. Increasing the lot size increases the 
average amount of inventory on one hand, but on the other 
reduces the frequency of setup. Therefore, we use this concept as 
a refinement procedure using benchmark. 

For simplicity, let us consider the solution search process which 
can be found in a probabilistic search method for the single level 

lot sizing problem in Figure 5. Let current setup frequency be 
aS . 

We can reduce holding cost by increasing setup frequency, which 
contrarily increases setup cost, and which ultimately reduces the 
total cost. It is possible that total cost is better at setup frequency 

point
aS  than at point 

*S  where the optimal solution exists. 

 

 
Figure 5.  Refinement concept in single-level lot sizing 

 
In a probabilistic search process, the randomly-created solution 
approaches the value of the near-optimal number of setups, 
thereby deriving a superior solution by finding the best decision 
for the setup point with the near-optimal number of setups. If we 
can find a method capable of reaching the near optimal number of 
setups in a level lot sizing problem, we can narrow down the 
search area for the solution by inducing searches to the area for 
the setup point given the number of setups. In production plans 
with a single level, the near optimal number of setups can be 
derived by using the EOQ (Economy Order Quantity) or Silver-
Mill method. The optimum solution can be found in a short time, 
even if it is a large scale problem, by inducing the search area 
around the number of setups obtained by these methods. 

We next consider the integrated production planning in a multi-
level product group such as in Figure 6. According to the plan, the 
total cost will be the sum of all costs derived from the production 
plans of each item. If these products have no relationship with 
each other in production planning, the total cost for the integrated 
production planning can be minimized by minimizing the total 
cost of the production plan for each product. 

However, it is hard to find the optimal number of setups for each 
product, since the change of number of setups in the upper-level 
products will affect the demand pattern for lower-level products 
which is directly connected to them.  



 
Figure 6.  The difficulty of finding the optimal setup 

frequency in multi-level lot sizing 
 

Let us define the optimal setup frequency for item A as 
*
AS  if the 

plan for product A is only considered, and 
*
globalS  if the 

optimization of overall integrated production planning is 
considered. If we apply EOQ or Silver-Mill methods for the 
refinement processes, it will focus the solution search area around 

the local optimum number of setups, 
*
AS . To find the global 

optimum number of setups, we need to restrict the search area to 

around the global optimum number of setups, 
*
globalS

. However, 
due to the complexities in product relationship, no effective 
refinement method has yet been elucidated.  

Based on above concept, we propose two refinement procedures 
based on benchmarking which can be applied with MA. The first 
refinement-method uses the number of setups directly as the 
criterion for benchmarking to improve the solution. The second 
method uses the ratio of the holding cost to the setup cost which 
improves the solution better than the first one.  

4.4.2 Refinement procedure using the number of 
setups 
In this refinement method, the search area to find the global 
optimum number of setups is restricted to around the current best 
number of setups. The number of setups can be controlled at the 
level of each item or total number of setups over all the items. 

When the number of setups is controlled at the level of each item, 
the holding and setup costs are compared with those of the best 
solution, then the movement is determined independently for each 
item. Some items will increase the setup occurrence while others 
will decrease it. We next consider refining the production plan of 
an upper level product A in agents 1, 2 and 3, as shown in figure 7. 
When comparing the agents of the production plan, if we consider 
the effects on product A only, the setup cost increases in agent 1 
while the inventory holding cost increases in agent 2. The 
production plan for product A generated by these agents incurs 
more cost than that of the best agent. The number of setups in 

agent 3 is closer to 
*
AS  than the best agent and the production plan 

for item A is therefore cheaper than that of the best agent. 

 
Figure 7.  Refinement procedure at the level of each item 

 

When applying the refinement process based on benchmarking, 
the number of setups for item A of agent 1 should be increased 
since the holding cost for item A of agent 1 is higher than that of 
the best agent. Agent 2 is the opposite – it creates more setup 
holding costs, so the number of setups should be decreased. Agent 
3 incurs less cost than the best agent if we consider the production 
plan for item A only, so that no modification is performed at that 
time. However, the solution quality for item A of agent 3 will be 
degraded through evolutionary processes such as recombination 
and mutation, and it will therefore benchmark the number of 
setups of the best agent later. 

When the total number of setups is applied to the refinement 
procedure, only total setup is controlled. We next consider 
refining the production plan in agents 1, 2 and 3 in figure 8. While 
we keep the best agent, agents 1, 2 and 3 will move (reduce or 
increase) the number of setups toward the best agent. The number 
of setups in agents 1 and 2 should be increased since total cost of 
agent 1 is higher and the number of setups is lower than the best 
agent. The setup of agent 2 will be modified because the total cost 
is higher and the number of setups is lower than the best agent.  

In this method, it’s very important to decide which item will add 
or delete a setup and how many setups are modified. We consider 
the relative difference in the number of setups. Figure 8 shows 
this process. The difference in the number of setups between 
agent 1 and the best setup is more than between agent 2 and the 
best agent. Therefore, agent 1 will add more setups than agent 2. 
The item which needs modification for the number of setups is 
selected by the relative setup frequency factor called Ri. The 
score is increased if the difference in the number of setups 
compared with the best agent increases. 

 
Ri(Relative setup frequency i)= the number of  item i in 
agent n – the number of item i in the best agent. 



 
Figure 8.  Refinement concept in multi-level lot sizing 

 

Figure 9 shows the refinement procedure using the number of 
setups at the level of each item.  

 
Figure 9.  Refinement procedure using the number of setups 

 

4.4.3 Refinement procedure using the ratio of setup 
cost to holding cost 
This procedure gives an improved result from refinement methods 
merely by using the number of setups. As repetitive experiments 
are made we notice that refinement methods using the number of 
setups tend to become easily trapped into the local optimum 
easily, with the consequence that when the number of setups is 
applied to the refinement procedure directly, the relationship 
between the number of setups and total cost may cause many 
local optimums. 

Figure 10 shows one of the experimental results when the 
refinement procedure using the number of setups as 
benchmarking is applied. It is apparent that the total cost 
according to the number of setups has presents the intended shape, 
indicating the presence of many local optimums. 

 

 
Figure 10.  An experimental result of the refinement 

procedure using the number of setups  

 
Instead of applying the number of setups or setup cost directly, 
we use the ratio of holding cost to setup cost as the criterion for 
benchmark. Data in figure 10 are transformed into the relationship 
between the total cost and the ratio of setup cost to holding cost in 
figure 11.  

 

 
Figure 11.  An experimental result of the refinement 

procedure using the ratio of setup cost to holding cost 

 
It seems that the lower bound of total cost draws a single large 
concave, or if not, it has few local optima. This demonstrates that 
this method will reduce the probability to be trapped in the local 
optimum. Figure 12 shows the refinement procedure using the 
ratio of setup cost to holding cost. 

 



 
Figure 12. Refinement procedure using the ratio of setup cost 

to holding cost 
 

5. COMPUTATIONAL EXPERIMENT 
5.1 Experimental design 
Due to the difficulty of obtaining optimal solutions for MLLS 
problems involving general product structures, we limited the 
study to a performance comparison of the selected heuristics for 
assembly and general product structures of large size. 

The individual problems were generated by combining i) the size 
of the problem, ii) the commonality index (C value) and iii) the 
time between order (TBO) value.  

The size of the problem was determined by the depth of supply 
chain, the number of items and the length of the planning horizon. 
The C value was proposed by Collier and is defined as the 
average number of successors per component. [12]:  
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Let h and D be the inventory holding cost and the average 
demand for the item being considered, respectively. TBO can be 
used to deduce the set-up cost in the following way. 
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Figure 13. An example experimental computation 

We tested our MA considering the instance of two-stage supply 
chain problems which comprise 5 final items and 10 components 
with varying planning horizons. We set TBO as 2 periods for all 
items and assigned the structure of the product to satisfy C as 2. 
The inventory cost for each item was computed to reflect the 
value-added holding cost. The demand for end items was 
determined from a uniform distribution over [0, 20].   

We created 20 test problems by only varying the demand per each 
period. We obtained the solutions by GA and MA with the 
refinement procedure using the number of setups and the ratio of 
setup cost to holding cost. 

GA: Genetic algorithm 
MA-N: memetic algorithm with refinement procedure 
using the number of setups 
MA-R: memetic algorithm with refinement procedure 
using the ratio of setup cost to holding cost 

Although a more precise experimental design is required for a 
better comparison between the algorithms, we were limited to this 
simple test due to the lack of computation time. This paper has 
focused on comparing refinement procedures, which will be 
proven by the following experimental result. In a future study we 
will test the additional instances with a more precise design.  

 
5.2 Results 
Figure 14 is a good example showing the difference of 
performance evolution according to the generation by each 
solution method. The reduction of costs obtained by MA-N and 
MA-R is faster and better than that by GA. This means that the 
probabilistic search methods can improve the search speed using 
the criteria which informs the route of search. It is apparent that 
MA-R is better that MA-N, i.e., the refinement procedure using 
the ratio of setup cost to holding cost is better than that using the 
number of setups.  

 

 
Figure 14. Performance evolution according to the generation 

 

Table 2 shows the statistical results of 20 test problems. The 
results from MA-R and MA-N are better than from GA. MA-R is 
superior to MA-N. However, there remains the possibility that 
GA or MA-N is better than MA-R. 



Table 2.  The statistical results of 20 test problems 

 
 

6. CONCLUSION 
In this study, we developed a heuristic for integrated master 
production planning in supply chain optimization based on MAs 
and devised a local refinement procedure based on the concept of 
benchmarking, which guarantees the evolution of solutions by 
taking into account the interrelationships among memes. The 
refinement procedure proposed in this study uses the number of 
setups and the ratio of setup cost to holding cost as its basis for 
benchmarking. Each memetic agent benchmarks its criterion of 
the best agent in the population to modify the meme information 
and thereby improve the solution quality.  
The effectiveness of the proposed algorithm was tested through a 
series of simulation experiments with various problem sizes. 
Comparing the solutions generated from several simulation 
experiments by the proposed algorithm with those from GA, those 
from MAs with the refinement procedure were better than those 
from the ordinary GA. For a more accurate comparison between 
the proposed methods, future study will require more precise 
experimental design and a greater number of test cases. 
 
We believe that this proposed algorithm based on benchmarking 
can be applied to other, difficult-to-solve problems. The 
refinement procedure will form the basis for improving MLLS 
solutions in supply chain management and ERP system. There is a 
need for further study in order to improve the speed of MAs by 
enhancing the refinement procedure and to generate a more 
efficient meme design.  
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