
Variable Neighborhood Particle Swarm Optimization
Algorithm

Ajith Abraham
School of Computer Science

and Engineering
Chung-Ang University
Seoul, 156-756 Korea

ajith.abraham@ieee.org

Hongbo Liu
Department of Computer

Science
Dalian University of

Technology
Dalian, 116023 China
lhb@dlut.edu.cn

Tae-Gyu Chang
School of Electrical and

Engineering
Chung-Ang University
Seoul, 156-756 Korea

tgchang@cau.ac.kr

ABSTRACT
In this paper, we introduce a hybrid metaheuristic, the Vari-
able Neighborhood Particle Swarm Optimization (VNPSO)
algorithm, consisting of a combination of the Variable Neigh-
borhood Search (VNS) and Particle Swarm Optimization(PSO).
The proposed VNPSO algorithm is used for solving the
multi-objective Flexible Job-shop Scheduling Problems (FJSP).
Flexible job-shop scheduling is very important in both fields
of production management and combinatorial optimization.
However, it is quite difficult to achieve an optimal solution
with traditional optimization approaches owing to the high
computational complexity. The details of implementation
for the multi-objective FJSP are provided and the corre-
sponding computational experiments are reported. The re-
sults indicate that the proposed algorithm is an efficient
approach for the multi-objective FJSP, especially for large
scale problems.

Categories and Subject Descriptors
Computing Methodologies [I.2 Artificial Intelligence]: I.2.8
Problem Solving, Control Methods, and Search

General Terms
Algorithms, Design, Performance

Keywords
Variable Neighborhood Search, Particle Swarm Optimiza-
tion, Flexible Job-shop Scheduling Problems, Multi-objective
Optimization

1. INTRODUCTION
Flexible Job-shop Scheduling Problems (FJSP) is an ex-

tension of the classical JSP which allows an operation to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO ’06 Seattle, WA, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

be processed by any machine from a given set [1]. It in-
corporates all the difficulties and complexities of its prede-
cessor JSP and is more complex than JSP because of the
additional need to determine the assignment of operations
to the machines. The scheduling problem of a FJSP con-
sists of a routing sub-problem, that is, assigning each op-
eration to a machine out of a set of capable machines and
the scheduling sub-problem, which consists of sequencing
the assigned operations on all machines in order to obtain
a feasible schedule minimizing a predefined objective func-
tion. It is quite difficult to achieve an optimal solution with
traditional optimization approaches owing to the high com-
putational complexity. Some different approaches have been
proposed to solve this problem. Brandimarte [2], Hurink
and Jurisch [3] developed various tabu search algorithms for
FJSP. Mastrolilli and Gambardella [4] proposed some neigh-
borhood functions for metaheuristics. Kacem, et al. [5, 6]
studied on modeling genetic algorithms for FJSP. Recently,
Ong et al. [7] applied the clonal selection principle of the
human immune system to solve FJSP with recirculation.
By hybridizing particle swarm optimization and simulated
annealing, Xia and Wu [8] developed an hybrid approach
for the multi-objective flexible job-shop scheduling problem
(FJSP). Because of the intractable nature of the problem
and its importance in both fields of production management
and combinatorial optimization, it is desirable to explore
other avenues for developing good heuristic algorithms for
the problem.

Particle Swarm Optimization (PSO) incorporates swarm-
ing behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from
which the intelligence is emerged [9, 10, 11]. The PSO per-
formance deteriorates as the dimensionality of the search
space increases, especially for the multi-objective FJSP in-
volving large scale. PSO often demonstrates faster con-
vergence speed in the first phase of the search, and then
slows down or even stops as the number of generations is
increased. Once the algorithm slows down, it is difficult
to achieve better scheduling solutions. To avoid termina-
tion at a local minimum, we introduce a novel hybrid meta-
heuristics, the Variable Neighborhood Particle Swarm Opti-
mization (VNPSO) for the multi-objective FJSP. The basic
idea is to drive those particles by a shaking strategy and get
them to explore variable neighborhood spaces for the better
scheduling solutions.

2. PROBLEM FORMULATION
The classical FJSP considers in general the assignment of

a set of machines M = {M1, · · · , Mm} to a set of jobs J =
{J1, · · · , Jn}, each of which consists of a set of operations
Jj = {Oj,1, · · · , Oj,p}. There are several constraints on jobs
and machines, such as

1. each machine can process only one operation at a time;

2. operations cannot be interrupted;

3. there are no precedence constraints among operations
of different jobs;

4. setup times for the operations are sequence-independent
and included in the processing times;

5. there is only one of each type of machine;

6. machines are available at any time.

To formulate the objective, we define Ci,j,k (i ∈ {1, 2, · · · , m},
j ∈ {1, 2, · · · , n},k ∈ {1, 2, · · · , p}) as the completion time
that the machine Mi finishes the operation Oj,k;

P
Ci repre-

sents the time that the machine Mi completes the processing
of all the jobs. Define Cmax = max{PCi} as the makespan,
and Csum =

Pm
i=1(

P
Ci) as the flowtime. The problem is

thus to both determine an assignment and a sequence of
the operations on all machines that minimizes some crite-
ria. Most important optimality criteria are to be minimized:

1. the maximum completion time (makespan): Cmax;

2. the sum of the completion times (flowtime): Csum.

Minimizing Csum asks the average job finishes quickly, at
the expense of the largest job taking a long time, whereas
minimizing Cmax, asks that no job takes too long, at the ex-
pense of most jobs taking a long time. Minimization of Cmax

would result in maximization of Csum. The weighted aggre-
gation is the most common approach to the problems. Ac-
cording to this approach, the objectives, F1 = min{Cmax}
and F2 = min{Csum}, are summed to a weighted combina-
tion:

F = w1min{F1}+ w2min{F2} (1)

where w1 and w2 are non-negative weights, and w1 + w2 =
1. These weights can be either fixed or adapt dynamically
during the optimization. The dynamic weighted aggregation
[15] was used in the paper.

3. THE VNPSO HEURISTIC FOR FJSP
The classical PSO model consists of a swarm of particles,

which are initialized with a population of random candidate
solutions. They move iteratively through the d-dimension
problem space to search the new solutions, where the fitness,
f , can be calculated as the certain qualities measure. Each
particle has a position represented by a position-vector ~xi (i
is the index of the particle), and a velocity represented by
a velocity-vector ~vi. Each particle remembers its own best
position so far in a vector ~x#

i , and its j-th dimensional value

is x#
ij . The best position-vector among the swarm so far is

then stored in a vector ~x∗, and its j-th dimensional value is
x∗j . During the iteration time t, the update of the velocity
from the previous velocity to the new velocity is determined

by Eq.(2). The new position is then determined by the sum
of the previous position and the new velocity by Eq.(3).

vij(t) = wvij(t− 1) + c1r1(x
#
j (t− 1)− xij(t− 1))

+ c2r2(x
∗
j (t− 1)− xij(t− 1)) (2)

xij(t) = xij(t− 1) + vij(t) (3)

In the PSO model, the particle searches the solutions in
the problem space within a range [−s, s] (If the range is not
symmetrical, it can be translated to the corresponding sym-
metrical range.) In order to guide the particles effectively
in the search space, the maximum moving distance during
one iteration is clamped in between the maximum velocity
[−xmax, xmax] given in Eq.(4), and similarly for its moving
range given in Eq.(5):

xi,j = sign(xi,j)min(|xi,j | , xmax) (4)

vi,j = sign(vi,j)min(|vi,j | , vmax) (5)

The value of vmax is ρ× s, with 0.1 ≤ ρ ≤ 1.0 and is usually
chosen to be s, i.e. ρ = 1.

The particle swarm algorithm can be described generally
as a population of vectors whose trajectories oscillate around
a region which is defined by each individual’s previous best
success and the success of some other particle. Eberhart and
Kennedy called the two basic methods as “gbest model” and
“lbest model” [9]. In the lbest model, particles have infor-
mation only of their own and their nearest array neighbors’
best, rather than that of the entire group. Unfortunately
there is a large computational cost to explore the neighbor-
hood relation in each iteration. In the gbest model, the
trajectory for each particle’s search is influenced by the best
point found by any member of the entire population. The
best particle acts as an attractor, pulling all the particles
towards it. Some previous studies has been shown that the
trajectories of the particles oscillate in different sinusoidal
waves and converge quickly in the “gbest model” algorithm
[13, 14]. During the iteration, the particle is attracted to-
wards the location of the best fitness achieved so far by the
particle itself and by the location of the best fitness achieved
so far across the whole swarm. The “gbest model” has faster
convergence. But very often for multi-modal problems in-
volving high dimensions it tends to suffer from premature
convergence.

Variable Neighborhood Search (VNS) is a relatively recent
metaheuristic which relies on iteratively exploring neighbor-
hoods of growing size to identify better local optima with
shaking strategies [16, 17]. More precisely, VNS escapes
from the current local minimum x∗ by initiating other local
searches from starting points sampled from a neighborhood
of x∗, which increases its size iteratively until a local min-
imum is better than the current one is found. These steps
are repeated until a given termination condition is met. The
metaheuristic method we propose, the VNPSO, was origi-
nally inspired by VNS. In PSO, if a particle’s velocity de-
creases to a threshold vc, a new velocity is assigned using
Eq.(6):

vij(t) = wv̂ + c1r1(x
#
j (t− 1)− xij(t− 1))

+ c2r2(x
∗
j (t− 1)− xij(t− 1)) (6)

v̂ =

(
vij if |vij | ≥ vc

u(−1, 1)vmax/ρ if |vij | < vc

(7)

The proposed algorithm scheme is summarized as Algo-
rithm 1. The performance of the algorithm is directly corre-
lated to two parameter values, vc and ρ. A large vc shortens
the oscillation period, and it provides a great probability for
the particles to leap over local minima using the same num-
ber of iterations. But a large vc compels the particles in the
quick “flying” state, which leads them not to search the so-
lution and forcing them not to refine the search. The value
of ρ changes directly the variable search neighborhoods for
the particles. It is to be noted that the algorithm is different
from the multi-start technique and the turbulence strategy
[18]. We also implemented the Multi-Start PSO (MSPSO)
and Velocity Turbulent PSO (VTPSO) to compare their per-
formances.

Algorithm 1 VNPSO

01. Initialize the size of the particle swarm n, and other
02. parameters; Initialize the positions and the velocities
03. for all the particles randomly. Set the flag of iterations
04. without improvement Nohope = 0.
05. While (the end criterion is not met) do
06. t = t + 1;
07. Calculate the fitness value of each particle;
08. ~x∗ = argminn

i=1(f(~x∗(t− 1)), f(~x1(t)),
09. f(~x2(t)), · · · , f(~xi(t)), · · · , f(~xn(t)));
10. If ~x∗ is improved then Nohope = 0,
11. else Nohope = Nohope + 1.
12. For i= 1 to n
13. ~x#

i (t) = argminn
i=1(f(~x#

i (t− 1)), f(~xi(t));
14. For j = 1 to Dimension
15. If Nohope < 10 then
16. Update the j-th dimension value of ~xi and ~vi

17. according to Eqs.(2),(5),(3),(4)
18. else
19. Update the j-th dimension value of ~xi and ~vi

20. according to Eqs.(7),(6).
21. Next j
22. Next i
23. End While.

For applying PSO successfully for the FJSP problem, one
of the key issues is how to map the problem solution to the
PSO particle space, which directly affects its feasibility and
performance. We setup a search space of O dimension for an
(m−Machines, n− Jobs, O −Operations) FJSP problem.
Each dimension was limited to [1, m]. For example, consider
a little scale (3−Machines, 3−Jobs, 7−Operations) FJSP,
Fig. 1 shows a mapping between a one possible assignment
instance to a particle position coordinates in the PSO do-
main. Each dimension of the particle’s position maps one
operation, and the value of the position indicates the ma-
chine number to which this task is assigned to during the
course of PSO. So the value of a particle’s position should
be integer. But after updating the velocity and position of
the particles, the particle’s position may appear real val-
ues such as 1.4, etc. It is meaningless for the assignment.
Therefore, in the algorithm we usually round off the real op-
timum value to its nearest integer number. By this way, we

Job1

O1,1 O1,2

2 1.4

M2 M1

Job2

O2,1 O2,2

3.7 1.8

M3 M1

O2,3

2.6

M2

Job3

O3,1 O3,2

3 1

M3 M1

Operation

Particle Position

Processing Machine

Figure 1: The Mapping between particle and FJSP.

convert a continuous optimization problem to a scheduling
problem. The particle’s position is a series of priority levels
of assigned machines according to the order of operations.
The sequence of the operations will be not changed during
the iteration.

4. EXPERIMENT SETTINGS AND RESULTS
To illustrate the effectiveness and performance of the pro-

posed algorithm, three representative instances based on
practical data have been selected. Three problem instances
(problem (J8, O27, M8), problem (J10, O30, M10) and prob-
lem (J15, O56, M10) are all taken from Kacem et al. [5,
6]. In our experiments, the algorithms used for compari-
son were MSPSO, VTPSO and VNPSO. The parameters
c1 and c2 were set to 1.49 for all the PSO algorithms. In-
ertia weight w was decreased linearly from 0.9 to 0.1. In
VTPSO and VNPSO, ρ and vc were set to 2 and 1e-7 before
15,000 iterations, while they were set to 5 and 1e-10 after
15,000 iterations. vmax was set to s/2, the range of the po-
sition domain. The swarm size in all the algorithms were
set to 20. The average fitness values of the best solutions
throughout the optimization run were recorded. The aver-
ages (F) and the standard deviations (std) were calculated
from the 10 different trials. The standard deviation indicates
the differences in the results during the 10 different trials.
Usually another emphasis will be to generate the schedules
at a minimal amount of time. So the completion time for
10 trials were used as one of the criteria to improve their
performance. Figs. 2, 3 and 4 illustrate the performance
curves for the three algorithms during the search processes
for the three FJSPs. Other results are showed in Table 1.
In general, VNPSO performs better then the other two ap-
proaches, although its time item is worse than VTPSO for
the low dimension problem, (J8, O27, M8). VNPSO could
be an ideal approach for solving the large scale problems
when other algorithms failed to give a better solution.

5. CONCLUSIONS
In this paper, we introduce a hybrid metaheuristic, the

Variable Neighborhood Particle Swarm Optimization, con-
sisting of a combination of the Variable Neighborhood Search
(VNS) and Particle Swarm Optimization(PSO), and con-
sidered its application for solving the multi-objective Flex-
ible Job-shop Scheduling Problems (FJSP). The details of
implementation for the multi-objective FJSP are provided
and its performance was compared using computational ex-
periments. The empirical results have shown that the pro-
posed algorithm is an available and effective approach for the
multi-objective FJSP, especially for large scale problems.

0 500 1000 1500 2000
0

50

100

150

200

Iteration

av
er

ag
e(

F
)

MSPSO
VTPSO
VNPSO

Figure 2: The performance of the algorithms for
(J8, O27, M8) FJSP.

0 0.5 1 1.5 2

x 10
4

15

20

25

30

35

Iteration

av
er

ag
e(

F
)

MSPSO
VTPSO
VNPSO

Figure 3: The performance of the algorithms for
(J10, O30, M10) FJSP.

0 0.5 1 1.5 2

x 10
4

30

32

34

36

38

40

42

44

Iteration

av
er

ag
e(

F
)

MSPSO
VTPSO
VNPSO

Figure 4: The performance of the algorithms for
(J15, O56, M10) FJSP.

Table 1: Comparing the results for FJSPs.

FJSP Items MSPSO VTPSO VNPSO
makespan 30 26 24

(8, flowtime 168 155 152
27, average 39.9087 28.3853 28.8000
8) std ±5.7140 ±2.3146 ±3.8239

time 184.0620 181.2500 181.2970
makespan 19 13 11

(10, flowtime 96 92 75
30, average 19.4612 15.2000 15.0000
10) std ±1.8096 ±1.3166 ±1.8257

time 1714.5 1589.1 1590.8
makespan 36 30 29

(15, flowtime 231 241 220
56, average 37.2000 31.9000 30.8000
10) std ±1.0328 ±1.2867 ±1.7512

time 2049.7 12081.6 2070.3

6. ACKNOWLEDGMENTS
The first author acknowledges the support received from

the International Joint Research Grant of the IITA (Insti-
tute of Information Technology Assessment) foreign profes-
sor invitation program of the Ministry of Information and
Communication, South Korea. The second author is sup-
ported by NSFC(60373095),MOE(KP0302).

7. REFERENCES
[1] Bruker, P. and Schlie, R.: Job-shop scheduling with

multi-purpose machines. Computing, (1990) 45:369-375

[2] Brandimarte, P.: Routing and Scheduling in a Flexible
Job-Shop by Tabu Search. Annals of Operations
Research, (1993) 2:158-183

[3] Hurink, E., Jurisch, B. and Thole, M.: Tabu search for
the job shop scheduling problem with multi-purpose
machines. Operations Research Spektrum, (1994)
15:205-215

[4] Mastrolilli, M. and Gambardella, L. M.: Effective
neighborhood functions for the flexible job shop
problem. Journal of Scheduling, (2002) 3(1):3-20

[5] Kacem, I., Hammadi, S., and Borne, P.: Approach by
localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems.
IEEE Transactions on Systems, Man and Cybernetics,
(2002) 32(1):1-13

[6] Kacem, I., Hammadi, S. and Borne P.:
Pareto-optimality approach for flexible job-shop
scheduling problems: hybridization of evolutionary
algorithms and fuzzy logic. Mathematics and
Computers in Simulation, (2002) 60:245-276

[7] Ong Z. X., Tay J. C. and Kwoh C. K.: Applying the
Clonal Selection Principle to Find Flexible Job-Shop
Schedules. in: Jacob, C. et al. (eds.), ICARIS2005,
LNCS3627, 2005, 442-455

[8] Xia, W. and Wu, Z.: An effective hybrid optimization
approach for multi-objective flexible job-shop
scheduling problems. Computers and Industrial
Engineering, (2005) 48:409-425

[9] Kennedy, J. and Eberhart, R.: Swarm Intelligence.
Morgan Kaufmann (2001)

[10] Clerc, M.: Particle Swarm Optimization. ISTE
Publishing Company, London (2006)

[11] Abraham A., Guo H., Liu H.: Swarm Intelligence:
Foundations, Perspectives and Applications. in:
Nedjah, N., Mourelle, L. (eds.), Swarm Intelligent
Systems, Nova Publishers, USA (2006)

[12] Liu, H., Li, B., Wang, X., Ji, Y., Tang, Y.: Survival
density particle swarm optimization for neural network
training. in: Yin, F., Wang, J., and Guo, C. (eds.),
ISNN2004, LNCS3173, Springer-Verlag, (2004) 332-337

[13] Clerc, M. and Kennedy, J.: The particle
swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on
Evolutionary Computation, (2002) 6(1):58-73

[14] Cristian, T. I.: The particle swarm optimization
algorithm: convergence analysis and parameter
selection. Information Processing Letters, (2003)
85(6):317-325

[15] Parsopoulos, K. E. and Vrahatis, M. N.: Recent
Approaches to Global Optimization Problems through
Particle Swarm Optimization, Natural Computing,
(2002) 1:235-306

[16] Hansen, P. and Mladenović, N.: Variable
neighbourhood search: Principles and applications.
European Journal of Operations Research, (2001)
130:449-467

[17] Hansen, P. and Mladenović, N.: Variable
neighbourhood search. In: Glover, F. W. and
Kochenberger, G. A. (eds.), Handbook of
Metaheuristics, Dordrecht, Kluwer Academic
Publishers (2003)

[18] Liu, H. and Abraham A.: Fuzzy Adaptive Turbulent
Particle Swarm Optimization, in: Proceedings of the
Fifth International conference on Hybrid Intelligent
Systems, (2005) 445-450

