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ABSTRACT
Schumacher, Vose & Whitley [1] have shown that Wolpert &
MacReady’s celebrated No Free Lunch theorem [2] applies
only to classes of target functions which are closed under
permutation (c.u.p.). In the same paper, Schumacher et
al. demonstrated that there exist both highly compressible
and highly incompressible classes of objective functions for
which NFL applies. However, I will show that there is a
free lunch for the class of all n-compressible target functions
f : X → Y given reasonable conditions on n, |X | and |Y|.
While previous authors [3, 4] have considered NFL in the
context of some form of complexity restriction on function
classes, this paper appears to be the first to contain a proof
using the general measure of Kolmogorov complexity.

1. NO FREE LUNCH
When evolutionary algorithms were first introduced, it

was hoped that they might provide a general-purpose “black
box” search/optimisation tool. However, in [2], Wolpert
& MacReady proved that the average performance of all
search algorithms, considered over the class of all possible
target functions, is the same. Consequently evolutionary
computing methods are “no better” than random search
when considered over all possible fitness functions. It was
subsequently proved in [1] that this “No Free Lunch” (NFL)
result extends to classes of function other than the uniform
class. NFL holds in the average case, regardless of the al-
gorithm performance measure used, if and only if the class
of functions under consideration is closed under permuta-
tion (c.u.p.). The lack of structure of c.u.p. classes has
information-theoretic implications which have been explored
in [5, 6] using Shannon-Weaver information theory; this pa-
per investigates that lack of structure from an algorithmic
information theory perspective using Kolmogorov complex-
ity. I conclude that if we consider the class of algorithmically
non-random (i.e. compressible) target functions, NFL does
not hold.

It should be mentioned that the No Free Lunch theorem is
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of largely theoretical interest to researchers using artificial
evolution. This is due to a number of practical consider-
ations such as local correlation structure in fitness spaces
[7] and NFL assumptions ignoring algorithmic complexity
[8]. The result presented in this paper is similarly theoreti-
cal rather than practical; nevertheless, it extends previously
published work.

2. ASSUMPTIONS
As in most previous NFL work, it is assumed that the

search domain X and the set of objective values Y are sets of
finite cardinality. Because the terms will be used frequently,
I will use X = |X | and Y = |Y| to denote the cardinality of
X and Y respectively. To avoid the trivial case where NFL
necessarily holds, I will assume that Y ≥ 2. Additionally,
it will be assumed that X ≫ 1 and that X ≥ Y . This is
justified by the fact that in most practical search tasks the
set of possible values of a target function is represented as
a single fixed-width integer or floating-point number whilst
the set of possible solutions is far larger. It is also justified
in any case where target values are only used to rank pos-
sible solutions relative to one another, because the number
of possible ranks is no larger than the number of possible
solutions.

3. COMPRESSIBILITY

3.1 Compressibility of Strings
The Kolmogorov complexity K(S) of a binary string S is

defined as the length of the smallest program1 which outputs
S and terminates when given no input [9]. A binary string
S is defined as n-compressible if K(S) ≤ length(S)− n. In-
compressible strings (i.e. those for which K(S) ≥ length(S))
are also called algorithmically random strings, and indeed
strings chosen uniformly at random by a stochastic process
will typically be incompressible or very nearly so [9].

3.2 Encoding Functions As Strings
Before we can consider compressibility of target functions

we need to specify binary string encodings for them. We
will begin by encoding each member of X and Y as some
binary integer in the range 1 . . . X or 1 . . . Y respectively.
The encoding of a target function f : X → Y will be a lookup
table, i.e. a string listing the encoding of every f(x), x ∈ X
ordered by x. This string is of length X log2 Y bits for every

1On some arbitrary but fixed universal reference machine.



f . In a minor abuse of notation I will refer to a function as
if it and its binary string encoding were equivalent.

4. THE FREE LUNCH

4.1 Permutation-Classes
Define two functions f : X → Y and g : X → Y as equiv-

alent under permutation of X if there exists some permuta-
tion π of X such that g = f ◦π. Call an equivalence class de-
fined by this equivalence relation a permutation-class. The
total number of permutation-classes of functions from X to
Y is Y multichoose X, or

(

X+Y −1
X

)

(see, e.g. [7]). Note that
a permutation-class is uniquely characterised by what Igel &
Toussaint [7] call a “histogram”, i.e. a function h : Y → Z

∗

indicating how many distinct values of x ∈ X are preimages
of each y ∈ Y.

There exists some fixed-length program which, given the
size of X and Y, and a number n in the range 1 · · ·

(

X+Y −1
X

)

,
outputs a function from a different permutation-class for
each n. The simplest such program to describe is one which
generates a list of all possible “histograms”, picks the nth,
and outputs the least (e.g. by dictionary ordering) function
lookup table which has that histogram. By incorporating
the inputs into the program using some fixed-length algo-
rithmic glue, that means that every permutation-class C

has at least one member fC whose Kolmogorov complexity
K(fC) is no more than

log2 X + log2 Y + log2

(

X + Y − 1

X

)

+ k (1)

We will ignore the k term in this and subsequent expres-
sions because it becomes negligible for large enough X. The
(

X+Y −1
X

)

term is certainly no greater than
(

X+Y

X

)

= (X+Y )!
X!Y !

.

Using Stirling’s approximation2 ln(n!) ≈ n ln n − n we have

log2

(

X + Y

X

)

≈ 1
ln 2

(

(X + Y ) ln(X + Y ) − (X + Y )

− (X ln X − X) − (Y ln Y − Y )
)

= (X + Y ) log2(X + Y ) − X log2 X − Y log2 Y (2)

Combining eq. 1 and eq. 2 gives us

K(fC) ≤ (X + Y ) log2(X + Y ) − X log2 X

− Y log2 Y + log2 X + log2 Y (3)

4.2 Arbitrary Functions
There are Y X total possible functions from X to Y, which

by a simple counting argument (see e.g. [9] section 2.2)
means that most such functions have a Kolmogorov com-
plexity of at least

X log2 Y (4)

2For a rigorous proof we may use Robbins’ strict inequality
for Stirling’s approximation

√
2πn(nn)e−n+ 1

12n+1 < n! <
√

2πn(nn)e−n+ 1
12n

Details of this somewhat longer proof are available from the
author on request.

4.3 Compressible Functions
Consider the class CK≤a of all functions whose Kolmogorov

complexity is a or less. If a is larger than or equal to eq. 3,
but less than eq. 4, this class cannot be closed under permu-
tation. This is because when a is larger than or equal to eq.
3, CK≤a contains at least one member of every permutation-
class, but when a is less than eq. 4, it cannot contain every
function.

So how large is eq. 4 compared to eq. 3? Call the differ-
ence between these two expressions d(X, Y ).

d(X, Y ) = X log2 Y + X log2 X + Y log2 Y

− (X + Y ) log2(X + Y ) − log2 X − log2 Y (5)

= X log2 X − (X + Y ) log2
X+Y

Y
− log2 X − log2 Y

Setting Y = λX,

d(X, Y ) = X log2 X − X(1 + λ) log2
(1+λ)X

λX

− log2 X − log2(λX)

= X log2 X − X(1 + λ) log2(1 + 1
λ
) − 2 log2 X − log2 λ

= (X − 2) log2 X − X(1 + λ) log2(1 + 1
λ
) − log2 λ (6)

Since λ ≤ 1, the only negative term in eq. 6 is the X(1 +
λ) log2(1+ 1

λ
) term. The function g(λ) = (1+λ) log2(1+ 1

λ
)

is monotonically decreasing in λ to an asymptotic value of
(ln 2)−1, so its value is larger for smaller λ . However, the
assumption Y ≥ 2 gives a lower bound on λ, which means
that the smallest possible value for eq. 6 under a given X

occurs when Y = 2.
We have from eq. 5

d(X, Y ) = X log2 Y + (Y − 1) log2 Y − X(log2
X+Y

X
)

− Y log2(X + Y ) − log2 X

and when X ≫ Y (e.g. when Y = 2 for large enough X),
using

X ≫ Y =⇒ (1 + Y

X
)X ≈ e

Y

we get

d(X, Y ) ≈ X log2 Y + (Y − 1) log2 Y − Y log2 e

− Y log2(X + Y ) − log2 X

which is dominated by the X log2 Y term; this term is the
same as the entire length of the encoded function.

In other words, the class of n-compressible functions from
X to Y, where n > 0 and n is moderately less than the
function’s length, is not closed under permutation. By the
c.u.p. result of [1], NFL does not apply to this class.

5. CONCLUSIONS
It was shown in [1] that there exist highly compressible

classes of target function for which no search algorithm, in-
cluding those inspired by evolution, can on average outper-
form random search. However, this paper shows that for the
class of all n-compressible functions (given reasonable lim-
its on n) under any encoding of search points and fitnesses,
some search algorithms will indeed outperform others.
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