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ABSTRACT 
In this paper, the constant modulus (CM) criterion 
is used to design IIR equalizer. For 
counterbalancing the interference of the channel, 
Clonal Selection Algorithm (CSA) is employed to 
optimize the coefficients of transfer function of the 
equalizer. CSA, the essence of Immune Algorithm 
(IA), is effective to solve complexly numerical 
problems. Besides, we also use the stability triangle 
method to ensure the system is stable. The 
simulation results demonstrate the good 
performance of the equalizer designed by CSA to 
reconstruct the signal transmitted. 
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1. INTRODUCTION 
Equalization is a common strategy to the noxious 
effects of communication channels on the 
information transmitted. The central issue of such 
process is the design of a filter, namely, equalizer, 
capable of counterbalancing the interference of the 
medium. 

A successful approach to deal with the IIR filter 
adaptation has been genetic algorithm (GA), which 
can be interpreted as evolutionary optimization 
techniques[1]. There is a premature drawback in 
GA, so researchers try to use another effective 
algorithm to obtain optimal coefficients. By 
combining the CM criterion with the IA, the 
literature introduces a novel framework to obtain 
the optimal receiver[2, 3]. 

Inspired by antigen-antibody reaction of the 
biological immune system, IA attracts a lot of 
interest in solving complicated problem in many 
ways, including machine-learning, pattern-
recognition tasks and adapted to optimization etc[4]. 
CSA is the quintessence of IA, and they are very 
similar to each other. The difference between the 
two of them is that IA considers the affinity 
between not only antibody (Ab) and antigen (Ag) 
but also Ab and Ab. Since CSA executes the 
mechanisms, selection and hyper-mutation, twice 
for each generation, it is able to obtain global 
solution but not local solution[5]. In the other words, 
the main advantage of using CSA is the fine tuning 
to obtain optimal solution. 
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The paper is organized as follows. In section 2, the 
relation between channel and equalizer is presented 
in detail. Section 3 introduces the artificial immune 
system and its essence, clonal selection algorithm 
and its regulations. And the design approach is 
presented in section 4. Section 5 discusses the 
experimental results for examples of IIR filter. 
Finally, section 6 concludes the paper briefly. 

2. CHANNEL AND EQUALIZER 
The main duty of communication systems is to 
assure to provide adequate message interchange, 
through a certain channel, between a transmitter and 
a receiver. The distortion takes place in the process 
of transmitting message, and it usually leads to 
severe degradation. Consequently we need a device 
named equalizer filters to recover the desired 
information from the received signal. Figure 1 
depicts the schematic channel and equalizer 
representation in a communication system, together 
with their respective input and output signals[2, 3]. 

 

 

Figure 1.  Simplified Model of a Communication 
System 

From Figure 1, it can be inferred that the main goal 
of the equalizer is to obtain an output signal as 
similar as possible to the transmitted signal, except 
for a gain K and a delay d, that is, 

)()( dnsKny −⋅=   (1) 

which is well-known zero-forcing (ZF) condition. 
In most applications the equalizers are implemented 
using linear filters mainly due to their simplicity. 
They can be divided into two major c1asses: FIR 
filters and IIR filters. FIR filters are feedforward 
structures, and their input-output relation are given 
by: 

)()( nny T xw ⋅=     (2) 

where w is the equalizer coefficient vector of length 
L and TLnxnxnxn )]1()1()([)( +−⋅⋅⋅−=x  is 
the input vector. 

The central task is to obtain the parameters of the 
chosen equalizer in order to accomplish a condition 
close to the ZF one. If it is possible to count on a 
priori knowledge of the channel impulse response, 
the task becomes purely mathematical.  

FIR filters are inherently stable and easily 
describable in mathematical terms. However, they 
are limited structures, incapable of perfectly 
inverting another FIR system. This limitation arises 
from the “all-zero” character of a FIR transfer 
function. 

Such drawback is the rationale behind the use of IIR 
equalizers. These are recurrent linear filters 
characterized by the following input-output relation: 

)1()()( −−= nynny TT bxw    

where b is the feedback parameter vector, 
TMnynynyny )]1()2()1([)1( +−⋅⋅⋅−−=− i

s the feedback input vector, and M is the feedback 
order. The presence of a feedback term enhances 
the capability of a linear filter, allowing the 
controlled placement of poles as well. 

When information about the transmitted signal is, at 
least for some time, at hand, it is possible to make 
use of the Wiener criterion, based on the following 
mean square error (MSE) cost function: 

})]()({[ 2nydnsEJW −−=  

where d is the previously defined equalization delay. 
Given a certain delay d, Jw has a single minimum, 
called the Wiener solution. As a rule, each Wiener 
solution possesses a distinct MSE. This accounts for 
an important assertion: if the equalization delay is 
supposed to be a variable, then Jw has several 
minima (multiple local optima). Among these many 
optima, there is, usually, a single optimal Wiener 
solution, associated with an optimal delay. 

As can be deduced from the comparison between 
Eq(1) and Eq(4), the Wiener criterion is strongly 
related to the ZF condition. Hence, the 
determination of the optimal Wiener solution is 
very important and has a great practical appeal. 
However, there are two main difficulties: the use of 
samples of the transmitted signal and the choice of 
d. 

Channel Equalizer 
s(n) x(n) y(n) 
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The drawback associated with the dependence on a 
“pilot signal” was the main motivation behind the 
proposal of blind techniques, that is, criteria which 
do not make use of samples of s(n). Among these, 
the CM criterion has received special attention. Its 
cost function is given as follows: 
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The cost function presented in (5) has multiple 
minima, except in some trivial cases. Recent studies 
[6, 7] have pointed in the direction of an intimate 
relationship between these minima and some 
Wiener solutions (the best ones). In other words, 
these works indicate that a linear feed-forward 
structure, the multiple minima of the function (5) 
are close to the best of Weiner solutions. We will 
assume that the same holds for a linear structure, 
based on the conjecture that linearity is the link 
between CM recovery and Wiener equalization. 
This is the core of the CM part of the framework 
proposed here. 

3. CLONAL SELECTION   
ALGORITHM  

An artificial immune system (AIS) which is based 
upon models of the natural immune system. This 
natural system is an example of an evolutionary 
learning mechanism which possesses a content 
addressable memory and the ability to desert little-
used information. IA[8], modeled mathematically 
the immune diversity, network theory and clonal 
selection as a multi-modal function optimization 
problem. The guide of diversity and multiple 
solution vectors instituted were kept as memory of 
the system. The role of the biological immune 
system is to provide the organisms with an effective 
mechanism against pathogenic infections [9]. There 
are two defensive lines in the biological immune 
system, one is the innate immune system, and the 
other is the adaptive immune system. The principal 

theory of the adaptive immune response is the 
clonal selection theory. From the perspective of the 
Darwin’s evolution theory, the clonal selection can 
be explained as a microevolution in the immune 
system. 

The clonal selection algorithm has two main 
computational mechanisms, which are selection and 
mutation. Proposed by Leandro N. de Castro and 
Fernando J[3, 5]. Von Zuben firstly, the two 
mechanisms in CSA are completed by taking into 
account the immune properties. In other words, 
proliferation and mutation rate are proportional to 
the affinity.  

Just like the relation between the key and lock, 
antibody and antigen must suit with each other, then 
the response will work. 

The individual steps of CSA are described as 
follows, and the figure 2 shows the flow chart: 

1) Initial condition: create the first iteration 
antibodies (Abs) randomly. 
2) Calculating the fitness (f) that represents the 

affinity between the antigen (Ag) and Abs. 
3) To select part of Abs with higher fitness to 
reproduce (clone) and mutate. 
4) Calculating fitness (f*) of the new group of Abs 
after mutating. 
5) Selecting numbers of new Abs (Abs*) with 

higher fitness (f*) again, and storing them that 
are better solutions in each iteration in memory 
cells. 

6) Reproduction of Abs, which are composed of 
Abm (Abs* in memory cells) and some new 
random Abs (Abd) that substitute for old Abs 
(Abr) suppressed previously. 

7) Repeat steps 2nd to 6th until complete the 
iterations set before. 

(5) 

(6) 
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Figure 2 The flow chart of CSA 

4. DESIGN APPROACH 
The CM criterion is broadly studied blind 
equalization technique[6, 10, 11]. The last twenty 
years have seen the proposal of many relevant 
works scrutinizing the basis of the CM criterion and 
its relation to other criteria[3]. These works pointed 
out two aspects that deserve to be highlighted [6, 7]: 

(1) The CM cost function is multimodal. 
(2) There is an intimate relationship between CM 

minima. 

Combined with the CM criterion, a very robust 
blind adaptive framework, the CSA will be 
proposed in this paper to perform optimal blind IIR 
equalization. Consider a third order typical pulse 
transfer function, and we can simplify the third 
order transfer function by first and second order 
form: 
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where K is a gain, and ai, bi, pi, qi for i= 1, 2, 3 are 
the coefficients. 
The coefficients of the formulation can be 
represented the element of the single antibody. 
 

 
 
 

Figure 3 Antibody with coefficients 
In theory, such a antibody formulation may proceed 
to the paratope operation, and each newly generated 
antibody can be considered as a potential solution to 
H(z). Nevertheless, the numerical values of 
paratopes may destabilize the filter if their values 
are not restricted. Since the filter is formed by a 
combination of first and second order models, the 
coefficients of the model can be within a stable 
region of a unit circle in the z plane. Hence, the 
coefficient of the first order model is simply limited 
to (-1, 1), whereas the second order model needs a 
specific subroutine to realize such a confinement. In 
this case, the coefficients of the denominator 
( 2

3
1

21 −− ++ zqzq ) must lie within the stability 
triangle [10, 11]. In the stability triangle, the 
parameter of q3 can be initially set to its possible 
range, (-1, 1), and q2 is then assigned as a randomly 
generated number within the range (-1- q3, 1+ q3), 
so that stability is ensured. In the same way, we can 
simplify the high order polynomial form in the 
denominator by first and second order form, and so 
forth. So the stability of the high order system can 
be maintained[12, 13].  
 

 

 

 

 

Figure 4 Stability triangle 
The fitness function, JFIT, is given by the following 
mapping: 

CM
FIT J

J
+

=
1

1
   

The basic idea behind this conversion is to 
transform minima into maxima. We used the CSA, 
as discussed in previous section, to obtain the CM 
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global minimum for the transmitting channels. The 
fitness proportional mutation is performed 
according to the following expression[2]: 

)1,0(*)exp(1' Nfcc ⋅−+=
β

 

where 'c  is a mutated antibody c, )1,0(N  is a 
Gaussian random variable of zero mean and 
standard deviation 1=σ , β  is a parameter that 
controls the decay of the inverse exponential 
function, and f* is the fitness of an individual 
normalized in the domain range. So the equation (9) 
is based upon a Gaussian mutation that accounts for 
a fitness proportional mutation. 

5. SIMULATION RESULTS AND 
DISCUSSIONS 

In the simulation, we consider that the samples of 
the transmitted signal assume the values between 
positive one and negative one. The parameters in 
CSA are set as follows: size of population S=20, 
total generations G=1000, memory cells M=6, and 
the reproduction index N=6. 

In the experiment, )(zH C  is the transfer function 
of the chosen channel. After executing CSA, the 
second, third and forth order transfer function of IIR 
equalizer are show as Table 1. Besides, we also try 
to add the AWGN noise to test the performance of 
the IIR equalizer design with CSA. The model of 
communication system shows as Figure 5. The 
learning curve of CSA for optimizing the numerical 
parameters of second, third and forth order IIR 
equalizers are shown as Figure 6, 7, 8. The poles of 
the IIR equalizers are within the unit circle, so the 
systems we design are stable. The channel and 
equalizer frequency response are shown as Figure 9, 
and the frequency response via channel and three 
different order equalizers are illustrated in Figure 10. 
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We define the SNR as follows: 

)]([log10 2 knESNR −=  

where n(k) is AWGN noise. The relation curve 
between the BER and SNR of the system with 
equalizer and without equalizer are illustrated in 
Figure 11. 

6. CONCLUSION 
In this paper, a method combined by the constant 
modulus criterion, clonal selection algorithm and 
stability triangle method is presented to design the 
IIR equalizer. We can easily obtain the optimal 
coefficients of transfer function of the equalizer by 
CSA, and the stability triangle method limits the 
range of coefficient values to ensure the system 
designed by our method is stable. The learning cure 
demonstrates our method is efficient and reliable. 
Although the equalizer is able to ensure AWGN 
noise additively in transmission process, its 
performance is not good enough, and that is also our 
next step to improve the efficacy of the system in 
the further work. 
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Figure 5. Simplified Model of a Communication System with AWGN noise 
 

Table 1. Results of experiment 

Order Transfer function Zeros Poles 

0.6780 -0.8458 Second 
21

21

2 043.0795.01
1661.03873.09326.0)( −−

−−

−+
−−

=
zz

zzzH E  
-0.2627 0.0508 

0.2690+j0.5849 -0.8349 

0.2690-j0.5849 0.3126+j0.7452 

Third 

321

321

3 5453.0131.02097.01
1856.06535.09834.09956.0)( −−−

−−−

+++
+−+−

=
zzz

zzzzH E

0.4498 0.3126-j0.7452 

0.0277+j0.5147 -0.8147 

0.0277-j0.5147 0.2623+j0.6916 

0.4533+j0.2971 0.2623-j0.6916 

Forth 

4321

4321

4 0237.04394.01043.0237.01
0781.02572.06097.0962.09999.0)(

−−−−

−−−−

−+++
+−+−

=
zzzz

zzzzzH E

 
0.4533-j0.2971 0.0531 

 

Channel 
s(n) x(n) 

Equalizer 
y(n) 

s(n) 

x’(n) 



0 100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iteration

fit
ne

ss

 
 
 
 

0 100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

fit
ne

ss

 
 
 
 

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

fit
ne

ss

 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-10

0

10

20

pi unit

M
ag

ni
tu

de
(|T

(iw
)|2

)

Frequency response of channel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-10

0

10

20

pi unit

M
ag

ni
tu

de
(|T

(iw
)|2

)

Frequency response of equalizer

Second order equalizer
Third order equalizer
Forth order equalizer

 
 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

-15

-10

-5

0

5

10

15

20

pi unit

M
ag

ni
tu

de
(|T

(iw
)|2

)

Frequency response via channel and equalizer

Second order equalizer
Third order equalizer
Forth order equalizer

 
 
 
 

4 6 8 10 12 14 16 18
10

-4

10
-3

10
-2

10
-1

10
0

SNR(dB)

B
E

R

SNR with BER Without Equalizer
With 2nd Equalizer
With 3rd Equalizer
With 4th Equalizer

 
 

Figure 6. Learning curve, the relation 
between fitness and iteration of the 
second order equalizer  

Figure 7. Learning curve, the relation 
between fitness and iteration of the third 
order equalizer

Figure 8. Learning curve, the relation 
between fitness and iteration of the forth 
order equalizer 

Figure 9. Frequency response of the 
channel and equalizers

Figure 10. Frequency response via 
channel and three equalizers 

Figure 11. Relation between SNR and 
BER


