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ABSTRACT
In order for neuroevolutionary techniques to produce increasingly 
complex and sophisticated topologies,  new methods need to be 
developed  which  effectively  exploit  reuse  and  modularity. 
Bilateral symmetry is an important form of reuse and a key feature 
of  complex  biological  central  nervous  systems.   We  present  a 
method for encoding bilateral symmetry within the context of an 
existing neuroevolutionary framework, NEAT (NeuroEvolution of 
Augmenting Topologies).  We then present a model of symmetry 
detection that relies on the symmetry in the structure of the neural 
system to make symmetry judgments.  We demonstrate that this 
model performs better than an asymmetrical representation on a 
symmetry discrimination task in which the axis of symmetry is 
given.  On a second task, the networks must first find the axis of 
symmetry before making the symmetry judgment.  In this task the 
symmetrical encoding performs worse than the asymmetrical one. 
We discuss some possible explanations for these results.

1.INTRODUCTION
The  specific  class  of  techniques  that  apply  evolutionary 
algorithms  to  exploration  of  both  the  connection  weights  and 
topologies of artificial neural networks can be broadly classified 
in two ways.  As Yao [18] described these classes of techniques: 
"At one extreme, all the details, i.e., every connection and node of 
an architecture, can be specified by the chromosome. This kind of 
representation  scheme is called  direct encoding."   This type of 
encoding  specifies  a  1-to-1  mapping  between  a  gene  and  a 
topological  feature  (such  as  a  neuron  or  connection),  which  is 
both  impractical  from a  scalability  aspect  and  not  biologically 
plausible.

Conversely, indirect encoding refers to the class of techniques in 
which there is some aspect of development used in deriving the 
network from the genetic representation so that there is not simply 
a direct 1-to-1 mapping of gene to feature. For example, a gene in 
an  indirect  encoding  scheme  may  encode  for  a  modular 
substructure  that  may be  reused  many  times  in  the  course  of 
building the phenotype.

Stanley and Mikkulainen [17] refer to the development phase in 
such a computational  paradigms as  artificial  embryogeny (AE). 
They point out  the importance of genetic reuse and lay out the 
conceptual framework for classifying these different approaches. 
Modular  reuse  in  neuroevolution  has  been  investigated  with  a 
variety  of  different  methods  [1][8][12][14].  Eggenberger  [5] 
explicitly selected for the emergence of bilateral symmetry in the 
evolution of artificial  3D morphologies and studied the  effects. 

However, to our knowledge, the encoding of bilateral symmetry in 
artificial neural networks has not been investigated.  

Bilateral symmetry is a key feature of complex biological nervous 
systems, and is realized very early in  the development of body 
plans of many biological embryos. Since most of the sensory input 
for complex organisms is collected from bilaterally-symmetrical 
organs,  and  many  motor  tasks  (such  as  locomotion)  involve 
symmetrical appendages, it is reasonable to hypothesize that there 
is  a  correlation  between  the  bilateral  symmetry inherent  in  the 
organism's  nervous  system  and  the  symmetry  inherent  in  its 
sensory input and motor output.

It  is  also possible  that the  symmetrical  structure  of mammalian 
brains provides an explanation for other cognitive functions.  In 
Braitenberg's  Vehicles [2],  he  proposes  a  simple  bilateral 
symmetry  detector,  an  array  of  elements  symmetrically  spaced 
from each other with respect to a midline.  An image projected 
onto such an array would exhibit strong activation for symmetrical 
images, in which input is balanced on both sides of the input array 
with respect to the midline, but weak activation for asymmetrical 
imagery, in which input is not balanced.  Other researchers [4], 
including  Braitenberg  [3]  have  proposed  that  the  symmetrical 
organization of the human brain may be responsible for the innate 
preference  for  vertical  symmetry [5]  and  its  increased  salience 
over other orientations.  

Palmer  and  Hemenway  [13]  proposed  a  two-stage  model  of 
symmetry  detection  in  humans,  the  first  stage  involving  the 
location  of  the  axis  of  symmetry,  and  the  second  the  actual 
symmetry judgment.  In recent years, strong models of symmetry 
detection have been developed [7][9].  However, these cognitive 
models of symmetry detection do not draw a direct link between 
the symmetry inherent in the task and the underlying symmetry of 
the  neural  structure.   Neural  network  models  of  symmetry 
detection  [11][15]  have  found  connection  weights  trained  via 
backpropagation  tend  to  converge  on  similar  values  for 
symmetrical  connections,  though  they  have  been  criticized  for 
either being too small to scale realistically, or taking too many 
epochs to train.  However, the authors of [10] assert that increased 
preference  and  performance in  vertical  symmetry is  a  result  of 
more early exposure to stimuli with vertical axes of symmetry.

We introduce a new method of indirect encoding for the evolution 
of  artificial  neural  networks  that  allows  for  the  flexible 
exploration  of  topologies  with  varying  degrees  of  bilateral 
symmetry.  Using this encoding scheme, we introduce a model for 
symmetry detection with  a basis on  the underlying structure  of 
neural systems.
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2.BILATERAL SYMMETRY ENCODING
The new encoding system was developed as a modification to an 
existing neuroevolutionary algorithm, NEAT (NeuroEvolution of 
Augmenting  Topologies)  [16].   In  its  original  implementation, 
NEAT is a direct encoding algorithm.  There are only two types of 
genes specified: neuron genes and connection genes.  Each gene 
encodes for exactly one topological feature, i.e., one neuron gene 
encodes for exactly one neuron in the resulting neural network.  

In  the new encoding,  the  chromosome provides  all  information 
necessary for deterministically constructing the network.  These 
instructions are in the form of additional attributes for each gene 
that  define  sidedness  and  connectivity.   Unlike  previous 
implementations  of  NEAT,  the  resulting  network  has  spatial 
structure: a midline, and right and left sides. Connections either 
cross the midline when connecting neurons (contralateral) or do 
not cross the midline (ipsilateral).  

All genes are defined by a symmetry attribute with three values: 
LEFT,  RIGHT,  or  BOTH.   Neuron  genes  with  the  LEFT  or 
RIGHT value  are  transcribed  into  neurons  on  that  side  of  the 
resulting  network.  Neuron  genes  with  the  BOTH  attribute  are 
transcribed  into  mirrored  copies  on  both  sides  of  the  resulting 
network (Fig. 1).

Figure 1. Neuron genes 1 and 4 have a symmetry attribute of 
LEFT and neuron gene 2 has a symmetry attribute of RIGHT. 
Neuron genes 0 and 3 have a symmetry attribute of BOTH, so 

they encode for mirrored copies (a and b).  

In addition to the symmetry attribute, connection genes also have 
a lateralization attribute, with one of two values: IPSILATERAL 
(does not cross the midline) and CONTRALATERAL (crosses the 
midline). There are three cases of connectivity (where A denotes 
asymmetric neurons and S denotes symmetric neurons):

1) A to A
2) A to S and S to A
3) S to S

For A to A connectivity, symmetry and lateralization attributes are 
ignored and transcription proceeds as in previous implementations 
of NEAT (Figure 2).

Figure 2. Connection gene 5 encodes for a connection 
between LEFT neuron 4 and RIGHT neuron.

Figure 3 shows the three possible cases of connectivity for A to S. 
In these cases, the symmetry attribute (LEFT, RIGHT, or BOTH) 
indicates which copies of the symmetrical neuron the connection 
will  connect  either  to  or  from.   The  lateralization  attribute  is 
ignored.

Figure 3.  Three cases for connectivity between A to S 
neurons: left (top), right (middle), and both (bottom).  These 

attributes encode for S to A connectivity in the same way.

Figure  4  shows the  six  possible  cases  of  connectivity  between 
pairs  of  symmetrical  neurons.   In  these  cases,  the  symmetry 
attribute defines the connectivity from the source neuron(s), so a 
connection gene with a LEFT value would only connect from the 
left  copy  of  the  source  neuron.   The  lateralization  attribute 
determines  whether  the  transcribed  connection(s)  cross  the 
midline or not.

For the initial  topology, per the original  NEAT paradigm, only 
input and output neurons are defined, which now may be either 
symmetrical or asymmetrical.  NEAT also begins minimally, with 
no hidden units and only feedforward connections.  Initially, all 
connections have a symmetry value of BOTH and a lateralization 
value  of  IPSILATERAL.   This  choice  was  made  under  the 
assumption that connectivity in biological brains is predominantly 
interhemispheric.  This is one aspect of the implementation that is 
could be parameterized and explored in future work.

NEAT  has  three  mutation  operators:  1)  Perturb  existing 
connection weights, 2) Add new connection (including recurrent 
ones), and 3) Add new neuron.  These mutations act on the genes, 
and work as before with the following exceptions.



             a)

             b)

            c)

            d)

            e)

            f)

Figure 4. Connectivity between symmetrical neurons.
(a) BOTH-IPSI, (b) BOTH-CONTRA, (c) LEFT-IPSI, (d) 
RIGHT-IPSI, (e) RIGHT-CONTRA, (f) LEFT-CONTRA. 

In  NEAT,  new  neurons  mutate  in  the  place  of  previous 
connections, actually creating three new topological features: the 
new neuron,  a  new  incoming  connection  and  a  new outgoing 
connection.   This  works  as  before,  and  all  three  new features 
inherit  the  symmetry  and  lateralization  attributes  of  the  old 
connection.

If a new connection is added between A to S, S to A, or S to S 
neurons, a new symmetry rate determines the probability that the 
new connection  will  either  be  BOTH or  LEFT/RIGHT.  If  the 
connection is between S to S neurons, another new symmetry rate 
determines  the  probability  that  the  new  connection  is  either 
CONTRALATERAL  or  IPSILATERAL.   For  all  experiments 
described here, both of these rates were set at 0.50.

3.SYMMETRY DETECTION MODEL
As mentioned earlier, Braitenberg proposed a simple conceptual 
model for an idealized symmetry detector, as shown in Figure 5.

Figure 5. An array of simple elements upon which
an image is projected.  Elements symmetrical to 

each other with respect to the midline enhance each
other.  Adapted from [2].

The basic idea is that there is stronger activation of units if the 
projected image is symmetrical  than if one side or the other  is 
receiving  more  input.   Contemporary  models  of  bilateral 
symmetry detection do not explicitly refer to the structure of the 
underlying neural architecture.
The  human  visual  system includes  a  much more  complex,  but 
similar architecture to Braitenberg's thought experiment.  Visual 
input  is  projected  onto  regions  in  the  back  of  the  eye 
corresponding with a left and right visual field.  This information 
is  maintained  in  separate  pathways,  along  the  optic  nerve,  to 
symmetrical structures in each hemisphere of the visual cortex.
We propose a model of bilateral symmetry detection in humans in 
which  input  from two  halves  of  a  visual  scene  are  input  into 
mirrored halves of a symmetrical artificial neural network.

Figure 6. Pixel information is partitioned into left and right 
fields before being input into the network.



Figure 7. Network architecture for symmetrical encoding. 
Information from the image is input into corresponding 

symmetrical input neurons.  Affinity is read from symmetrical 
output neurons.

Figure  7  shows  the  network  architecture  for  the  symmetrical 
encoding.  Inputs from the corresponding visual fields are input 
into  symmetrical  input  arrays.   Symmetrical  affinity  outputs 
determine the symmetry judgment.  Confidence was a function of 
the difference between the outputs.  In the asymmetrical encoding, 
a  single  affinity  output  was  used  to  make  the  confidence 
judgment.
Details of the network topologies for the two experiments will be 
elaborated on in the next section, but the basic model is one in 
which equal activation from balanced inputs from the visual 
stimuli will lead to balanced affinity outputs.  The more similar 
the output values, the more likely a symmetry judgment will be 
made.
In one experiment, we incorporated movement into the behavior 
of the system, and the ability for the artificial retina to focus. 
However, the model does not account for the rotation of the axis 
of symmetry or for other types of symmetry.

4.EXPERIMENTAL SETUP
The two experiments were designed to test the performance of the 
two types of encoding (symmetrical and asymmetrical) under two 
conditions.   Experiment  1  compares  the  performance  of  each 
when  the  axis  of  symmetry  is  already  provided,  which  is 
comparable to Palmer and Hemenway’s second stage of symmetry 
detection,  the symmetry judgment.   Experiment 2  compares the 
performance of each type of encoding for the two-stage model, in 
which the axis of symmetry must be located before the symmetry 
judgment is made.
Parameters for both experiments are shown in Table 1.  

Experiment 1
In this experiment, the artificial retina was unable to move.  The 
resolution of the retina was 6x6.  Symmetrical and asymmetrical 
dot patterns were generated for use as stimuli.  A sample set of the 
stimuli, which is very similar to that used in [10] is shown in 
Figure 8.

Figure 8. Sample of symmetrical (top two rows) and 
asymmetrical (bottom two rows) dot pattern stimuli used in 

Experiment 1.

The symmetrical  patterns  were generated by randomly toggling 
10% of the pixels on one side of a white 6x6 canvas, then creating 
a mirror image.  Asymmetrical stimuli were created by randomly 
toggling 20% of the pixels to black.  100 of each type of image 
were generated.
Every generation, each individual was viewed all 200 images, in 
random order, for 20 time steps.  Affinity was calculated by a sum 
weighted  toward  outputs  at  later  time  steps,  according  to  the 
formula in Figure 9.

Figure 9. Equation for weighted affinity, were n = number of 
time steps, affinityi = affinity at step i.

If the weighted sum was greater than 0.50, the image was judged 
symmetrical.   If  less  than  0.50,  the  image  was  judged 
asymmetrical.  The fitness of each individual was the percentage 
of correct judgments.
There  were  two experimental  groups,  one  using  the  bilaterally 
symmetric  encoding  described  in  previous  sections,  and  an 
asymmetrically  encoded  group,  using  the  original  NEAT 
encoding.  Ten runs were performed with each type of encoding.

Experiment 2
Symmetrical  and  asymmetrical  letter  stimuli  were  used  for  the 
second experiment.  The full stimuli set can be seen in Figure 10.



Figure 10. Samples of the 20 symmetrical (top two rows) and 
asymmetrical (bottom two rows) letter stimuli used in 

Experiment 2.

Each image was a 100x100 pixel grayscale TIFF with the letter 
centered  on  the  canvas.   For  each  individual,  every trial,  four 
randomized copies of each stimuli were presented, for a total of 
40  symmetrical  stimuli  and  40  asymmetrical  stimuli.   The 
positions of the letters were randomly translated along the x and y 
axes, while ensuring that the entire letter remained visible on the 
canvas.   Again,  the  order  of presentation  was randomized each 
trial.
In  these experiments,  each network had three additional  output 
units, whose output determined a change in position along the x 
axis, y axis, and zoom factor respectively.  Three additional inputs 
corresponding to the x, y, and z positions were also added to the 
networks.   The artificial  retina  began each trial  snapped  to  the 
border of the canvas, but each time step was allowed to actively 
scan the image.  Each network was given 50 time steps to scan the 
image.   Affinity  judgments  were  calculated  the  same  as  in 
Experiment  1.   Population  size  was 200  and  survival  rate  was 
20%. Parameters were identical  to Experiment 1 except for the 
number of generations, which was 200.

5.RESULTS
The  percentage  correct  for  the  fittest  individual  of  the  final 
generation was used to assess performance. Figure 11 shows the 
results for Experiment 1.

Populations with symmetrical encoding (M = 81.70,  SD = 1.78) 
outperformed  those  with  asymmetrical  encoding  (M =  77.85, 
SD = 1.49).  This result was significant: t(18) = 5.24, p < 0.05. 

The fittest  individuals  from the final  generation  of each run  in 
Experiment  2  were  evaluated  on  100  randomizations  of  the 
symmetrical  letter  stimuli  and  100  randomizations  of  the 
asymmetrical  letter  stimuli,  with  equal  numbers  of  each  letter. 
Figure 12 shows the results for Experiment 2.

Figure 11. Results from Experiment 1.  The mean of the 
percent correct for the fittest individual of the final generation 

for 10 runs is shown for each type of encoding.

Figure 12. Results from Experiment 2. The percent correct for 
the fittest individual of the final generation on a test set of 100 
random examples of each set of letter stimuli.
In this case, populations with asymmetrical encoding (M = 76.30, 
SD = 5.16) outperformed those with symmetrical encoding (M = 
71.10, SD = 5.81).  This result was significant (t(18) = 2.12, p < 
0.05).

6.DISCUSSION AND FUTURE WORK
The results from Experiment 1 suggest that providing a means for 
symmetrical  structure  to  easily  evolve  in  the  neural  networks 
confers an advantage in symmetry judgment.  In terms of Palmer 
and  Hemenway's  two-stage  model,  the  evolved  networks  with 
symmetrical  encoding  perform  better  at  the  second  stage,  the 
symmetry  judgment,  than  the  asymmetrically  encoded 
populations.

So why do the asymmetrically encoded populations do better in 
Experiment 2, which is analogous to the full two-stage process of 



finding  the  axis  of  symmetry first,  then  making  the  symmetry 
judgment?

Some insight  might  come from an  analysis  of  behavior  of  the 
fittest individuals from each of these populations.  As a general 
trend, the asymmetrically encoded networks tended to zoom in on 
the image very early in each evaluation and focus on localized 
features (such as the intersection of two lines in the letter).  By 
contrast,  the  symmetrically  encoded  networks  tended  to  stay 
zoomed out  through most of the  trials.   This suggests that  the 
networks are attempting to solve the problem in different ways, 
that  the  asymmetrically  encoded  individuals  are  basing  the 
discrimination on local features, while the symmetrically encoded 
individuals are basing their judgment on global features (such as 
symmetry).

We believe that one possible problem with Experiment 2 was the 
limited size of the stimulus set.  There were enough differences 
based  on  local  features  that  the  networks  could  basically 
memorize the entire set, instead of making generalizations based 
on common global  features.   An obvious follow-up experiment 
would be to replicate Experiment 2 with a stimulus set similar in 
size to that used in Experiment 1.

However, we do feel confident that we have demonstrated that our 
symmetrical  encoding  does  confer  a  benefit,  not  only  in  the 
efficiency and compactness of the genetic representations, but in 
performance of symmetry judgment.

In keeping with this line of research, it would be useful to test the 
encoding and symmetry model against other kinds of symmetry, 
such as those in which the axis is rotated, horizontal  symmetry, 
and  multiple  symmetries.  It  would  also  be  useful  to  test 
symmetrical  encoding  at  other  visual  perception  tasks,  such  as 
face recognition. 

As for  other  domains,  we would  like  to  see  how this  type  of 
encoding performs in the context of goal-directed agent control. 
Most mobile agents feature symmetrical sensory input as well as 
symmetrical  body  plans.   This  seems like  a  logical  domain  in 
which to test whether symmetrical encoding demonstrates further 
benefits.

Finally,  while  symmetrical  encoding  is  an  important  type  of 
indirect encoding, it is one of many early steps.  We would like to 
explore  other  types  of  indirect  encoding,  modular  encoding  in 
particular,  and  build  a  developmental  toolbox  for  evolving 
increasingly  complex  neural  structures  in  order  to  solve  more 
demanding real-world problems and provide further insight into 
biological cognition.
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