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ABSTRACT 
Bi-Directional Reflectance Distribution Functions, or BRDFs, are 
used in many fields including computer animation modeling, 
military defense (radar, lidar, etc.), and others. This paper 
explores a variety of approaches to modeling BRDFs using 
different evolutionary computing (EC) techniques. We 
concentrate on genetic programming (GP) and in hybrid GP 
approaches, obtaining very close correspondence between models 
and data. 
The problem of obtaining parameters that make particular BRDF 
models fit to laboratory-measured reflectance data is a classic 
symbolic regression problem. The goal of this approach is to 
discover the equations that model laboratory-measured data 
according to several criteria of fitness. These criteria involve 
closeness of fit, simplicity or complexity of the model 
(parsimony), form of the result, and speed of discovery. As 
expected, free form, unconstrained GP gave the best results in 
terms of minimizing measurement errors. However, it also yielded 
the most complex model forms. Certain constrained approaches 
proved to be far superior in terms of speed of discovery. 
Furthermore, application of mild parsimony pressure resulted in 
not only simpler expressions, but also improved results by 
yielding small differences between the models and the 
corresponding laboratory measurements. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – heuristic methods, dynamic programming. 

General Terms 
Algorithms 

Keywords 
Genetic programming, evolutionary computation, hybrid genetic 
programming, symbolic regression, Bi-directional reflectance 
distribution function, BRDF, parsimony, Phong model 

1. INTRODUCTION 
The bi-directional reflectance distribution function (BRDF) 
measures the radiance reflected from a surface as a function of the 
incident and the viewing angles. When measured from a single 
direction it is equal to the radiance reflected from the surface 
divided by the incident radiance. 
To model the reflected radiance from an object we should ideally 
know the characteristics of the small surface patch reflecting the 
incident energy. In addition, we should know the geometry, 
illumination strength and frequency distribution, polarization 
orientation of sources and detectors, source locations, velocity of 
sources, objects, and detectors, surface texture, and other factors. 
For this paper we are interested only in modeling the patch 
reflectance measured under laboratory conditions where these 
other variables are held constant. Laboratory measurements were 
made for fixed illumination and detector locations with specific 
sample materials (see Figure 1). Technically this is a mono-
directional reflectance distribution function (MRDF) rather than a 
BRDF, but the latter term is more widely used. After these 
reflectance measurements were made awe needed to model the 
BRDF as a two-parameter set of equations. In most of the 
examples used here, only a single angle was varied at a time and 
both the illumination source and the detector were in a plane 
normal to the surface.  
A Huntsville-based defense contractor, sought to model BRDF 
measurements for a variety of surfaces and approached the US 
Army Space and Missile Defense Command’s Advanced 
Research Center (ARC) for assistance. A widely used, 
empirically-derived model, the Phong model, was considered 
adequate to model the reflectance data. The principal difficulty 

 
 
 
 
 



resided in finding the right set of model parameters that would 
yield the measured data with sufficient accuracy.  

 
Figure 1. Relation between incidence angle (θ) and reflection 

angle (α) 
 
The Phong model has several limitations, mainly the fact that it 
was developed for different wavelengths—the visible spectrum—
and under different conditions. Another difficulty with it is that it 
is not based on any fundamental physical parameters of the 
surface under study. This allows for the possibility of using other 
models, with different mathematical forms, to replicate the 
laboratory-measured data. Such models were also developed 
taking ease-of-integration into consideration. 
In this paper we will illustrate the relative importance of a variety 
of EC techniques to help with the modeling of a real-world data 
problem. We will show how it is possible to use parsimony 
pressure to force GP to develop models fitting specific 
mathematical forms and how this can expedite convergence. 

 

1.1 Description of Data Sets 
A collection of thirteen sample data sets were presented to the 
COLSA Corporation authors at the ARC, each data set 
comprising just a few measurements (typically 17 or so) for initial 
evaluation. Each data set represented the reflectance for a 
different surface at angles varying from 0 to 90 degrees. 

 
Figure 2. Typical shape of the BRDF data measured in the 

laboratory for different surfaces. 
 

Figure 2 provides a typical shape of the BRDF function in the 
data sets as measured in the laboratory for a reflecting surface. 
Since the data itself is not available for publication at this forum, 
we cannot provide specific details of the BRDF measurements 
acquired for the different surfaces under study. Only the general 
shape of the measurements is given in Figure 2. 

2. FORMULATION AS A PROBLEM IN 
EVOLUTIONARY COMPUTING 
The discovery of equations to model discrete data points using GP 
is a classic symbolic regression problem. In this paper, we limit 
discussion to the simple case of a single independent variable 
since the data provided to us involved only the variation of a 
single angle at a time. We had to discover equations that best fit 
the measurements, but were also a function of just a single 
variable. 
Other factors also entered into the task requirements: speed of 
discovery, simplicity or complexity of equations (so-called 
parsimony), form of equations, and the ability to easily integrate 
the resulting equations (also related to parsimony). 
 

2.1 Error Function 
The quality of the fit was measured as the sum of the absolute 
values of the differences between the measured and modeled data 
values as shown in Figure 3. Absolute error was chosen as the 
error measurement for this paper.  

 
Figure 3. Fitness function is calculated as the total sum of the 

errors at each point. Lower fitness values indicate a better 
match between model and measurements. 

 

3. DIFFERENT MODELS 
In the next sections we will show how we used different EC 
techniques to find parameters for a variety of models to fit the 
measured reflectance data and to develop models of different 
mathematical form. We will discuss our work with the Phong 
model, a requirement of the customer. However, we will also 
discuss how the GP results were made to fit a trigonometric, a 
power, and an exponential model. In addition, we will review the 
results of using parsimony and using hybrid models that 
combined classical GP with the previous model forms. 



3.1 Fixed Phong Model 
The Phong model equation was used as the basis for comparing 
all results. Although we modeled multiple forms of the Phong 
equation, only the main form is reported herein for brevity: 
 

R(θ) = a * cos(θ) + b * cosc(θ - β) 
 
We used classic evolutionary strategy (ES) to evolve good 
solutions for the parameters a, b, c, and β. (Here by ES, we 
simply mean a real-valued genetic algorithm.) Since this equation 
has a smooth fitness landscape, we are somewhat confident that 
we quickly found essentially the optimal values for matching the 
data. Thus the Phong result serves effectively as a basis for 
comparing the other modeling techniques. 

3.2 Genetic Programming Model 
The second approach was to use classic GP to evolve an equation 
that models the measured data. A variety of operator sets were 
made available and used. For simplicity, we limited the operator 
set to the four basic arithmetic operators, plus logarithm, 
exponentiation, and trigonometric functions. Exponentiation was 
based on real numbers. 

The customer had requested an ability to easily integrate the 
resulting discovered equation (symbolically). Thus a degree of 
parsimony pressure was applied to force the results to be simpler. 

3.3 Other Constrained Models 
After modeling with GP, we also wanted to discover some 
constrained forms of solution where the evolved solution 
comprised trigonometric, exponential, or polynomial terms, or 
various combinations thereof. Again this is basically an ES type 
formulation where the parameters are discovered to fit a fixed 
specified equation form. Combinations of the following forms 
were then used: 

 

Trigonometric:  k1*sin(k2*x + k3*y + k4*z + ... + k5) 
 

Power: k1 + k2*x + k3*y + ... + k8 * x^2/2! + k9*x*y/2! +...+ 
k15*x^3/3! + ... 
 
Exponential: k1*2.0^(k2*x + k3*y + k4*z + ... + k5) 
 

However we only have a single independent variable, θ, so the 
equations simplify to: 

 

Trigonometric:  k1*sin(k2*θ + k3) 
 

Power:  k1 + k2*θ + k3*θ^2/2! + k4*θ^3/3! + ... 

 
Exponential:  k1 * 2.0^(k2 * θ + k3) 

 

where the kn values are the parameters to be discovered. 

Although not as good as GP, these models evolved very fast to 
values nearly as good as GP. 

3.4 Hybrid Models 
The tool suite used allows for combining the various above 
models into a hybrid. In particular, a number of genes in each 
chromosome were allocated for the trigonometric, polynomial, 
and exponential form while the remaining genes were used to 
encode a classic GP solution. The fitness value used in the error 
comparison was simply the sum of the constrained and GP 
evaluations. 

3.5 Parsimony 
Both the GP and hybrid models allow application of a degree of 
parsimony that applies a fitness penalty to overly complex results 
during the selection process. Here complexity can be a variety of 
measures such as expression depth, size of evolved constants, 
operator type, non-uniqueness, and several others. Furthermore, 
each of these criteria may be applied in different strengths.  
Parsimony was applied only during the selection process so that 
elsewhere the resulting GP-discovered solutions would be 
displayed with their inherent fitness values. Only during the 
selection process was the fitness penalty applied. 
After evolving for a while without parsimony, parsimony factors 
were calculated on the result and these became the base settings. 
Then an overall constant multiplier was applied to each of these 
parsimony factors. This constant multiplier is referred to as the 
parsimony pressure. The higher the parsimony pressure, the 
simpler one could expect the resulting equation to be, although 
most likely less fit than the equation evolved at lower parsimony 
pressure. 

4. RESULTS 
Table 1 provides a comparison of the results obtained when using 
the parsimony, Phong model, and genetic programming 
techniques. The comparison indicates, as one might expect, that 
the unconstrained GP model achieved the best result when 
compared to the Phong equation for the same data set. This was 
true in every case and by a wide margin. The unconstrained form, 
however, produced very complex models that would be different 
every time the evolution was allowed. In addition, it tended to 
“over fit”, i.e., to adjust even to the measurement errors. This was 
in part due to the small number of data points available in the 
laboratory measurements. 
The evolved constrained forms combined up to four trigonometric 
terms, three polynomial terms, and one exponential term, but 
most typically we used fewer terms. The results were not only 
easy to evaluate, and to integrate symbolically. 
The hybrid results proved to be somewhat of a surprise, being 
similar in quality to GP while being quite a bit simpler. This is 
especially true with higher parsimony pressure. We found the 
hybrid approach was also highly desirable for a different non-
BRDF data analysis application. 
Finally, one of the bigger surprises was that for this problem a 
very mild application of parsimony pressure produced superior 
match to the measured data, i.e., a lower fitness error value. One 



might have expected the fitness value to suffer with any 
parsimony pressure. At higher-pressure parsimony settings, the 
model forms became simpler, but at the expected cost of being 
less fit. 
 

Table 1. Comparison of techniques. Ratio of Phong model and 
hybrid results to the best GP results 

 
Note that in Table 1, for data set 12, the hybrid result was actually 
superior to the GP result, presumably because this set of 
measurements actually fit this model better and the GP runs were 
too short to have discovered this form. 
Table 2 presents parsimony results that were quite interesting. 
With the mildest parsimony setting tried, it was a unexpected to 
see a four percent improvement (0.96 ratio) when it was expected 
that the simplicity would result in a cost in fitness value. 
At the heaviest parsimony pressure tried, the fitness value 
suffered by about 78 percent, but was nevertheless an 
improvement over the Phong model. The evolved expressions, 
however, were far simpler than the equations derived without any 
parsimony pressure. 
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Table 2. Results with and without mild parsimony pressure. 

Data 
Set With Without Ratio 

0 0.005320 0.007182 0.7407 

1 0.004567 0.005378 0.8492 

2 0.002796 0.003897 0.7175 

3 0.008709 0.010284 0.8468 

4 0.003821 0.004135 0.9241 

5 0.004696 0.004249 1.1052 

6 0.002484 0.002423 1.0252 

7 0.009657 0.009074 1.0642 

8 0.004882 0.004642 1.0517 

9 0.004395 0.005888 0.7464 

10 0.014761 0.010562 1.3976 

11 0.014320 0.017165 0.8343 

12 0.020476 0.017204 1.1902 

   Ave = 0.961007 

 

6. SUMMARY 
EC is well suited to find the parameters necessary to fit a 
particular model to measured data. In particular, ES was very 
useful in determining the parameters to be used in the Phong 
model to reproduce laboratory measured BRDF data for different 
surface materials. In addition, GP used in conjunction with 
parsimony pressure could provide alternative models for the 
BRDF laboratory data that had any desired mathematical form. 
This research suggests that BRDF models based on surface 
material physical characteristics could be developed and adjusted 
with relative ease to fit measured reflectance data. 
 

 

Data Set Phong/GP Hybrid/GP 
0 3.70 24.27 

1 3.74 11.26 

2 4.95 15.70 

3 2.48 10.97 

4 6.92 1.15 

5 6.53 1.15 

6 6.65 2.54 

7 8.91 27.45 

8 2.68 33.01 

9 4.70 19.80 

10 3.28 1.98 

11 2.36 1.62 

12 3.49 0.99 

Average 4.65 11.69 


