
Using RFID and a Low Cost Robot to Evolve Foraging
Behavior

Abe Howell & Roy McGrann
Mechanical Engineering Dept.

State University of NY at Binghamton
Binghamton, NY
+1-607-777-6676

abe@abotics.com
mcgrann@binghamton.edu

Richard Eckert
Computer Science Dept.

 State University of NY at Binghamton
Binghamton, NY
+1-607-777-4365

reckert@binghamton.edu

Hiroki Sayama & Eileen Way
Bioengineering & Systems Science Dept.

State University of NY at Binghamton
Binghamton, NY
+1-607-777-2135

sayama@binghamton.edu
way@binghamton.edu

ABSTRACT
The process of developing genetic algorithms, genetic programs
or training neural networks is a time consuming task. When the
target device is an autonomous mobile robot, this development is
often performed using software simulation. Software simulations
are a cost effective tool and provide researchers with the ability to
test out multiple algorithms quickly and efficiently. However, the
end result is that the optimized algorithm(s) must be implemented
and tested on an actual robot to evaluate performance in the real
world. Significant cost can be associated with this final step. In
this paper we propose to leverage Radio Frequency Identification
(RFID) and a low-cost RFID capable mobile robot with the intent
of creating basic foraging behavior. Additionally, we will present
experimental results that demonstrate the effectiveness of using
Genetic Programming (GP) and a low-cost RFID capable robot to
create foraging behavior.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– intelligent agents, multi-agent systems.

General Terms
Algorithms, Design, Experimentation.

Keywords
Microcontrollers, radio frequency identification, mobile robot,
genetic programming.

1. INTRODUCTION
Foraging behavior is easily simulated when expensive sensors and
hardware are modeled in software. However, when it comes to
direct implementation on an actual robot, researchers must have
access to a robot capable of foraging. A foraging capable robot
must have the ability to detect food, manipulate food and perform

simple to complex navigation tasks in an unknown or known
environment. Traditionally this has been achieved through the use
of a suitable camera system, gripper attachment and expensive
robot platform. Most commercially available robots that meet
these foraging requirements are fairly expensive and cost
prohibitive when used in swarms [3,6]. By leveraging RFID we
have developed another method for satisfying the foraging
requirements. This new system comprises passive RFID tags, a
RFID chip and antenna, and a low cost mobile robot. Food is
stored virtually on passive RFID tags that can be disseminated
throughout a robot’s environment. The RFID chip and antenna are
integrated with the low cost robot so that the agent can explore its
environment while searching for RFID tags. Upon discovering a
tag the robot acquires food by simply reading the amount of
virtual food that is available.

In this paper we will first describe the robot, its sensors, and its
capabilities. After that we will explain how RFID can be
leveraged to develop foraging behavior. Finally, foraging
experiments we carried out using GP will be discussed.

Copyright is held by Abraham L. Howell.
GECCO’06, July 8–12, 2004, Seattle, WA, USA.
ACM 1-59593-186-4/06/0007.

2. Low Cost Robot
To help solve the issue of foraging requirements we are using a
unique low cost robot that was developed under an NSF CCLI
grant for a new Bioengineering curriculum at Binghamton
University [5]. This robot is appropriately named BIObot and
contains several different types of sensors, which allow it to
explore and interact with its environment and also execute basic
and complex foraging behaviors. The BIObot robot is shown in
Figure 1. Currently BIObot is being used in a Bioengineering
course, Autonomous Agents, where students are exploring
concepts in control theory, fuzzy logic, neural networks, and
genetic algorithms. Hands-on interaction with BIObot engages
students, makes learning fun, and elevates interest in the concepts
under investigation. For most of the semester, students work with
BIObot, handheld computers and specially designed software.
However, near the end of the course students develop code in
Mathematica and must leverage at least two of the covered
algorithms to solve a specified problem. The work described in
this paper will enable us to develop lab modules for a genetic
programming section.

2.1 BIObot’s Sensors
BIObot utilizes a total of ten different sensors: five Sharp
GP2D120 Infrared Rangers, two cadmium-sulfide light cells, two
quadrature wheel encoders, and one RFID chip and antenna.
Basic obstacle avoidance and wall following is achieved with the
Sharp IR sensors, of which there are three in the front and two in
the rear of the agent. The two frontward-facing light sensors
support behaviors that are associated with light such as light
tracking or avoidance. BIObot is able to move through the
environment using three different control methodologies: open
loop wheel velocity, closed loop wheel velocity, and position
control. Position and closed loop velocity control both utilize the
quadrature wheel encoders to implement their respective
proportional, integral, and derivative (PID) controllers. This
feature helps BIObot to execute semi-precise movements such as
rotating 90 degrees or traveling forward 12 inches. Such
rotational and translational motions are required capabilities when
performing simple or complex navigation. Finally one of the more
important sensors, the RFID chip and antenna, allows BIObot to
detect, obtain, and transport virtual pieces of food.

2.2 Controlling BIObot
BIObot’s onboard controller is able to integrate most micro-
controller based Bluetooth® transceivers [1, 2]. A higher-level
controller such as a Bluetooth® equipped laptop, desktop,
handheld computer or cell phone can wirelessly control BIObot
when both devices are paired. The onboard controller runs a
specially designed firmware that provides the user with an easy to
use set of functions that are accessed via asynchronous serial
commands across the Bluetooth Serial Port protocol. Users can
command BIObot to move using open loop wheel velocity, closed
loop wheel velocity, and position control, to retrieve any of the
analog to digital (A/D) sensor readings, to check for in-range
RFID tags, to set and get the states of digital pins, to set sensor
reflexes or to access a host of other functions that are built into
the firmware.

2.3 Programming BIObot
By using simple asynchronous serial commands BIObot opens up
the world of programming to virtually any language that supports
serial communication. Visual Basic .NET, C# .NET, Java,
Python, Mathematica, C, C++ are some of the more predominant
software development tools that are compatible with BIObot.
However, the end target hardware must also support serial
communication and have built-in Bluetooth® or be able to add
USB or serial Bluetooth transceivers. Operating system (OS)
transparency is also achieved by using simple serial commands

3. Foraging with RFID
With a RFID chip and antenna built-in, BIObot is able to roam
through an environment and detect tags as it passes over them.
Tag detection is accomplished by continuously polling the RFID
chip. We have installed the tags underneath the environment floor
so that they will not interfere with the motion of BIObot. Since
we are using a wireless Bluetooth connection there is a minimal
amount of latency associated with the serial data transmission.
Using a serial baud rate of 19,200BPS we realized approximately
120-140ms of latency for the roundtrip transmission of two
characters. When polling the RFID chip there is an added delay,
which brings the total delay to 250ms on average. Having the
robot’s micro-controller communicate with the RFID chip via
asynchronous serial commands at 19,200BPS adds this extra time
delay. Once the RFID chip receives a command it must power an
antenna, which in turn supplies energy to the passive in-range tag.
Once powered by the antenna, the tag is able to return the
requested reading to the higher-level controller. Even with a
latency of 250ms we have not observed any degraded
performance during our testing of simple foraging behaviors.
Future work will investigate the possibility of performing the
RFID polling local to BIObot so that the time delay can be
minimized.

3.1.1 Virtual Food
Virtual food is stored on tags, which are then disseminated
throughout the environment. Each tag can have the same or
varying amounts of food. In this way, the amount and location of
food sources can be controlled and set up for various experiments.
BIObot can interact with the tags and procure virtual food by
simply reading an in-range tag. Heuristics and/or other algorithms
can be used to determine how much food BIObot is allowed to
obtain. Additionally, tags can be used as infinite or finite food
supplies. To use them as finite supplies BIObot first reads the tag,
determines how much food to take, subtracts this amount from the
tag amount, and finally writes back the new depleted amount to
the tag. Finite food supplies will eventually expire, unless there is
a mechanism for renewal. It should be noted that tags can also be
mounted in places other than the floor, so long as the RFID
antennae is mounted on BIObot such that it can be positioned
parallel to approached tags.

3.1.1.1 Structure of Virtual Food
The Q5-T5555 RFID tags that we are using can store up to a total
of 32-bytes of data [10]. Tag data are stored in 4-byte blocks,
which results in a total of 8 storage blocks. However, the first two
blocks are not to be used because they are set aside to store the
configuration settings and a start sequence. The first block stores
configuration information with regard to the tag, modulation type,
maximum number of blocks to be transmitted, and other settings.

Block two stores a unique 4-byte start sequence, which allows the
RFID chip to know where the start of the tag data stream begins.
The eighth block can be configured and used as a password for
the tag.
In the case of BIObot we are only using the third block in a tag to
store virtual food. Since we have a total of 4-bytes available in
each block we can use block#2 to store a 32-bit unsigned integer
that represents pieces of virtual food. The remaining 5-blocks
could be used for storing additional environmental information
such as x-y coordinates of the tag, number times the tag has been
read or written, or even identification numbers that correspond to
robots that have read the tag. Currently there are tags available
that comprise 31-storage blocks for a total of 124-bytes of storage
space.

3.1.2 Foraging Navigation
Simple and complex navigation can be accomplished using the
five infrared range sensors, two light sensors, three motion control
methodologies and Sensor Reflexes. Sensor Reflexes allow
BIObot to navigate obstacles without waiting to receive
instructions from a higher-level controller. Using Sensor Reflexes
offloads the task of monitoring sensors so that a higher-level
controller can spend time performing other computations and not
have to provide continuous instruction to the robot. To use Sensor
Reflexes the user must define (2) different thresholds:
Analog/Digital (AD) Reflex Level and Light Reflex Level. After
setting these levels, the user then prescribes which sensors are to
be used for the Sensor Reflexes. Now that the Sensor Reflexes
have been set, BIObot can safely move through the environment
and when one of the thresholds is exceeded by the appropriate
sensor(s), BIObot will halt and await further instruction. A
higher-level controller can periodically check to see if BIObot has
triggered a sensor reflex and then take the necessary action to
correct the situation. For example, suppose we want BIObot to
explore its environment and avoid obstacles, but do not want to
have the higher-level controller continuously poll the robot for its
current sensor readings and prescribe motor speeds. In this
scenario we would need to use the three front IR sensors and set
the AD Reflex Level to an appropriate value. We can determine
the necessary AD Reflex Level by knowing the maximum speed
of the robot and also how far away from the obstacle we want the
robot to stop. After setting this value we then set the Sensor
Reflexes for the front left, front center, and front right IR sensors.
BIObot will now drive with prescribed motor speeds until any one
of the three front IR sensors exceeds the AD Reflex Level.

3.1.2.1 Simple Navigation
BIObot can utilize simple logic, fuzzy logic, genetic algorithms,
genetic programs or neural networks to create simple navigation
behaviors. Simple navigation means that BIObot has no a priori
knowledge of its environment and does not generate or store
knowledge of its environment during exploration. Having BIObot
randomly roam through an environment while polling for RFID
tags and avoiding obstacles or other robots would be an example
of simple navigation.

3.1.2.2 Complex Navigation
Complex navigation takes place when BIObot is provided with
information about its environment prior to exploration, leverages
simple logic, fuzzy logic, genetic algorithms, genetic programs, or
neural networks and/or generates new information and/or

modifies its existing knowledge during the exploration phase. In
this scenario BIObot can be supplied with a map of the
environment that not only includes the location of obstacles, but
also that of the food tags and coordinate tags. Coordinate tags
consist of the same basic food tag, but instead of containing food
they hold coordinate information. BIObot can use the coordinate
tags to update its current location status by simply referring to its
map of the environment. There are several published papers that
reveal how RFID can be used to perform localization on a mobile
robot [4,7,9]. By using a map, BIObot can better exploit its
environment and over time learn where the best food supplies are
located.

4. Genetic Programming Proof of Concept
Foraging Experiment
Basic foraging behavior was investigated using BIObot, simple
GP based navigation with Sensor Reflexes, eight passive RFID
tags, and a small four-foot by eight-foot walled environment.
Figure 2 shows the high-level control program, (GP Robot
Control), which resides on a Bluetooth® equipped laptop or
desktop computer and controls BIObot while evolving simple
genetic programs that control the navigation behavior of BIObot.

4.1 Initial Setup
Each of the eight RFID tags was randomly loaded with varying
amounts of virtual food in the range of 5-20 pieces and then
placed under the environment floor. The list of random virtual
food values was as follows: 11, 9, 17, 8, 6, 15, 13, and 20. Tags
were spaced 16 inches apart in the four-foot direction and 19.2
inches in the eight-foot direction. Figure 3 illustrates the
environmental layout for the eight RFID tags.

4.2 GP Robot Control Program
The GP Robot Control application allows a user to generate a
population of simple linear genetic programs based upon the
following predefined functional and terminal sets:

T = {FWD_100, SPIN_LEFT_90, SPIN_RIGHT_90,
SPIN_LEFT_135, SPIN_RIGHT_135}
F = {IF_FOUND_FOOD_EAT_1, IF_FOUND_FOOD_EAT_5,
IF_FOUND_FOOD_EAT_ALL}

FWD_100 drives BIObot forward for 100 encoder ticks, which is
equivalent to 6.4”. SPIN_LEFT_90 and SPIN_RIGHT_90 rotate
BIObot 90 degrees in the respective direction. Likewise,
SPIN_LEFT_135 and SPIN_RIGHT_135 rotate BIObot 135
degrees in the specified direction. The IF_FOUND_FOOD_
functionals allow BIObot to procure food from the RFID tags. If
an IF_FOUND_FOOD_ functional is evaluated and food is
available then BIObot is able to collect a single piece, five pieces
or all the pieces of available food depending upon which
functional is being evaluated.
The number of generations, number of organisms, AD Sensor
Reflex Level, program length, number of program loops,
crossover rate and mutation rate are parameters that the user has
control over. Sensor Reflexes ensure that BIObot will not collide
with the environment walls. The initial population of organisms is
generated randomly with fixed length as specified by the user.
Organisms are evaluated live on BIObot in four-organism
tournaments. At the end of a tournament, the two organisms with
the highest fitness are copied into the two least fit. Next,
crossover and mutation are performed on the two least fit based
upon crossover and mutation rates. Single point crossover is
performed since the genetic programs are linear. Our mutation
operator utilizes single point mutation and can replace a
functional with a terminal or vice versa. Fitness is determined
entirely by the amount of food collected during a specific
tournament run.

4.3 Experimental Costs
All major experimental expenditures are displayed in table 1.

Table 1. Experimental Costs

Component Description Cost

Bluetooth & RFID Equipped BIObot $250.00

USB Bluetooth Adapter for Desktop/Laptop $30.00

Eight Passive RFID Tags $40.00

4 x 8 Foot Environment with Perimeter Walls $40.00

TOTAL $360.00

4.4 Experimental Results
An initial population of eight organisms each with a fixed length
of eight instructions was randomly generated. The AD Sensor
Reflex Level was set to sixty-five for each of the three frontward
facing IR sensors to ensure that BIObot would avoid collisions.
Crossover and mutation rates were set to 50% and each program
was allowed to run for thirty loops during execution. The small
population size was chosen due to the limited amount of
functionals and terminals, but also because the genetic programs
were limited to a linear structure.
The initial population of eight genetic programs evolved for a
total of four and a half hours and only covered two and half
generations. We decided to cease evolution when BIObot’s
battery voltage dropped below 7.0 volts, which is close to the
discharge knee of BIObot’s rechargeable NiMH cells.

Table 2. Results of Experimental GP Runs

 Pieces of Food Collected

AVERAGE 20.92

MIN 0

MAX 104

STD. DEV. 31.8

Results of the experimental GP runs are shown in Table 2. On
reviewing the results it can be seen that on average, BIObot was
able to collect 20.92 pieces of virtual food. The genetic program
with the highest fitness, organism#3, was able to collect 104
pieces of food even though this particular program generates a
circular trajectory when executed. The program for organism#3 is
listed below.

SPIN_LEFT_90
IF_FOUND_FOOD_EAT_1
SPIN_LEFT_90
SPIN_RIGHT_135
FWD_100
IF_FOUND_FOOD_EAT_ALL
IF_FOUND_FOOD_EAT_1
SPIN_RIGHT_135

We decided to let the evolutionary process run continuously,
meaning that each organism is evaluated immediately after the
previous organism in a tournament. Using this configuration
makes it possible for a circular program to begin execution within
close proximity to a food tag if the previous organism was
terminated close to a tag. In this situation, the executing program
is able to collect relatively large amounts of food in comparison to
a program that traverses a larger amount of the environment’s
total area.

5. Conclusions
In this paper we presented a basic framework for utilizing RFID, a
low-cost robot, and genetic programming to create foraging
behavior. The low-cost RFID and Bluetooth equipped robot was
introduced and discussed in some detail. Furthermore, we provide
the favorable results from of our proof of concept experiment with
a single BIObot, eight passive RFID tags, a four by eight foot
environment, and evolution of a genetic program. Future work
will investigate more complex foraging behaviors by leveraging
fuzzy logic, neural networks, genetic algorithms, genetic
programming, complex navigation, and possibly a multi-agent
schema with several BIObots communicating over a wireless
network.

6. ACKNOWLEDGMENTS
This project was funded by NSF CCLI EMD, DUE-0442887.

7. REFERENCES

[1] BlueSMiRF, http://www.sparkfun.com

[2] EB500, http://www.a7eng.com
[3] Garcia Robot. http://www.acroname.com
[4] Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.

Mapping and Localization with RFID Technology. IEEE
International Conference On Robotics and Automation
(ICRA), New Orleans, LA. April 26- May 1, 2004.

[5] Howell, A., McGrann, R., Way, E., and Woods, R.
Autonomous Robots as a Generic Teaching Tool. Submitted
for publication to the 36th ASEE/IEEE Frontiers in
Education Conference, San Diego, CA (Oct. 28-31,2006).

[6] Khepera II Robot. http://www.k-team.com
[7] Kulyukin, V., Kutiyanawala, A., Jiang, M., Gharpure, C.

Surface-Embedded Passive Radio Frequency Exteroception
in Robot Navigation. Technical Report USU-CSATL-2-01-
06, Computer Science Assistive Technology Laboratory,
Department of Computer Science, Utah State University.
January 24, 2006.

[8] Nara, T., Ando, S. Localization of RFID Tags from
Measurement of Complex Gradients of Electromagnetic
Fields. Graduate School of Information Science and
Technology, University of Tokyo.

[9] Seo, D., Won, D., Yang, G., Choi, M., Kwon, S., Park, J. A
Probabilistic Approach for Mobile Robot Localization under
RFID Tag Infrastructures. International Conference on
Control, Automation and Systems (ICCAS), Gyeong Gi,
Korea. June 2-5, 2005

[10] SONMicro Electronics, http://www.sonmicro.com

	INTRODUCTION
	Low Cost Robot
	BIObot’s Sensors
	Controlling BIObot
	Programming BIObot

	Foraging with RFID
	Virtual Food
	Structure of Virtual Food
	Foraging Navigation
	Simple Navigation
	Complex Navigation

	Genetic Programming Proof of Concept Foraging Experiment
	Initial Setup
	GP Robot Control Program
	Experimental Costs
	Experimental Results

	Conclusions
	ACKNOWLEDGMENTS
	REFERENCES

