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ABSTRACT

Post-evaluation analysis of the model of a constrained opti-
mization problem is conducted after obtaining preliminary
optimal or heuristically good solutions. The primary goal of
post-evaluation analysis is to reconsider assumptions made
in the model in the light of information generated while
finding the good solutions as well as information not pre-
viously detailed in the model. We seek extensions of the
techniques presently available for the special case of linear
programming problems because these special problems allow
excellent post-evaluation analysis as a side-effect of seek-
ing solutions. Unfortunately, more general problem solvers
presently provide little if any information for post-evaluation
analysis.

We consider general metaheuristic methods that evolve pop-
ulations of settings of the decision variables. These methods
can contribute greatly to reconsideration of modeling as-
sumptions. This is because the evolving populations taken
in total provide a great number of samples for conducting
post-evaluation analysis in a data-driven fashion. This is a
very general claim. It is illustrated in this paper by a single,
rather simple, constrained optimization problem.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods

General Terms
evolutionary computation, metaheuristics, parametric anal-
ysis, post-evaluation analysis

1. INTRODUCTION

In this note we make and expand upon five observations
pertaining to the use of metaheuristics on constrained opti-
mization models. In brief, the observations are as follows.

1. Constrained optimization models are used extensively
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in practice, where it is generally acknowledged that
obtaining preliminary solutions typically precedes the
bulk of the modeling of the decision problem at hand.
The remaining modeling work is standardly called post-
evaluation analysis. It largely focuses on parametric
analysis, the study of the effect of systematic changes
to the model’s parameters.

. There exists a need to find and develop concepts to

support post-evaluation analysis for general constrain-
ed optimization models. We are inspired by the spe-
cial case of linear programming models, where post-
evaluation analysis is greatly facilitated by the sim-
plex algorithm. The simplex algorithm incidentally
provides valuable information for post-evaluation anal-
ysis. This type of information is generally very limited
for other kinds of constrained optimization problems.

. The decision space of a constrained optimization model

consists of variable settings, objective function value,
and feasibility criteria. If the decision space could be
adequately sampled, the samples could be used to ob-
tain estimates for the key questions of parametric anal-
ysis. The decision spaces, even for routine constrained
optimization models, are too large for unbiased ran-
dom sampling to be useful for purposes of parametric
analysis. Sampling, to be effective, must be usefully
biased.

. The boundary separating feasible and infeasible solu-

tions is typically a highly relevant part of the decision
space. Generally, it will be desirable to bias samples
toward the boundary of the feasible region, which is
determined by the constraints on the problem. In par-
ticular, it will be desirable to sample the infeasible
solutions, as well as the feasible.

. The Feasible-Infeasible Two-Population Genetic Al-

gorithm (FI2PopGA) [3, 4, 5, 6, 7] retains infeasi-
ble solutions whose evolutionary selection is based on
fitness measured as distance from feasibility. Thus,
the FI2PopGA is a method with a credibly biased
sampling mechanism advantageous to post-evaluation
analysis. Other population-based metaheuristics may
also be useful for this purpose. What approach might
be best is entirely an open question.

AN ILLUSTRATIVE PROBLEM

In expanding upon the five observations of the previous sec-
tion we will, for the sake of illustration, demonstrate the



use of the FI2PopGA on a single knapsack (0-1 integer pro-
gramming) problem. This will help to demonstrate con-
cepts clearly. More extensive evaluation of concepts and
algorithms must await future investigation.

The following class of problems is used for our illustration.
Knapsack problems with a single constraint are a special
case of constrained optimization problems. In words, such a
problem is to select various objects that will fit into a given
‘knapsack’ so as to maximize their total value, subject to
a constraint on their total ‘weight.” The problem has the
following form.

n
max z = Zpixi (1)
i=0

subject to the constraint

Xn:wixi <ec (2)
i=0

by selecting
z:€{0,1}, i=0,1,2,...,n. (3)

Our illustration is based on Knap101. A specific instance of
this problem detailed in Appendix A.

3. CONSTRAINED OPTIMIZATION

By way of context and background, optimization problems
may usefully be distinguished as either constrained or un-
constrained. Our focus in this paper is on constrained opti-
mization problems,’ which have the following general form:

max z = d(%) (4)
subject to
fl(f) S g, = 1,2,...,7’Lf (5)
g](:f) > bj Jj= 1727"'7’”9 (6)
hk(f) = Ck, k= 1,2,...,7’Lh (7)
z, € S, 1=0,2,...,n. (8)

d(Z) in expression (4) is called the objective function for the
problem. Its value, z, is what we seek to maximize (or mini-
mize) by finding values of, or settings for, the decision vari-
ables, the x;s, that yield the highest (or lowest if minimizing)
value for z among the settings that satisfy the constraints,
namely the expressions (5)—(8). Such a setting of values for
the decision variables is said to be optimal.

Any particular choice of the values for the decision variables
is called a solution to the problem, regardless of whether it
is optimal or whether it satisfies the constraints. A solution
that satisfies all of the constraints is said to be feasible, oth-
erwise it is infeasible. Optimal solutions must be feasible,
but need not be unique; other feasible solutions may yield
equally good values of z.

The constraints, as we have just noted, serve to classify so-
lutions as either feasible or infeasible. The right-hand side

The distinction is perhaps not absolute, since there are
cases in which constraints may be eliminated by an alterna-
tive encoding of the problem. These special cases, however,
need not distract us.

(RHS) values of the inequality constraints, the a;s and the
bjs, are said to define boundaries between the feasible and
infeasible regions for the problem. A given solution, Z, is
said to be near to the boundary (for a particular constraint)
if the left-hand side of the constraint is close (pragmatically
defined for the problem to hand) to the right-hand side. The
solution is said to be on the boundary if the left-hand side
equals the right-hand side. More generally, we say that a
solution is on or near the boundary of the feasible region if
it is on or near the boundary of at least one constraint.

In typical constrained optimization problems encountered in
practice, the optimal solutions, as well as the good (near op-
timal) solutions, are on or near the boundary of the feasible
region. (As a special example, linear programming problems
always achieve their optimum on the boundary.)

4. POST-EVALUATION ANALYSIS

The term post-evaluation analysis refers to investigations for
the purpose of decision making that happen after a model
has been formulated and solved by an optimizing or heuristic
evaluator. A presumably good, or even optimal, solution to
this model is at hand. Call it 2. Before actual decisions are
taken, however, it is normally prudent to ask various kinds
of post-evaluation questions. There are two main types of
questions.

1. Sensitivity analysis questions: Do small changes in the
model’s parameters have large effects on either (a) the
value realized for the objective function, or (b) the
accepted solution?

2. Candle-lighting analysis questions: Are there advanta-
geous opportunities to change the assumptions of the
model? For example, would a change in the RHS of
a constraint yield a significantly improved objective
value? If so, does the cost of changing the RHS net
out to a profit? Conversely, are there good solutions
for which the left-hand side (LHS) value of a constraint
is far from the RHS value? If so, can the slack RHS
resource be profitably sold or used for some other pur-
pose? See [2, 8, 9, 10, 11] for elaboration of the candle-
lighting concept.

Both sorts of questions are quite important in practice. For
present purposes it suffices to conflate them and to focus on
post-evaluation analysis of the parameters of a constrained
optimization model. This is called parametric analysis and
we focus on it in what follows. Parameters fall into three
categories, the RHS value or values (¢ in expression 2), ob-
jective function parameters (the p; in expression 1), and the
LHS parameters (the w; in expression 2).> We shall discuss
each in turn.

2Strictly speaking the concept of a parameter only applies
for certain functional forms, e.g., linear and multiplicative.
We say parameters because that will be correct for most
models of practical import, but our remarks generally apply
to parameters, whether or not they are parameters.



Marginal Product

Figure 1: Marginal Product Curve

4.1 RHS Parametric Analysis

What economists call the marginal product curve is a staple
of economic analysis.?

MARGINAL PRODUCT CURVE:

A curve that graphically illustrates the relation
between marginal product and the quantity of
the variable input, holding all other inputs fixed.
This curve indicates the incremental change in
output at each level of a variable input. [1]

An example of such a curve, also from [1], is shown in Fig-
ure 1.

A similar curve can be drawn for each constraint in a con-
strained optimization problem. Each such curve is called
either the optimal value function for the constraint or the
objective function operating curve for the constraint.

We return to our illustrative knapsack problem Knapl01.
We insert into a database table, poplog, each and every so-
lution created by the evolutionary process of the FI2PopGA,
along with its LHS value and its objective function value.
Using these data, Figure 2 shows a plot of pairs of points
(LHS value, objective value) with the knapsack’s constraint
RHS value, ¢, on the abscissa, and the corresponding opti-
mal value z of the objective function on the ordinate.

In Figure 2 we see a frontier on one side of the plotted points.
The frontier has a positive slope because as the RHS values
get larger, larger objective function values are discovered.
That is, increasing the knapsack capacity can only improve
the value of its contents. Without loss of generality, we
assume a maximization problem and a < constraint. Thus,
solutions to the left of an abscissa value are feasible for that
constraint. If, as in the present case, the constraint RHS
value is 200, then any plotted solution to the left of (<) 200
on the abscissa is feasible. Then, among the feasible points,

3Thanks to Jack Hershey for alerting us to an analog in
economics of what we here are calling the optimal value
function or the objective function operating curve for the
constraint.

those scoring highest on the ordinate axis are best. The
black (dark) points in Figure 2 are just such an example.

Figure 2 also contains a second collection of points, roughly
running along the frontier of the plot of sampled solutions.
This second collection of points, shown in red (or a shade of
gray in grayscale display), plots points (LHS value, objective
value) obtained from a knapsack heuristic called “bang-per-
buck,” which is known to perform very well. See Toth and
Martello [12]. (The bang-per-buck heuristic? only applies to
knapsack problems with a single constraint.)

Again, we want to emphasize that our purpose is not to
discuss effective heuristics for the knapsack problem (bang-
per-buck is hard to beat). Instead, we wish to illustrate
how population-based metaheuristics—the FI2PopGA is the
present example—may be used for parametric analysis of
optimization problems.

We now consider specific questions pertaining to RHS para-
metric post-evaluation analysis. As in expression (2), let the
RHS parameter be labeled c. Perhaps the two most impor-
tant examples of questions for parametric post-evaluation
analysis of a constraint’s RHS value are these:®

1. As knapsack capacity c¢ increases how does this affect
the results? At what point does the currently best
solution, z* change and what is its new value? Gener-
ally, how does z" change as ¢ increases and what are
the associated solutions?

2. As knapsack capacity ¢ decreases how does this affect
the results? At what point does the currently best
solution, 2+ change and what is its new value? Gener-
ally, how does 21 change as ¢ decreases and what are
the associated solutions?

These questions in effect ask for the objective function oper-
ating curve as a function of ¢. (In linear programming, these
questions pertain to what is called the shadow price of the
RHS value.)

As we saw in Figure 2, the objective function operating curve
can be estimated as the frontier of the solutions obtained
during the execution of an evolutionary solver, in our par-
ticular case by FI2PopGA. More focused estimates may be
obtained by querying the database of these solutions, as we
now demonstrate.

In practice it will often be the case that opportunities of cer-
tain types prove profitable. For example, Table 1 shows the
results of querying on a relaxation of knapsack capacity in

4After sorting the objective function-constraint parameter
ratios p; /w; in descending order, finding the bang-per-buck
solution for a given RHS value requires one pass through
the decision variables. The knapsack items are considered in
descending order of p; /w;. If adding item 7 to the knapsack
does not violate the constraint, it is added; otherwise it
is skipped and the next item is considered. So it is very
fast indeed. This makes it ideal as a benchmark for other
heuristics and in particular for the FI2PopGA.

5 Again, without loss of generality, we are assuming a maxi-
mization problem and a < constraint.



the Knap101 problem. The query asks for distinct objective
function values for feasible solutions when 200 < ¢ < 210.
Only the top 20 are listed. Even so, the results are quite
intriguing. Recall that when ¢ = 200, the optimal solution
has an objective function value of 1119.984. As is easily read
off from Table 1, if we permit ¢ to be increased to 208.22,
the FL2PopGA has already found a solution whose objective
value is considerably larger, namely 1153.92. The decision
maker will likely want to investigate whether it is possible
to increase ¢ and if so at what cost.

| objval [ lhsval ‘

1153.92 | 208.022
1140.253 | 209.401
1136.569 | 207.438
1136.012 | 205.986
1135.114 | 205.092
1132.789 | 202.797
1131.042 | 205.001
1130.354 | 208.516
1127.296 | 205.859
1126.113 | 205.101
1125.384 | 207.531
1125.056 | 205.803
1124.619 | 209.369
1124.229 | 207.004
1124.225 | 201.669
1123.76 | 205.717
1123.364 | 205.512
1122.987 | 208.366
1122.212 | 206.138
1121.263 | 208.47

Table 1: All solution samples in the database
selected by the SQL query “select distinct objval,
lhsval from poplog where lhsval > 200.0 and lhsval
<= 210 order by objval desc limit 20;”

On the other hand, Table 2 reports on reducing knapsack ca-
pacity to less than ¢ = 200. Here it is notable that there is a
known solution with objective value 1103.516 at ¢ = 192.628.
Now the decision maker may want to consider whether, say,
7 units of ¢ are worth more than, say 17 units of z. This may
well be the case. In any event, this information is valuable
for reconsidering the model of the problem at hand.

4.2 Objective Function Analysis

As in expression (1), let the objective function parameters
be labeled p;. Perhaps the most important examples of
questions for objective function post-evaluation analysis are
these:

1. Given a solution corresponding to z™ with x; = 0,
what is the best solution available for which z; > 0
and what is its value, 27 (In linear programming the
difference zT — z > 0 is called the reduced cost for the
decision variable z;. Linear programming solvers com-
pute reduced costs as a side-effect, but do not provide
the associated solution, the setting of the decision vari-
ables. Nothing very similar is available from standard
solvers for optimization problems that are not linear
programs.)

l objval [ lhsval ‘

1119.086 | 197.36
1115.014 | 197.269
1114.116 | 196.375
1109.028 | 198.071
1107.296 | 197.269
1106.859 | 195.149
1104.058 | 197.086
1103.516 | 192.628
1102.326 | 196.284
1100.437 | 195.871
1099.539 | 194.977
1099.478 | 198.036
1098.58 | 197.142
1097.955 | 192.135
1097.858 | 195.158
1097.397 | 196.384
1095.509 | 192.952
1095.467 | 194.886

1094.8 | 192.501
1094.569 | 193.992

Table 2: All solution samples in the database
selected by the SQL query “select distinct
objval, lhsval from poplog where lhsval >= 185.0
and lhsval <= 198.253 order by objval desc limit
20;”

Conversely, we can ask: Given a solution correspond-
ing to z* with x; > 0, what is the best solution avail-
able for which z; = 0 and what is its value, 2?7 (Linear
programming solvers do not provide this sort of infor-
mation as a side-effect from solving the original prob-
lem. The user can, of course, add a constraint and
resolve the problem.)

2. How do 21 and its corresponding solution change as
p; changes?

Table 3 illustrates how to answer questions of the first type
by querying the database of solutions generated by an evolu-
tionary solver. Note that in the optimal solution to Knap101
zo = 0. What about g = 1?7 What is then the best feasible
solution and what is its value? In Table 3 we see that the
best solution in the database in which g = 1 has an ob-
jective functional value of 1007.516, a large reduction from
1119.984.

The converse type 1 question, “What if we remove an item
that is in the optimal solution?,” is as easily handled. See
Table 4. There we find that the best (discovered) feasible
solution with 1 = 0 has an objective value of 1092.472. We
also see that there is a solution at 1116.049 if we allow the
RHS to increase as far as 206.66.

We now consider an example of the second type of objective
function question. The objective function parameter on x49
is 97.366. Suppose that its value falls to 80.0. What is the
value now of the best solution, what is it and does it include
z497 Two database queries will answer the question. First,
in Table 5, we consider solutions for which x49 = 1. These
will have their objective function values reduced by 97.366
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Figure 2: RHS = 200.00. FI2PopGA. knap101-20060430-60-60-500.pdf. The optimal solution, 1119.984, was
found in generation 293. Mutation rate = 0.025. Crossover rate = 0.4.

- 80 = 17.366. The table reports the top solution values for
solutions with x49 = 1.

Solutions with x49 = 0 will be unaffected by the objective
function parameter change. Table 6 shows these. Compari-
son of the two tables indicates that the optimal (or at least
the best so far discovered) solution, 2", would not change.

4.3 Constraint Parameters Analysis

As in expression (2), let the constraint parameters be la-
beled w; and assume that there is a decision variable z;
corresponding to each w;. Perhaps the two most important
examples of questions for parametric post-evaluation analy-
sis of a model’s constraints are these:

1. If w; changes to w}, how does this affect the results?

2. How much can w; change without changing the cur-
rently best solution? (In the case of optimality: How
much can w; change without changing what is the op-
timal solution?)

On the first question, suppose that w, = w; + 6. For a
given constraint, we can think of its left-hand side value as
a function of w;: LHS(w;). What we’re after is

ALHS = LHS(w; + 6) — LHS(w;) (9)

Given ALHS we can subtract it from the RHS value of the
constraint and hope to reduce the problem to the case of
RHS analysis. The value of ALHS will, however, depend on
particular solutions. Without knowing the functional form

of the constraint, no general approach is available other than
recalculating the constraint LHS values for each solution
under consideration.

All this is much simpler in the special case of the (one-
constraint) knapsack problem, since the constraint is linear
with parameters w;. See expression (2). Also, the decision
variables are 0-1. In consequence, this case can be handled
much as in the case of Table 5 and Table 6. First, query for
solutions with x; = 1 and the constraint’s RHS reduced by 6.
Then query for solutions with z; = 0 (these are not affected
by changes in w;). Compare the highest feasible objective
values from the two queries. If the x; = 0 query has the
best results, then adding 6 to w; changes (what appears to
be) the best solution; and otherwise leaves it unchanged.

The second question is also easily handled in our special
case. Consider wag = 4.992. Compare Table 6 (wa9 = 0) and
Table 7 (wa9 = 1). It is clear that so long as 6 < 1.746 the
currently best solution keeps its title. If 1.746 < 6 < 2.639,
the the bang-per-buck solution is best (1119.086). Note that
when 6 = 11.689 (or RHS = 200 - 11.689 = 188.311) we still
have a feasible solution with x49 = 1 and objective value
1091.729. In Table 6, however, even with a RHS of 189.894
we only have an objective value of 998.101. It appears that
T49’s presence in good solutions is quite robust to changes in
wag. (We have only considered increases in the value of wag.
Decreases in its value can only enhance the value of 49 in a
solution. Similarly, however, we may consider decreases in
a w; for an z; that is 0 in good solutions. This will indicate
how much w; has to decrease in order to make x; attractive
in a good solution.)



l objval [ lhsval ‘

1007.516 | 197.709
976.757 | 188.88
971.787 | 187.895
971.697 | 195.624
968.582 | 191.725
957.506 | 198.304
947.282 | 185.088
945.839 | 199.194
945.356 | 188.534
939.389 | 197.829
930.814 | 179.462
930.128 174.4
929.75 180.413
922.85 196.731
912.527 | 192.483
910.823 | 185.513
909.141 | 183.729
904.29 | 190.773
887.572 | 190.292
884.762 | 180.882

Table 3: The best solution found has zo = 0. What
are the best feasible solutions in which zo = 17
All solution samples in the database selected by
the SQL query “select distinct objval, lhsval
from poplog where x0=1 and feasibility = 1 order
by objval desc limit 20;”

S. COMBINATIONS OF PARAMETERS

The data-driven approach illustrated in this paper is able to
analyze joint changes of more than one type of parameter
at a time. In fact we have illustrated this in Table 4, which
presents results for both z; = 0 and for ¢ < 210.0.

Methods for linear programming problems are not able to
do this despite their other advantages for post-evaluation
analysis. With existing methods for linear programming it is
possible to analyze changes in RHS values, and it is possible
to analyze reduced costs (for example), but it is not possible
(without re-execution of the model) to examine both kinds
of changes jointly.

6. CONCLUSIONS

Evolutionary solvers, and population metaheuristics gen-
erally, may contribute greatly to decision making involv-
ing constrained optimization problems. They may do this
by finding excellent solutions at reasonable cost, as well
as by providing valuable information for conducting post-
evaluation analysis in a data-driven fashion. Our aim in
this paper has been to support the post-evaluation claim by
demonstration on a single, rather simple, constrained opti-
mization problem. We expect these findings to be general.®

Very much remains to be investigated. We note in particular
three points. First, the solutions found by any metaheuristic
in processing a constrained optimization problem can only
be a sample of the solution space, presumably with a helpful
bias. It will be important to investigate how well different

5We have noted complications when objective or constraint
functions are not linear or otherwise simple in form.

l objval [ lhsval ‘
1116.049 | 206.66
1104.142 | 203.011
1099.172 | 202.026
1094.243 | 202.126
1092.472 | 202.252

1092.355 | 198.694
1091.457 | 197.8
1090.567 | 209.89
1090.342 | 203.163
1090.2 | 208.294
1088.114 | 195.279
1087.877 | 206.208
1087.385 | 197.709
1087.216 | 194.385

1086.749 | 209.287
1083.697 | 199.734
1083.144 | 194.294
1079.667 | 197.709
1079.302 | 206.807

1075.426 | 194.294
Table 4: The best solution found has z; = 1.
What are the best solutions in which z; = 07

All solution samples in the database selected by
the SQL query “select distinct objval, lhsval
from poplog where x1=0 and lhsval <= 210.0 order
by objval desc limit 20;”

metaheuristics perform with respect to post-evaluation anal-
ysis on various types of constrained optimization problems.
This would appear to be an unavoidably empirical matter,
but one that potentially will pay great rewards in practice.
Second, there will be scale problems (of a computational
as well as cognitive sort) as the numbers of parameters, of
decision variables, and especially of constraints rise. Discov-
ering effective analytical tools, as well as computational ap-
proaches, for data-driven post-evaluation analysis must also
be seen as potentially offering important practical rewards.

Our third point concerns the computational cost of using a
population-based metaheuristic. Logging the discovered so-
lutions and loading them into an indexed relational database
(as we have done) imposes an additional cost that is ex-
pected to be relatively small. Assuming that the decision
maker is interested in conducting serious post-evaluation
analysis, we note that once the solutions are stored in an
indexed database the cost of querying, per our examples
(see Tables 1-7), can be very low indeed, especially when
compared to the cost of re-executing a standard solver.
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APPENDIX

A. THE KNAP101 MODEL

The model discussed in this paper, Knap101, is a knapsack
model with one constraint and 50 0-1 decision variables. The
NetLogo code used to set up the model is as follows. From
it, the full details of the model are obtainable.

to ModelSetup

set numDecisionVariables 50

set constraintRHS 200.0

set objectivelist (list 16.936 31.87 9.938 67.334
83.061 74.642 4.241 40.666 16.028 66.306 98.151
19.547 8.461 2.228 63.851 66.698 57.147 66.432
98.528 39.158 49.67 96.693 16.849 2.086 64.329
27.252 49.374 99.361 75.244 67.33 32.496 4.97

14.08 31.401 45.301 22.688 6.129 55.624 6.418
35.819 74.596 55.203 77.388 95.148 3.123 34.088
92.833 76.007 57.555 97.366)

set constraintList (list 39.628 2.975 30.141

29.355 6.824 31.625 3.415 6.786 7.732 49.275
41.955 2.383 23.821 7.884 47.518 40.901 2.618
23.126 39.101 30.386 36.086 12.196 41.528 13.015
32.113 44.648 2.67 41.426 11.598 24.02 13.358
0.985 41.282 0.346 17.901 21.295 6.847 6.667
45.437 2.085 42.106 38.617 23.309 31.843 40.966
43.892 24.982 17.617 30.331 4.992)

end

The optimal solution produces an objective function value of
1119.984 and a left-hand side (LHS) value of 198.254. The
bang-per-buck heuristic’s best solution is 1119.086.

The data used in this report were obtained from a single run
of the Knap101 model, using the NetLogo (version 3.1beta3)
implementation, version 1.6. The run described here used
100 as its random seed. The maximum number of solutions
was 60 for the feasible population and 60 for the infeasible
population. Single point crossover was used with a proba-
bility of 0.4. The point mutation rate was 0.025 and tourna-
ment selection was used. The run went for 500 generations
and called the fitness evaluation function 67,235 times. The
file is knapsack-generate-FI2PopGA.nlogo.

An optimum solution was found on this run at generation
293. That solution was [0 1 001 0010001000
01000010000101111010001010
01100110 1]. Not every run finds the optimal so-
lution. The general results, however, are quite typical, in
particular those in Figure 2. Key data/log files for the run
are: lineage.pl, log-BpB-results.csv, log-GA-results.csv, and
log-of-populations-.csv.

These files may be found at http://opim-sky.wharton.
upenn. edu/~sok/sokpapers/2007/knap101-20060430. The
plot in Figure 2 was produced by the Mathematica notebook
file, plotting.nb.

| objval [ 200.0 - lhsval ‘
1119.984 | 1.74600000000004
1119.086 | 2.63999999999999

1118.686 | 0.0229999999999961

1115.014 | 2.73099999999999
1114.116 | 3.62500000000003
1109.028 | 1.92900000000003
1107.296 | 2.73099999999999
1106.859 | 4.85100000000003
1104.678 | 0.714000000000027

1104.084 1.018

1104.058 | 2.91399999999999
1103.516 | 7.37200000000001
1102.326 | 3.71600000000001
1100.437 | 4.12899999999999
1099.539 5.023
1099.478 1.964
1098.58 2.858
1097.955 | 7.86500000000004
1097.858 | 4.84200000000001
1097.824 | 0.187000000000012
1097.397 | 3.61599999999999
1096.364 | 0.574000000000012
1095.509 7.048
1095.467 5.114
1095.346 | 0.80000000000004
1094.8 7.499
1094.569 | 6.00799999999998
1094.448 | 1.69399999999999
1093.957 | 3.80500000000004
1093.617 | 8.25700000000003

1093.583 3.602

1092.719 | 9.15100000000001
1092.355 | 1.30600000000004
1092.17 4.23400000000001
1091.99 1.69899999999998
1091.733 | 6.35400000000001
1091.729 11.689

1091.457 | 2.20000000000002
1091.272 | 5.12799999999999
1091.268 10.463

Table 7: All solution samples in the database
selected by the SQL query “select distinct objval,
200.0 - lhsval from poplog where lhsval <= 200.0
and x49 = 1 order by objval desc limit 40;”



